
z/OS Communications Server

IP CICS Sockets Guide

Version 1 Release 9

SC31-8807-04

���

z/OS Communications Server

IP CICS Sockets Guide

Version 1 Release 9

SC31-8807-04

���

Note:

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

585.

Fifth edition (September 2007)

This edition applies to Version 1 Release 9 of z/OS (5694-A01) and to all subsequent releases and modifications

until otherwise indicated in new editions.

IBM welcomes your comments. You may send your comments to the following address.

 International Business Machines Corporation

 Attn: z/OS Communications Server Information Development

 Department AKCA, Building 501

 P.O. Box 12195, 3039 Cornwallis Road

 Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):

1+919-254-1258

 Send the fax to “Attn: z/OS Communications Server Information Development”

Internet e-mail:

comsvrcf@us.ibm.com

World Wide Web:

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to

include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xv

Tables . xix

About this document . xxi

Who should read this document . xxi

How this document is organized . xxi

How to use this document . xxii

Determining whether a publication is current . xxii

How to contact IBM service . xxiii

Conventions and terminology used in this document . xxiii

Clarification of notes . xxiii

Prerequisite and related information . xxiv

Required information . xxiv

Related information . xxiv

Softcopy information . xxiv

Other documents . xxv

Redbooks . xxvi

Where to find related information on the Internet . xxvi

DNS Web sites . xxvii

Using LookAt to look up message explanations . xxviii

Using IBM Health Checker for z/OS . xxviii

How to send your comments . xxix

Summary of changes . xxxi

Chapter 1. Introduction to CICS TCP/IP . 1

TCP/IP Internets . 2

Telnet . 2

Client/server processing . 2

TCP, UDP, and IP . 2

The socket API . 3

Programming with sockets . 4

Socket types . 4

Addressing TCP/IP hosts . 5

A typical client-server program flow chart . 8

Concurrent and iterative servers . 8

The basic socket calls . 9

Server TCP/IP calls . 10

SOCKET . 10

BIND . 10

LISTEN . 11

ACCEPT . 11

GIVESOCKET and TAKESOCKET . 12

READ and WRITE . 12

Client TCP/IP calls . 12

The SOCKET call . 12

The CONNECT call . 12

READ/WRITE calls — the conversation . 13

The CLOSE call . 13

Other socket calls . 13

The SELECT call . 13

IOCTL and FCNTL calls . 16

GIVESOCKET and TAKESOCKET calls . 16

© Copyright IBM Corp. 1994, 2007 iii

What you must have to run CICS TCP/IP . 18

CICS TCP/IP components . 18

A summary of what CICS TCP/IP provides . 18

The socket calls . 18

The listener . 19

Conversion routines . 19

Rules for configuring the IBM-supplied listener for IPv6 20

Chapter 2. Setting up and configuring CICS TCP/IP 23

MVS JCL — Modifying CICS startup . 23

CICS — Defining CICS TCP/IP resources . 26

Transaction definitions . 26

Using storage protection . 27

Program definitions . 28

Required programs, CICS definition needed . 28

Optional programs, CICS transaction and program definition needed 31

Required programs, CICS definition not needed . 33

Threadsafe enablement . 33

File definitions . 34

EZACONFG . 34

EZACACHE . 35

Transient data definition . 36

CICS monitoring . 37

Event monitoring points for the TRUE . 38

Event monitoring points for the listener . 41

Open TCB measurements . 43

CICS program list table (PLT) . 46

System recovery table . 46

DFHSRT macroinstruction types . 46

DFHSRT example . 48

Security considerations . 48

TCP/IP services — Modifying data sets . 49

The hlq.PROFILE.TCPIP data set . 49

The hlq.TCPIP.DATA data set . 50

z/OS UNIX Systems Services — adding a UNIX system services segment 51

Configuring the CICS TCP/IP environment . 51

Building the configuration data set with EZACICD . 51

TYPE parameter . 54

JCL for the configuration macro . 66

Customizing the configuration data set . 70

Configuration transaction (EZAC) . 70

UNIX Systems Services environment effects on IP CICS sockets 91

Chapter 3. Configuring the CICS Domain Name System cache 93

Function components . 94

VSAM cache file . 94

EZACICR macro . 94

EZACIC25 module . 94

How the DNS cache handles requests . 95

Using the DNS cache . 96

Step 1: Create the initialization module . 96

Step 2: Define the cache file to CICS . 99

Step 3: Execute EZACIC25 . 100

HOSTENT structure . 101

Chapter 4. Managing IP CICS sockets . 103

Starting and stopping CICS automatically . 103

IP CICS socket interface management . 104

INQUIRE function . 105

SET function . 107

iv z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||

||

START function . 110

START CICS . 110

START LISTENER . 111

START TRACE . 112

STOP function . 112

STOP CICS . 113

STOP LISTENER . 114

STOP TRACE . 114

Abbreviating the EZAO transaction parameters . 115

Starting/stopping CICS TCP/IP with program link . 116

Chapter 5. Writing your own listener . 117

Prerequisites . 117

Using IBM’s environmental support . 117

WLM registration and unregistration for sysplex connection optimization 120

Chapter 6. Application programming guide . 123

Writing CICS TCP/IP applications . 123

1. The client-listener-child-server application set . 124

Client call sequence . 125

Listener call sequence . 126

Child server call sequence . 126

2. Writing your own concurrent server . 127

Concurrent server call sequence . 127

Passing sockets . 128

3. The iterative server CICS TCP/IP application . 128

Iterative server use of sockets . 128

4. The client CICS TCP/IP application . 129

Socket addresses . 130

Address family (domain) . 130

IP addresses . 130

Ports . 130

Address structures . 130

For COBOL, PL/I, and assembler language programs 131

For C programs . 131

MVS address spaces . 131

Network byte order . 132

GETCLIENTID, GIVESOCKET, and TAKESOCKET . 133

The IBM listener . 134

Listener input format . 135

Examples . 136

Listener output format . 136

Writing your own security/transaction link module for the listener 143

Threadsafe considerations for IP CICS sockets applications 148

How CICS selects an L8 mode TCB . 151

Data conversion routines . 152

Application Transparent Transport Layer Security . 152

Example of inbound AT-TLS support . 153

Example of outbound AT-TLS support . 154

Chapter 7. C language application programming 157

C socket library . 157

C socket compilation . 158

Structures used in socket calls . 160

The ERRNO variable . 163

C socket calls . 163

accept() . 163

Format . 163

Parameters . 164

Return values . 165

Contents v

||
||

bind() . 165

Format . 165

Parameters . 166

Return values . 167

close() . 168

Format . 168

Parameter . 168

Return values . 168

connect() . 168

Format . 168

Parameters . 168

Return values . 169

fcntl() . 170

Format . 170

Parameters . 170

Return values . 171

freeaddrinfo() . 171

Format . 171

Parameters . 171

Return values . 171

gai_strerror() . 172

Format . 172

Parameters . 172

Return values . 172

getaddrinfo() . 172

Format . 172

Parameters . 172

Return values . 177

getclientid() . 177

Format . 178

Parameters . 178

Return values . 178

gethostbyaddr() . 178

Format . 178

Parameters . 179

Return values . 179

gethostbyname() . 179

Format . 179

Parameters . 179

Return values . 179

gethostid() . 179

Format . 179

Parameters . 180

Return values . 180

gethostname() . 180

Format . 180

Parameters . 180

Return values . 180

getipv4sourcefilter() . 180

Format . 180

Parameters . 181

Return values . 181

getnameinfo() . 182

Format . 182

Parameters . 182

Return values . 184

getpeername() . 184

Format . 184

Parameters . 185

Return values . 185

getsockname() . 185

vi z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||
||
||
||
||
||
||
||

Format . 186

Parameters . 186

Return values . 187

getsockopt(), setsockopt() . 187

Format . 188

Parameters . 188

Possible entries for optname . 189

Return values . 196

getsourcefilter() . 197

Format . 197

Parameters . 197

Return values . 197

givesocket() . 198

Format . 198

Parameters . 199

Return Values . 199

if_freenameindex() . 199

Format . 199

Parameters . 200

Return values . 200

if_indextoname() . 200

Format . 200

Parameters . 200

Return values . 200

if_nameindex() . 200

Format . 200

Parameters . 201

Return values . 201

if_nametoindex() . 201

Format . 201

Parameters . 201

Return values . 201

inet_ntop() . 201

Format . 201

Parameters . 201

Return values . 202

inet_pton() . 202

Format . 202

Parameters . 202

Return values . 202

initapi() . 202

Format . 203

Parameters . 203

Return values . 203

ioctl() . 203

Format . 203

Parameters . 204

Return values . 205

listen() . 206

Format . 206

Parameters . 206

Return values . 206

read() . 206

Format . 207

Parameters . 207

Return values . 207

recv() . 207

Format . 207

Parameters . 207

Return values . 208

recvfrom() . 208

Contents vii

||
||
||
||

Format . 208

Parameters . 208

Return values . 209

select() . 210

Defining which sockets to test . 210

send() . 212

Format . 212

Parameters . 212

Return values . 213

sendto() . 213

Format . 213

Parameters . 213

Return values . 214

setipv4sourcefilter() . 215

Format . 215

Parameters . 215

Return values . 215

setsockopt() . 215

setsourcefilter() . 216

Format . 216

Parameters . 216

Return values . 216

shutdown() . 217

Format . 217

Parameters . 217

Return values . 217

socket() . 217

Format . 218

Parameters . 218

Return values . 218

takesocket() . 218

Format . 218

Parameters . 219

Return values . 219

write() . 219

Format . 220

Parameters . 220

Return values . 220

Address Testing Macros . 220

Chapter 8. Sockets extended API . 223

Environmental restrictions and programming requirements 223

CALL instruction API . 223

Understanding COBOL, assembler, and PL/I call formats 224

COBOL language call format . 224

Assembler language call format . 224

PL/I language call format . 225

Converting parameter descriptions . 226

Error messages and return codes . 226

Code CALL instructions . 226

ACCEPT . 226

Parameter values set by the application . 228

Parameter values returned to the application . 228

BIND . 229

Parameter values set by the application . 230

Parameter values returned to the application . 231

CLOSE . 232

Parameter values returned to the application . 233

Parameter values set by the application . 233

CONNECT . 233

Stream sockets . 233

viii z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||
||
||
||

||
||
||
||

UDP sockets . 233

Parameter values set by the application . 235

Parameter values returned to the application . 236

FCNTL . 236

Parameter values set by the application . 237

Parameter values returned to the application . 238

FREEADDRINFO . 238

Parameter values set by the application . 239

Parameter values returned to the application . 239

GETADDRINFO . 239

Parameter values set by the application . 240

Parameter values returned to the application . 247

GETCLIENTID . 247

Parameter values set by the application . 248

Parameter values returned to the application . 248

GETHOSTBYADDR . 248

Parameter values set by the application . 249

Parameter values returned to the application . 249

GETHOSTBYNAME . 250

Parameter values set by the application . 251

Parameter values returned to the application . 251

GETHOSTID . 252

GETHOSTNAME . 253

Parameter values set by the application . 254

Parameter values returned to the application . 254

GETNAMEINFO . 254

Parameter values set by the application . 256

Parameter values returned to the application . 258

GETPEERNAME . 258

Parameter values set by the application . 259

Parameter values returned to the application . 259

GETSOCKNAME . 260

Parameter values set by the application . 261

Parameter values returned to the application . 261

GETSOCKOPT . 262

Parameter values set by the application . 263

Parameter values returned to the application . 263

GIVESOCKET . 274

Parameter values set by the application . 275

Parameter values returned to the application . 276

INITAPI and INITAPIX . 276

Parameter values set by the application . 277

Parameter values returned to the application . 278

IOCTL . 278

Parameter values set by the application . 280

Parameter values returned to the application . 288

LISTEN . 289

Parameter values set by the application . 290

Parameter values returned to the application . 290

NTOP . 290

Parameter values set by the application . 291

Parameter values returned to the application . 292

PTON . 292

Parameter values set by the application . 294

Parameter values returned to the application . 294

READ . 294

Parameter values set by the application . 295

Parameter values returned to the application . 295

READV . 296

Parameter values set by the application . 296

Parameter values returned to the application . 297

Contents ix

RECV . 297

Parameter values set by the application . 298

Parameter values returned to the application . 299

RECVFROM . 299

Parameter values set by the application . 301

Parameter values returned to the application . 302

RECVMSG . 303

Parameter values set by the application . 305

Parameter values returned by the application . 307

SELECT . 307

Defining which sockets to test . 308

Read operations . 308

Write operations . 308

Exception operations . 309

MAXSOC parameter . 309

TIMEOUT parameter . 309

Parameter values set by the application . 310

Parameter values returned to the application . 311

SELECTEX . 312

Defining which sockets to test . 312

Read operations . 313

Write operations . 313

Exception operations . 313

MAXSOC parameter . 313

TIMEOUT parameter . 314

Parameter values set by the application . 316

Parameter values returned by the application . 317

SEND . 317

Parameter values set by the application . 318

Parameter values returned to the application . 319

SENDMSG . 319

Parameter values set by the application . 321

Parameter values returned by the application . 323

SENDTO . 323

Parameter values set by the application . 325

Parameter values returned to the application . 326

SETSOCKOPT . 326

Parameter values set by the application . 327

Parameter values returned to the application . 327

SHUTDOWN . 338

Parameter values set by the application . 339

Parameter values returned to the application . 340

SOCKET . 340

Parameter values set by the application . 341

Parameter values returned to the application . 341

TAKESOCKET . 342

Parameter values set by the application . 342

Parameter values returned to the application . 343

TERMAPI . 343

Parameter values set by the application . 344

WRITE . 344

Parameter values set by the application . 345

Parameter values returned to the application . 345

WRITEV . 345

Parameter values set by the application . 346

Parameters Returned by the Application . 346

Using data translation programs for socket call interface . 347

Data translation . 347

Bit string processing . 348

CALL instruction utility programs . 349

EZACIC04 . 350

x z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||

||

||

EZACIC05 . 352

EZACIC06 . 354

EZACIC08 . 356

EZACIC09 . 359

EZACIC14 . 363

EZACIC15 . 365

Appendix A. Original COBOL application programming interface (EZACICAL) 367

Using the EZACICAL or Sockets Extended API . 367

COBOL compilation . 367

The EZACICAL API . 369

COBOL . 369

PL/I . 369

Assembler language . 370

COBOL and assembler language socket calls . 370

ACCEPT . 370

Parameter lengths in assembler language and COBOL 370

Parameter values to be set by the application . 371

Parameter values returned to the application . 371

BIND . 371

Parameter lengths in assembler language and COBOL 371

Parameter values to be set by the application . 372

Parameter values returned to the application . 372

CLOSE . 372

Parameter lengths in assembler language and COBOL 372

Parameter values to be set by the application . 373

Parameter values returned to the application . 373

CONNECT . 373

Parameter lengths in assembler language and COBOL 373

Parameter values to be set by the application . 373

Parameter values returned to the application . 374

FCNTL . 374

Parameter lengths in assembler language and COBOL 374

Parameter values to be set by the application . 374

Parameter values returned to the application . 374

GETCLIENTID . 375

Parameter lengths in assembler language and COBOL 375

Parameter values to be set by the application . 375

Parameter values returned to the application . 375

GETHOSTID . 376

Parameter lengths in assembler language and COBOL 376

Parameter values to be set by the application . 376

Parameter values returned to the application . 376

GETHOSTNAME . 376

Parameter lengths in assembler language and COBOL 377

Parameter values to be set by the application . 377

Parameter values returned to the application . 377

GETPEERNAME . 377

Parameter lengths in assembler language and COBOL 378

Parameter values to be set by the application . 378

Parameter values returned to the application . 378

GETSOCKNAME . 378

Parameter lengths in assembler language and COBOL 378

Parameter values to be set by the application . 379

Parameter values returned to the application . 379

GETSOCKOPT . 379

Parameter lengths in assembler language and COBOL 379

Parameter values to be set by the application . 380

Parameter values returned to the application . 380

GIVESOCKET . 380

Parameter lengths in assembler language and COBOL 381

Contents xi

Parameter values to be set by the application . 381

Parameter values returned to the application . 381

INITAPI . 381

Parameter lengths in assembler language and COBOL 381

Parameter values to be set by the application . 382

Parameter values returned to the application . 382

IOCTL . 382

Parameter lengths in assembler language and COBOL 382

Parameter values to be set by the application . 383

Parameter values returned to the application . 383

LISTEN . 383

Parameter lengths in assembler language and COBOL 383

Parameter values to be set by the application . 383

Parameter values returned to the application . 384

READ . 384

Parameter lengths in assembler language and COBOL 384

Parameter values to be set by the application . 384

Parameter values returned to the application . 385

RECVFROM . 385

Parameter lengths in assembler language and COBOL 385

Parameter values to be set by the application . 385

Parameter values returned to the application . 386

SELECT . 386

Parameter lengths in assembler language and COBOL 386

Parameter values to be set by the application . 387

Parameter values returned to the application . 388

SEND . 388

Parameter lengths in assembler language and COBOL 388

Parameter values to be set by the application . 388

Parameter values returned to the application . 389

SENDTO . 389

Parameter lengths in assembler language and COBOL 389

Parameter values to be set by the application . 389

Parameter values returned to the application . 390

SETSOCKOPT . 390

Parameter lengths in assembler language and COBOL 390

Parameter values to be set by the application . 390

Parameter values returned to the application . 391

SHUTDOWN . 391

Parameter lengths in assembler language and COBOL 391

Parameter values to be set by the application . 391

Parameter values returned to the application . 392

SOCKET . 392

Parameter lengths in assembler language and COBOL 392

Parameter values to be set by the application . 392

Parameter values returned to the application . 393

TAKESOCKET . 393

Parameter lengths in assembler language and COBOL 393

Parameter values to be set by the application . 393

Parameter values returned to the application . 394

WRITE . 394

Parameter lengths in assembler language and COBOL 394

Parameter values to be set by the application . 394

Parameter values returned to the application . 395

Appendix B. Return codes . 397

Sockets return codes (ERRNOs) . 397

Sockets extended ERRNOs . 410

Appendix C. GETSOCKOPT/SETSOCKOPT command values 415

xii z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Appendix D. CICS sockets messages . 417

EZY1218—EZY1366 . 417

Appendix E. Sample programs . 463

EZACICSC . 463

EZACICSS . 472

EZACIC6C . 493

EZACIC6S . 505

EZACICAC . 529

EZACICAS . 540

SELECTEX . 559

Appendix F. Related protocol specifications 563

Internet drafts . 578

Appendix G. Information APARs and technotes 579

Information APARs for IP documents . 579

Information APARs for SNA documents . 580

Other information APARs . 580

Appendix H. Accessibility . 583

Using assistive technologies . 583

Keyboard navigation of the user interface . 583

z/OS information . 583

Notices . 585

Trademarks . 593

Bibliography . 595

z/OS Communications Server information . 595

z/OS Communications Server library . 595

Planning . 595

Resource definition, configuration, and tuning . 595

Operation . 596

Customization . 597

Writing application programs . 597

Diagnosis . 598

Messages and codes . 598

Index . 599

Communicating Your Comments to IBM . 607

Contents xiii

||

xiv z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Figures

 1. The use of CICS sockets . 1

 2. TCP/IP protocols compared to the OSI model and SNA 3

 3. A typical client-server session . 8

 4. An iterative server . 9

 5. A concurrent server . 9

 6. The SELECT call . 14

 7. How user applications access TCP/IP networks with CICS TCP/IP (run-time environment) 19

 8. JCL for CICS startup with the TCP/IP socket interface 24

 9. EZAC, transaction to configure the socket interface . 27

 10. EZAO, transaction to enable the socket interface . 27

 11. EZAP, transaction to disable the socket interface . 27

 12. CSKL, Listener task transaction . 27

 13. EZACIC00, connection manager program . 29

 14. EZACIC01, task related user exit program . 29

 15. EZACIC02, listener program . 29

 16. EZACIC12, WLM registration and deregistration module for CICS sockets 29

 17. EZACIC20, front-end module for CICS sockets . 29

 18. EZACIC21, initialization module for CICS sockets . 30

 19. EZACIC22, termination module for CICS sockets . 30

 20. EZACIC23, primary module for transaction EZAC . 30

 21. EZACIC24, message delivery module for CICS sockets 30

 22. EZACIC25, domain name server cache module . 30

 23. EZACICM, maps used by the EZAO transaction . 30

 24. EZACICME, U.S. English text delivery module . 30

 25. EZACICSC, sample IPv4 child server transaction and program definitions 31

 26. EZACICSS, sample iterative IPv4 server transaction and program definitions 32

 27. EZACIC6C, sample IPv6 child server transaction and program definitions 32

 28. EZACIC6S, sample iterative IPv6 server transaction and program definitions 32

 29. EZACICAC, sample assembler child server transaction and program definitions 32

 30. EZACICAS, sample assembler server transaction and program definitions 33

 31. ALTER PROGRAM instructions . 34

 32. DFHCSDUP commands to define EZACONFG . 35

 33. DFHCSDUP commands to define EZACACHE . 36

 34. CICS TCP/IP Transient Data Queue definitions . 37

 35. The Monitor Control Table (MCT) for TRUE . 39

 36. The Monitor Control Table (MCT) for listener . 42

 37. EZASOKET threadsafe transaction . 45

 38. Definition of the hlq.TCP/IP profile . 50

 39. The TCPIPJOBNAME parameter in the hlq.TCPIP.DATA data set 50

 40. EZACICFG configuration file . 52

 41. Example of JCL to define a configuration file . 67

 42. EZAC initial screen . 71

 43. EZAC,ALTER screen . 72

 44. EZAC,ALTER,CICS screen . 72

 45. EZAC,ALTER,CICS detail screen . 73

 46. EZAC,ALTER,LISTENER screen . 73

 47. EZAC,ALTER,LISTENER detail screen 1- Standard listener 74

 48. EZAC,ALTER,LISTENER detail screen 2- Standard listener 74

 49. EZAC,ALTER,LISTENER detail screen 1- Enhanced listener 75

 50. EZAC,ALTER,LISTENER detail screen 2- Enhanced listener 75

 51. EZAC,CONVERT,LISTENER screen . 76

 52. EZAC,CONVERT,LISTENER detail screen 1- Standard listener 76

 53. EZAC,CONVERT,LISTENER detail screen 2- Standard listener 77

 54. EZAC,CONVERT,LISTENER detail screen 1- Enhanced listener 77

 55. EZAC,CONVERT,LISTENER detail screen 2- Enhanced listener 78

© Copyright IBM Corp. 1994, 2007 xv

56. EZAC,COPY screen . 78

 57. EZAC,COPY,CICS screen . 79

 58. EZAC,COPY,LISTENER screen . 79

 59. EZAC,DEFINE screen . 80

 60. EZAC,DEFINE,CICS screen . 80

 61. EZAC,DEFINE,CICS detail screen . 81

 62. EZAC,DEFINE,LISTENER screen . 81

 63. EZAC,DEFINE,LISTENER detail screen 1- Standard listener 82

 64. EZAC,DEFINE,LISTENER detail screen 2- Standard listener 82

 65. EZAC,DEFINE,LISTENER detail screen 1- Enhanced listener 83

 66. EZAC,DEFINE,LISTENER detail screen 2- Enhanced listener 83

 67. EZAC,DELETE screen . 84

 68. EZAC,DELETE,CICS screen . 84

 69. EZAC,DELETE,LISTENER screen . 85

 70. EZAC,DISPLAY screen . 85

 71. EZAC,DISPLAY,CICS screen . 86

 72. EZAC,DISPLAY,CICS detail screen . 86

 73. EZAC,DISPLAY,LISTENER screen . 87

 74. EZAC,DISPLAY,LISTENER detail screen 1- Standard listener 87

 75. EZAC,DISPLAY,LISTENER detail screen 2- Standard listener 88

 76. EZAC,DISPLAY,LISTENER detail screen 1- Enhanced listener 88

 77. EZAC,DISPLAY,LISTENER detail screen 2- Enhanced listener 89

 78. EZAC,RENAME screen . 89

 79. EZAC,RENAME,CICS screen . 90

 80. EZAC,RENAME,LISTENER screen . 90

 81. Example of defining and initializing a DNS cache file 98

 82. The DNS HOSTENT . 101

 83. EZAO initial screen . 105

 84. EZAO INQUIRE screen . 105

 85. EZAO INQUIRE CICS screen . 106

 86. EZAO INQUIRE LISTENER selection screen . 106

 87. EZAO INQUIRE LISTENER screen . 107

 88. EZAO SET screen . 108

 89. EZAO SET CICS screen . 108

 90. EZAO SET LISTENER selection screen . 109

 91. EZAO SET LISTENER screen . 109

 92. EZAO START screen . 110

 93. EZAO START CICS response screen . 111

 94. EZAO START LISTENER screen . 111

 95. EZAO START LISTENER result screen . 112

 96. EZAO START TRACE screen . 112

 97. EZAO STOP screen . 113

 98. EZAO STOP CICS screen . 113

 99. EZAO STOP LISTENER screen . 114

100. EZAO STOP TRACE screen . 115

101. Program Definition for listener EZACIC02 . 117

102. The sequence of sockets calls . 125

103. Sequence of socket calls with an iterative server . 128

104. Sequence of socket calls between a CICS client and a remote iterative server 129

105. MVS address spaces . 132

106. Transfer of CLIENTID information . 133

107. Example of COBOL layout of the listener output format - Standard listener 138

108. Example of PL/I layout of the listener output format - Standard listener with an IPv4 socket address

structure . 138

109. Example of PL/I layout of the listener output format - Standard listener with an IPv6 socket address

structure . 138

110. Example of Assembler layout of the listener output format - Standard listener supporting both an IPv4 and

an IPv6 socket address structure . 139

111. Example of C structure of the listener output format - Standard listener supporting both an IPv4 and an

IPv6 socket address structure . 139

112. Example of COBOL layout of the listener output format - Enhanced listener 141

xvi z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

113. Example of PL/I layout of the listener output format - Enhanced listener with an IPv4 socket address

structure . 141

114. Example of PL/I layout of the listener output format - Enhanced listener with an IPv6 socket address

structure . 142

115. Example of assembler layout of the listener output format - Enhanced listener supporting both an IPv4 and

an IPv6 socket address structure . 142

116. Example of C structure of the listener output format - Enhanced listener supporting both an IPv4 and an

IPv6 socket address structure . 143

117. Modified JCL for C socket compilation . 159

118. Storage definition statement examples . 226

119. ACCEPT call instructions example . 228

120. BIND call instruction example . 230

121. CLOSE call instruction example . 233

122. CONNECT call instruction example . 235

123. FCNTL call instruction example . 237

124. FREEADDRINFO call instruction example . 238

125. GETADDRINFO call instruction example . 240

126. GETCLIENTID call instruction example . 248

127. GETHOSTBYADDR call instruction example . 249

128. HOSTENT structure returned by the GETHOSTBYADDR call 250

129. GETHOSTBYNAME call instruction example . 251

130. HOSTENT structure returned by the GETHOSTYBYNAME call 252

131. GETHOSTID call instruction example . 253

132. GETHOSTNAME call instruction example . 254

133. GETNAMEINFO call instruction example . 255

134. GETPEERNAME call instruction example . 259

135. GETSOCKNAME call instruction example . 261

136. GETSOCKOPT call instruction example . 263

137. GIVESOCKET call instruction example . 275

138. INITAPI call instruction example . 277

139. IOCTL call instruction example . 280

140. COBOL language example for SIOCGHOMEIF6 . 282

141. Interface request structure (IFREQ) for the IOCTL call 283

142. COBOL language example for SIOCGIFNAMEINDEX 284

143. COBOL II example for SIOCGIFCONF . 289

144. LISTEN call instruction example . 290

145. NTOP call instruction example . 291

146. PTON call instruction example . 293

147. READ call instruction example . 295

148. READV call instruction example . 296

149. RECV call instruction example . 298

150. RECVFROM call instruction example . 301

151. RECVMSG call instruction example . 304

152. SELECT call instruction example . 310

153. SELECTEX call instruction example . 315

154. SEND call instruction example . 318

155. SENDMSG call instruction example . 320

156. SENDTO call instruction example . 324

157. SETSOCKOPT call instruction example . 327

158. SHUTDOWN call instruction example . 339

159. SOCKET call instruction example . 341

160. TAKESOCKET call instruction example . 342

161. TERMAPI call instruction example . 344

162. WRITE call instruction example . 345

163. WRITEV call instruction example . 346

164. EZACIC04 EBCDIC-to-ASCII table . 350

165. EZACIC04 call instruction example . 350

166. EZACIC05 ASCII-to-EBCDIC . 352

167. EZACIC05 call instruction example . 352

168. EZACIC06 call instruction example . 354

169. EZAZIC08 call instruction example . 357

Figures xvii

||

||

||

170. EZACIC09 call instruction example . 360

171. EZACIC14 EBCDIC-to-ASCII table . 363

172. EZACIC14 call instruction example . 363

173. EZACIC15 ASCII-to-EBCDIC table . 365

174. EZACIC15 call instruction example . 365

175. Modified JCL for COBOL compilation . 368

176. EZACICSC IPv4 child server sample . 464

177. EZACICSS IPv4 iterative server sample . 472

178. EZACIC6C IPv6 child server sample . 494

179. EZACIC6S IPv6 iterative server sample . 506

180. EZACICAC assembler child server sample . 530

181. EZACICAS assembler iterative server sample . 540

xviii z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Tables

 1. First fullword passed in a bit string in select . 15

 2. Second fullword passed in a bit string in select . 15

 3. Security/Transaction Exit program information fields 20

 4. Configuration options affected by OTE . 57

 5. Listener’s action based on RTYTIME and stack state . 63

 6. Conditions for translation of tranid and user data . 64

 7. Functions supported by the EZAC transaction . 71

 8. Calls for the client application . 125

 9. Calls for the server application . 126

10. Calls for the concurrent server application . 127

11. CLIENTID structures . 132

12. Listener output format - Standard listener . 137

13. Listener output format - Enhanced listener . 140

14. Security/transaction exit data . 144

15. Listener configuration presented to security/transaction exit 147

16. Different concurrency attributes for IP CICS sockets task-related user exits 150

17. Inbound AT-TLS support . 154

18. Outbound AT-TLS support . 155

19. C structures . 160

20. OPTNAME options for GETSOCKOPT and SETSOCKOPT 264

21. IOCTL call arguments . 287

22. OPTNAME options for GETSOCKOPT and SETSOCKOPT 328

23. Effect of SHUTDOWN socket call . 339

24. Sockets ERRNOs . 397

25. Sockets extended ERRNOs . 410

26. GETSOCKOPT/SETSOCKOPT command values for Macro, Assembler, COBOL and PL/I 415

27. GETSOCKOPT/SETSOCKOPT optname value for C programs 416

28. IP information APARs for z/OS Communications Server 579

29. SNA information APARs for z/OS Communications Server 580

30. Non-document information APARs . 580

© Copyright IBM Corp. 1994, 2007 xix

||

||

||

||

||
||

xx z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

About this document

This document describes the TCP/IP Socket Interface for CICS® (referred to as

CICS TCP/IP for short). It contains an introduction, a guide to initialization, and a

guide and reference to writing application programs. Use this document to set up

CICS TCP/IP, write application programs, and diagnose problems. The information

in this document supports both IPv6 and IPv4. Unless explicitly noted, information

describes IPv4 networking protocol. IPv6 support is qualified within the text.

Who should read this document

This document is intended for both system programmers and application

programmers who perform any of the following tasks with CICS TCP/IP:

v Setting up CICS TCP/IP

v Writing application programs

v Diagnosing problems

The document assumes that the reader is familiar with the MVS™ operating

system, and the C, COBOL, PL/I, or Assembler programming languages. Because

the CICS Transaction Server (CICS TS) is a prerequisite for CICS TCP/IP, the

document assumes the reader is also familiar with CICS TS.

How this document is organized

This document contains the following topics:

v Chapter 1, “Introduction to CICS TCP/IP,” on page 1 provides an overview of

CICS TCP/IP.

v Chapter 2, “Setting up and configuring CICS TCP/IP,” on page 23 describes the

steps required to configure CICS TCP/IP.

v Chapter 3, “Configuring the CICS Domain Name System cache,” on page 93

describes how to configure the CICS domain name server cache.

v Chapter 4, “Managing IP CICS sockets,” on page 103 explains how to start and

stop (enable and disable) CICS TCP/IP.

v Chapter 5, “Writing your own listener,” on page 117 discusses writing your own

listener.

v Chapter 6, “Application programming guide,” on page 123 describes how to

write applications that use the sockets application programming interface (API).

It describes typical sequences of calls for client, concurrent server (with

associated child server processes), and iterative server programs.

v Chapter 7, “C language application programming,” on page 157 describes the C

language API provided by CICS TCP/IP.

v Chapter 8, “Sockets extended API,” on page 223 describes the sockets extended

API.

v Appendix A, “Original COBOL application programming interface

(EZACICAL),” on page 367 describes the EZACICAL API.

v Appendix B, “Return codes,” on page 397 describes system-wide message

numbers and codes set by the system calls.

© Copyright IBM Corp. 1994, 2007 xxi

v Appendix C, “GETSOCKOPT/SETSOCKOPT command values,” on page 415

provides the decimal or hexadecimal values associated with the

GETSOCKOPT/SETSOCKOPT OPTNAMES supported by the APIs discussed in

this document.

v Appendix D, “CICS sockets messages,” on page 417 contains CICS socket

interface messages.

v Appendix E, “Sample programs,” on page 463 contains samples of the following

programs:

– EZACICSC - An IPv4 child server

– EZACICSS - An IPv4 iterative server

– EZACIC6C - An IPv6 child server

– EZACIC6S - An IPv6 iterative server

– EZACICAC - An assembler child server

– EZACICAS - An assembler iterative server
v Appendix F, “Related protocol specifications,” on page 563 lists the related

protocol specifications for TCP/IP.

v “Information APARs and technotes” lists information APARs for IP and SNA

documents.

v “Accessibility” contains information about features that help a user who has a

physical disability, such as restricted mobility or limited vision, to use software

products successfully.

v “Bibliography” contains descriptions of the documents in the z/OS

Communications Server library.

How to use this document

To use this document, you should be familiar with z/OS® TCP/IP Services and the

TCP/IP suite of protocols.

Determining whether a publication is current

As needed, IBM® updates its publications with new and changed information. For

a given publication, updates to the hardcopy and associated BookManager®

softcopy are usually available at the same time. Sometimes, however, the updates

to hardcopy and softcopy are available at different times. The following

information describes how to determine if you are looking at the most current

copy of a publication:

v At the end of a publication’s order number there is a dash followed by two

digits, often referred to as the dash level. A publication with a higher dash level

is more current than one with a lower dash level. For example, in the

publication order number GC28-1747-07, the dash level 07 means that the

publication is more current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it

is possible that the softcopy publication is more current than the hardcopy

publication. Check the dates shown in the Summary of Changes. The softcopy

publication might have a more recently dated Summary of Changes than the

hardcopy publication.

v To compare softcopy publications, you can check the last two characters of the

publication’s file name (also called the book name). The higher the number, the

more recent the publication. Also, next to the publication titles in the CD-ROM

booklet and the readme files, there is an asterisk (*) that indicates whether a

publication is new or changed.

xxii z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

How to contact IBM service

For immediate assistance, visit this Web site:

http://www.software.ibm.com/network/commserver/support/

Most problems can be resolved at this Web site, where you can submit questions

and problem reports electronically, as well as access a variety of diagnosis

information.

For telephone assistance in problem diagnosis and resolution (in the United States

or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV).

You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m.

– 5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative

or your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating

Your Comments to IBM” on page 607.

Conventions and terminology used in this document

Commands in this book that can be used in both TSO and z/OS UNIX®

environments use the following conventions:

v When describing how to use the command in a TSO environment, the command

is presented in uppercase (for example, NETSTAT).

v When describing how to use the command in a z/OS UNIX environment, the

command is presented in bold lowercase (for example, netstat).

v When referring to the command in a general way in text, the command is

presented with an initial capital letter (for example, Netstat).

All of the exit routines described in this document are installation-wide exit routines.

You will see the installation-wide exit routines also called installation-wide exits,

exit routines, and exits throughout this document.

The TPF logon manager, although shipped with VTAM®, is an application

program. Therefore, the logon manager is documented separately from VTAM.

Samples used in this book might not be updated for each release. Evaluate a

sample carefully before applying it to your system.

For definitions of the terms and abbreviations used in this document, you can view

the latest IBM terminology at the IBM Terminology Web site.

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:

Note Supplemental detail

Tip Offers shortcuts or alternative ways of performing an action; a hint

Guideline

Customary way to perform a procedure

About this document xxiii

http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/software/globalization/terminology/index.jsp

Rule Something you must do; limitations on your actions

Restriction

Indicates certain conditions are not supported; limitations on a product or

facility

Requirement

Dependencies, prerequisites

Result Indicates the outcome

Prerequisite and related information

z/OS Communications Server function is described in the z/OS Communications

Server library. Descriptions of those documents are listed in “z/OS

Communications Server information” on page 595, in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM, MVS, and

UNIX System Services.

Related information

This section contains subsections on:

v “Softcopy information”

v “Other documents” on page xxv

v “Redbooks” on page xxvi

v “Where to find related information on the Internet” on page xxvi

v “Using LookAt to look up message explanations” on page xxviii

v “Using IBM Health Checker for z/OS” on page xxviii

Softcopy information

Softcopy publications are available in the following collections:

 Titles Order

Number

Description

z/OS V1R9 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes

the libraries for z/OS V1R9, in both BookManager and PDF

formats.

z/OS Software Products

Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the

libraries of z/OS software products that run on z/OS but are not

elements and features, as well as the Getting Started with Parallel

Sysplex® bookshelf.

z/OS V1R9 and Software

Products DVD Collection

SK3T-4271 This collection includes the libraries of z/OS (the element and

feature libraries) and the libraries for z/OS software products in

both BookManager and PDF format. This collection combines

SK3T-4269 and SK3T-4270.

z/OS Licensed Product Library SK3T-4307 This CD includes the licensed documents in both BookManager and

PDF format.

xxiv z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Titles Order

Number

Description

IBM System z Redbooks

Collection

SK3T-7876 The Redbooks selected for this CD series are taken from the IBM

Redbooks inventory of over 800 books. All the Redbooks that are of

interest to the zSeries platform professional are identified by their

authors and are included in this collection. The zSeries subject areas

range from e-business application development and enablement to

hardware, networking, Linux, solutions, security, parallel sysplex,

and many others.

Other documents

For information about z/OS products, refer to z/OS Information Roadmap

(SA22-7500). The Roadmap describes what level of documents are supplied with

each release of z/OS Communications Server, as well as describing each z/OS

publication.

Relevant RFCs are listed in an appendix of the IP documents. Architectural

specifications for the SNA protocol are listed in an appendix of the SNA

documents.

The following table lists documents that might be helpful to readers.

 Title Number

DNS and BIND, Fourth Edition, O’Reilly and Associates, 2001 ISBN 0-596-00158-4

Routing in the Internet , Christian Huitema (Prentice Hall PTR, 1995) ISBN 0-13-132192-7

sendmail, Bryan Costales and Eric Allman, O’Reilly and Associates, 2002 ISBN 1-56592-839-3

SNA Formats GA27-3136

TCP/IP Illustrated, Volume I: The Protocols, W. Richard Stevens, Addison-Wesley

Publishing, 1994

ISBN 0-201-63346-9

TCP/IP Illustrated, Volume II: The Implementation, Gary R. Wright and W. Richard

Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63354-X

TCP/IP Illustrated, Volume III, W. Richard Stevens, Addison-Wesley Publishing, 1995 ISBN 0-201-63495-3

TCP/IP Tutorial and Technical Overview GG24-3376

Understanding LDAP SG24-4986

z/OS Cryptographic Service System Secure Sockets Layer Programming SC24-5901

z/OS Integrated Security Services LDAP Client Programming SC24-5924

z/OS Integrated Security Services LDAP Server Administration and Use SC24-5923

z/OS JES2 Initialization and Tuning Guide SA22-7532

z/OS Problem Management G325-2564

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

z/OS MVS Using the Subsystem Interface SA22-7642

z/OS Program Directory GI10-0670

z/OS UNIX System Services Command Reference SA22-7802

z/OS UNIX System Services Planning GA22-7800

z/OS UNIX System Services Programming: Assembler Callable Services Reference SA22-7803

About this document xxv

|
|
||
|
|
|
|
|
|

Title Number

z/OS UNIX System Services User’s Guide SA22-7801

z/OS XL C/C++ Run-Time Library Reference SA22-7821

System z9 and zSeries OSA-Express Customer’s Guide and Reference SA22-7935

Redbooks

The following Redbooks™ might help you as you implement z/OS

Communications Server.

 Title Number

Communications Server for z/OS V1R8 TCP/IP Implementation, Volume 1: Base

Functions, Connectivity, and Routing

SG24-7339

Communications Server for z/OS V1R8 TCP/IP Implementation, Volume 2: Standard

Applications

SG24-7340

Communications Server for z/OS V1R8 TCP/IP Implementation, Volume 3: High

Availability, Scalability, and Performance

SG24-7341

Communications Server for z/OS V1R8 TCP/IP Implementation, Volume 4: Policy-Based

Network Security

SG24-7342

IBM Communication Controller Migration Guide SG24-6298

IP Network Design Guide SG24-2580

Managing OS/390 TCP/IP with SNMP SG24-5866

Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender SG24-5957

SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements SG24–5631

SNA and TCP/IP Integration SG24-5291

TCP/IP in a Sysplex SG24-5235

TCP/IP Tutorial and Technical Overview GG24-3376

Threadsafe Considerations for CICS SG24-6351

Where to find related information on the Internet

z/OS

 This site provides information about z/OS Communications Server release

availability, migration information, downloads, and links to information

about z/OS technology

 http://www.ibm.com/servers/eserver/zseries/zos/

z/OS Internet Library

 Use this site to view and download z/OS Communications Server

documentation

 http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

IBM Communications Server product

 The primary home page for information about z/OS Communications

Server

 http://www.software.ibm.com/network/commserver/

xxvi z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/

IBM Communications Server product support

 Use this site to submit and track problems and search the z/OS

Communications Server knowledge base for Technotes, FAQs, white

papers, and other z/OS Communications Server information

 http://www.software.ibm.com/network/commserver/support/

IBM Systems Center publications

 Use this site to view and order Redbooks, Redpapers, and Technotes

 http://www.redbooks.ibm.com/

IBM Systems Center flashes

 Search the Technical Sales Library for Techdocs (including Flashes,

presentations, Technotes, FAQs, white papers, Customer Support Plans,

and Skills Transfer information)

 http://www.ibm.com/support/techdocs/atsmastr.nsf

RFCs

 Search for and view Request for Comments documents in this section of

the Internet Engineering Task Force Web site, with links to the RFC

repository and the IETF Working Groups Web page

 http://www.ietf.org/rfc.html

Internet drafts

 View Internet-Drafts, which are working documents of the Internet

Engineering Task Force (IETF) and other groups, in this section of the

Internet Engineering Task Force Web site

 http://www.ietf.org/ID.html

Information about Web addresses can also be found in information APAR II11334.

Note: Any pointers in this publication to Web sites are provided for convenience

only and do not in any manner serve as an endorsement of these Web sites.

DNS Web sites

For more information about DNS, see the following USENET news groups and

mailing addresses:

USENET news groups

comp.protocols.dns.bind

BIND mailing lists

http://www.isc.org/ml-archives/

BIND Users

v Subscribe by sending mail to bind-users-request@isc.org.

v Submit questions or answers to this forum by sending mail to

bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

v Subscribe by sending mail to bind9-users-request@isc.org.

v Submit questions or answers to this forum by sending mail to

bind9-users@isc.org.

About this document xxvii

http://www.software.ibm.com/network/commserver/support/
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
http://www.isc.org/ml-archives/

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for AIX® and

Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS systems to

access IBM message explanations using LookAt from a TSO/E command line

(for example: TSO/E prompt, ISPF, or z/OS UNIX System Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from the

z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T-4271) and use it from the resulting Windows graphical user interface

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html with a

handheld device that has wireless access and an Internet browser (for example:

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

v A CD-ROM in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T-4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in

the LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide

checks that take advantage of the IBM Health Checker for z/OS framework. This

book might refer to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide. Starting with z/OS V1R4, z/OS users

can obtain the IBM Health Checker for z/OS from the z/OS Downloads page at

http://www.ibm.com/servers/eservers/zseries/zos/downloads/.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

xxviii z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html
http://www.ibm.com/servers/eserver/zseries/zos/downloads/

How to send your comments

Your feedback is important in helping to provide the most accurate and

high-quality information. If you have any comments about this document or any

other z/OS Communications Server documentation:

v Go to the z/OS contact page at:

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

There you will find the feedback page where you can enter and submit your

comments.

v Send your comments by e-mail to comsvrcf@us.ibm.com. Be sure to include the

name of the document, the part number of the document, the version of z/OS

Communications Server, and, if applicable, the specific location of the text you

are commenting on (for example, a section number, a page number or a table

number).

About this document xxix

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

xxx z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Summary of changes

Summary of changes

for SC31-8807-04

z/OS Version 1 Release 9

 This document contains information previously presented in SC31-8807-03, which

supports z/OS Version 1 Release 7.

The information in this document includes descriptions of support for both IPv4

and IPv6 networking protocols. Unless explicitly noted, descriptions of IP protocol

support concern IPv4. IPv6 support is qualified within the text.

This document refers to Communications Server data sets by their default SMP/E

distribution library name. Your installation might, however, have different names

for these data sets where allowed by SMP/E, your installation personnel, or

administration staff. For instance, this document refers to samples in SEZAINST

library as simply in SEZAINST. Your installation might choose a data set name of

SYS1.SEZAINST, CS390.SEZAINST or other high level qualifiers for the data set

name.

New information

v CICS sockets enhancements, see “Configuring the CICS TCP/IP environment”

on page 51.

v Enable application identifier in NMI, SMF, and Netstat, see “Configuring the

CICS TCP/IP environment” on page 51.

v Enable application identifier in NMI, SMF, and Netstat, see “TYPE parameter”

on page 54.

v New sample for CICS and IMS™ ASCII/EBCDIC translation, see “Using data

translation programs for socket call interface” on page 347.

v MLDv2 and IGMPv3 support, see “Structures used in socket calls” on page 160.

v IPv6 scoped address architecture API, see Chapter 7, “C language application

programming,” on page 157.

Deleted information

v The APPC Application Suite is removed from the z/OS V1R9 Communications

Server product and therefore documentation describing APPC Application Suite

support has been deleted.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

You might notice changes in the style and structure of some content in this

document–for example, headings that use uppercase for the first letter of initial

words only, and procedures that have a different look and format. The changes are

ongoing improvements to the consistency and accessibility of information in our

documents.

© Copyright IBM Corp. 1994, 2007 xxxi

Summary of changes

for SC31-8807-03

z/OS Version 1 Release 7

 This document contains information previously presented in SC31-8807-02, which

supports z/OS Version 1 Release 5.

The information in this document includes descriptions of support for both IPv4

and IPv6 networking protocols. Unless explicitly noted, descriptions of IP protocol

support concern IPv4. IPv6 support is qualified within the text.

This document refers to Communications Server data sets by their default SMP/E

distribution library name. Your installation might, however, have different names

for these data sets where allowed by SMP/E, your installation personnel, or

administration staff. For instance, this document refers to samples in SEZAINST

library as simply in SEZAINST. Your installation might choose a data set name of

SYS1.SEZAINST, CS390.SEZAINST or other high level qualifiers for the data set

name.

New information

v Application Transparent Transport Layer Security (AT-TLS) exploitation. See

“Application Transparent Transport Layer Security” on page 152 for more

information.

v Support for CICS Transaction Server (TS) Open Transaction Environment (OTE).

See “Open TCB measurements” on page 43 for more information.

v Performance enhancements.

Changed information

v Updated screens for the configuration transaction interface EZAC. See

“Customizing the configuration data set” on page 70 for more information.

v Updated screens for the EZAO operator transaction interface. See “IP CICS

socket interface management” on page 104 for more information.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

You might notice changes in the style and structure of some content in this

document–for example, headings that use uppercase for the first letter of initial

words only, and procedures that have a different look and format. The changes are

ongoing improvements to the consistency and retrievability of information in our

documents.

Summary of changes

for SC31-8807-02

z/OS Version 1 Release 5

 This document contains information previously presented in SC31-8807-01, which

supports z/OS Version 1 Release 4. The information in this document supports

both IPv6 and IPv4. Unless explicitly noted, information describes IPv4 networking

protocol. IPv6 support is qualified within the text.

New information

xxxii z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

v EZACIC14 and EZACIC15 data translation programs for EBCDIC and ASCII

translation (see “Conversion routines” on page 19, “Data conversion routines”

on page 152, “EZACIC14” on page 363, and “EZACIC15” on page 365)

v A topic on configuring the IPv6 listener for IPv6 (see “Rules for configuring the

IBM-supplied listener for IPv6” on page 20)

v Optional program definitions for EZACIC6S, EZACIC6C, EZACICAC, and

EZACICAS (see “Optional programs, CICS transaction and program definition

needed” on page 31)

v File definitions for EZACACHE (see “File definitions” on page 34)

v IPv6 examples for EZACICD (see “Building the configuration data set with

EZACICD” on page 51 and “JCL for the configuration macro” on page 66)

v Recommendations for CICS DNS Caching and DNS/WLM support (see

Chapter 3, “Configuring the CICS Domain Name System cache,” on page 93)

v IPv6 information throughout the topic about socket addresses (see “Socket

addresses” on page 130)

v IPv6 information and examples throughout the topic about listener output

format (see “Listener output format” on page 136)

v IPv6 information on listener configuration (see “Writing your own

security/transaction link module for the listener” on page 143)

v Information on C structures (see Table 19 on page 160)

v IPv6 information throughout the topic about C socket calls (see “C socket calls”

on page 163)

v A topic about address testing macros (see “Address Testing Macros” on page

220)

v IPv6 information throughout the topic about code call instructions (see “Code

CALL instructions” on page 226)

v EZACIC09 for TCP/IP bit string processing (see “Bit string processing” on page

348 and “EZACIC09” on page 359)

v EZACICAC, EZACICAS, EZACIC6C, and EZACIC6S sample programs (see

“EZACICAC” on page 529, “EZACICAS” on page 540, “EZACIC6C” on page

493, and “EZACIC6S” on page 505)

v CICS sockets messages (see “EZY1218—EZY1366” on page 417)

Changed information

v Information on “Using IBM’s environmental support” on page 117

v Information throughout the topic about code call instructions (see “Code CALL

instructions” on page 226)

v CICS resource definition information and examples (see “CICS — Defining CICS

TCP/IP resources” on page 26)

v Information about Monitor Control Table entries (see “CICS monitoring” on

page 37)

v EZAC and EZAO transaction screens (see “Configuration transaction (EZAC)”

on page 70 and “IP CICS socket interface management” on page 104)

v Information on automatically starting and stopping CICS TCP/IP (see “Starting

and stopping CICS automatically” on page 103 and “CICS program list table

(PLT)” on page 46)

v CICS sockets environment configuration file information throughout

“Configuring the CICS TCP/IP environment” on page 51

v The description of TERMAPI has been updated at “TERMAPI” on page 343

Summary of changes xxxiii

v The description of the max_sock, MAXSOC, and MAX-SOCK parameters (see

“Parameters” on page 203, “Parameter values set by the application” on page

277, and “Parameter values to be set by the application” on page 382)

v Information on TCP/IP host addressing (see “Addressing TCP/IP hosts” on

page 5)

v The description of the socket TCP/IP call (see “SOCKET” on page 10)

v The topic about GIVESOCKET and TAKESOCKET calls (see “GIVESOCKET and

TAKESOCKET calls” on page 16)

v The topic about conversion routines (see “Conversion routines” on page 19)

v Call for the client application (see Table 8 on page 125)

v IPv6 information about EZACICAL (see Appendix A, “Original COBOL

application programming interface (EZACICAL),” on page 367)

v CICS sockets messages (see “EZY1218—EZY1366” on page 417)

v EZACICSC and EZACICSS sample programs (see “EZACICSC” on page 463 and

“EZACICSS” on page 472)

Deleted information:

v The SIOCADDRT, SIOCDELRT, SIOCGIFFLAGS, SIOCGIFMETRIC,

SIOCGIFNETMASK, SIOCSIFDSTADDR, SIOCSIFFLAGS, and SIOCSIFMETRIC

parameters (see “ioctl()” on page 203)

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Starting with z/OS V1R4, you will notice changes in the style and structure of

some content in this document–for example, headings that use uppercase for the

first letter of initial words only, and procedures that have a different look and

format. The changes are ongoing improvements to the consistency and

retrievability of information in our documents.

xxxiv z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Chapter 1. Introduction to CICS TCP/IP

The IP CICS socket API and the IBM supplied listener is IPv4 and IPv6 enabled.

CICS Transaction Server (CICS TS) is an online transaction processing system.

Application programs using CICS can handle large numbers of data transactions

from large networks of computers and terminals.

Communication throughout these networks has often been based on the Systems

Network Architecture (SNA) family of protocols. CICS TCP/IP offers CICS users

an alternative to SNA, the TCP/IP family of protocols for those users whose native

communications protocol is TCP/IP.

CICS TCP/IP allows remote users to access CICS client/server applications over

TCP/IP Internets. Figure 1 shows how these two products give remote users

peer-to-peer communication with CICS applications.

It is important to understand that CICS TCP/IP is primarily intended to support

peer-to-peer applications, as opposed to the traditional CICS mainframe interactive

applications in which the CICS system contained all program logic and the remote

terminal was often referred to as a “dumb” terminal. To connect a TCP/IP host to

one of those traditional applications, you should first consider using Telnet. With

Telnet, you should be able to access existing 3270-style basic mapping support

(BMS) applications without modification and without the need for additional

programming. Use CICS TCP/IP when you are developing new peer-to-peer

applications in which both ends of the connection are programmable.

 CICS TCP/IP provides a variant of the Berkeley Software Distribution 4.3 sockets

interface, which is widely used in TCP/IP networks and is based on the UNIX

system and other operating systems. The socket interface consists of a set of calls

that your CICS application programs can use to set up connections, send and

receive data, and perform general communications control functions. The programs

can be written in COBOL, PL/I, assembler language, or the C language.

Z OS/

CICS
transaction

CICS
transaction

CICS

Sockets

API

TCP IP

for

z OS

/

/

LAN

UNIX

Linux

CICS region

other
networks

Figure 1. The use of CICS sockets

© Copyright IBM Corp. 1994, 2007 1

TCP/IP Internets

This topic describes some of the basic ideas behind the TCP/IP family of protocols.

For more detailed and comprehensive treatments of this subject, see the documents

about TCP/IP listed in http://www.ibm.com/servers/eserver/zseries/zos/
bkserv/

Like SNA, TCP/IP is a communication protocol used between physically separated

computer systems. Unlike SNA and most other protocols, TCP/IP is not designed

for a particular hardware technology. TCP/IP can be implemented on a wide

variety of physical networks, and is specially designed for communicating between

systems on different physical networks (local and wide area). This is called

Internetworking.

Telnet

TCP/IP Services supports traditional 3270 mainframe interactive (MFI) applications

with an emulator function called Telnet (TN3270). For these applications, all

program logic is housed in the mainframe, and the remote host uses only that

amount of logic necessary to provide basic communication services. Thus, if your

requirement is simply to provide access from a remote TCP/IP host to existing

CICS MFI applications, you should probably consider Telnet rather than CICS

TCP/IP as the communications vehicle. Telnet 3270-emulation functions allow your

TCP/IP host to communicate with traditional applications without modification.

Client/server processing

TCP/IP also supports client/server processing, where processes are either:

v Servers that provide a particular service and respond to requests for that service

v Clients that initiate the requests to the servers

With CICS TCP/IP, remote client systems can initiate communications with CICS

and cause a CICS transaction to start. It is anticipated that this is the most common

mode of operation. (Alternatively, the remote system can act as a server with CICS

initiating the conversation.)

TCP, UDP, and IP

TCP/IP is a large family of protocols that is named after its two most important

members. Figure 2 on page 3 shows the TCP/IP protocols used by CICS TCP/IP, in

terms of the layered Open Systems Interconnection (OSI) model, which is widely

used to describe data communication systems. For CICS users who might be more

accustomed to SNA, the left side of Figure 2 shows the SNA layers, which

correspond very closely to the OSI layers.

2 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

The protocols implemented by TCP/IP Services and used by CICS TCP/IP are

shown in the right hand column in Figure 2:

Transmission Control Protocol (TCP)

In terms of the OSI model, TCP is a transport-layer protocol. It provides a

reliable virtual-circuit connection between applications; that is, a connection is

established before data transmission begins. Data is sent without errors or

duplication and is received in the same order as it is sent. No boundaries are

imposed on the data; TCP treats the data as a stream of bytes.

User Datagram Protocol (UDP)

UDP is also a transport-layer protocol and is an alternative to TCP. It provides

an unreliable datagram connection between applications. Data is transmitted

link by link; there is no end-to-end connection. The service provides no

guarantees. Data can be lost or duplicated, and datagrams can arrive out of

order.

Internet Protocol (IP)

In terms of the OSI model, IP is a network-layer protocol. It provides a

datagram service between applications, supporting both TCP and UDP.

The socket API

The socket API is a collection of socket calls that enables you to perform the

following primary communication functions between application programs:

v Set up and establish connections to other users on the network

v Send and receive data to and from other users

v Close down connections

In addition to these basic functions, the APIs enable you to:

v Interrogate the network system to get names and status of relevant resources

v Perform system and control functions as required

CICS TCP/IP provides three TCP/IP socket application program interfaces (APIs),

similar to those used on UNIX systems. One interfaces to C language programs,

the other two to COBOL, PL/I, and assembler language programs.

v C language. Historically, TCP/IP has been linked to the C language and the

UNIX operating system. Textbook descriptions of socket calls are usually given

in C, and most socket programmers are familiar with the C interface to TCP/IP.

For these reasons, TCP/IP Services includes a C language API. If you are writing

new TCP/IP applications and are familiar with C language programming, you

might prefer to use this interface. See Chapter 7, “C language application

programming,” on page 157 for the sockets calls provided by TCP/IP Services.

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Data Flow

Transmission

Path Control

Data Link

Physical

Application

TCP or UDP

IP

Data Link

Physical

SNA OSI TCP/IP Family

Sockets API

Figure 2. TCP/IP protocols compared to the OSI model and SNA

Chapter 1. Introduction to CICS TCP/IP 3

v Sockets Extended API (COBOL, PL/I, assembler language). The Sockets

Extended API is for those who want to write in COBOL, PL/I, or assembler

language, or who have COBOL, PL/I, or assembler language programs that

need to be modified to run with TCP/IP. If you are writing new TCP/IP

applications in COBOL, PL/I, or assembler language, you might prefer to use

the Sockets Extended API. See Chapter 8, “Sockets extended API,” on page 223

for details of this interface.

v Version 2.2.1 (COBOL, PL/I, assembler language). This is the API that was

offered to users of the original release of CICS TCP/IP. It is similar in use to the

Sockets Extended API. The Version 2.2.1 API is available for those who want to

maintain Version 2.2.1 programs. This interface is described in Appendix A,

“Original COBOL application programming interface (EZACICAL),” on page

367.

Programming with sockets

The original UNIX socket interface was designed to hide the physical details of the

network. It included the concept of a socket, which would represent the connection

to the programmer, yet shield the program (as much as possible) from the details

of communication programming. A socket is an end-point for communication that

can be named and addressed in a network. From an application program

perspective, a socket is a resource that is allocated by the TCP/IP address space. A

socket is represented to the program by an integer called a socket descriptor.

Socket types

The MVS socket APIs provide a standard interface to the transport and

Internetwork layer interfaces of TCP/IP. They support three socket types: stream,

datagram, and raw. Stream and datagram socket interface to the transport layer

protocols, and raw socket interface to the network layer protocols. All three socket

types are discussed here for background purposes. While CICS supports stream

and datagram sockets, stream sockets provide the most reliable form of data

transfer offered by TCP/IP.

Stream sockets transmit data between TCP/IP hosts that are already connected to

one another. Data is transmitted in a continuous stream; in other words, there are

no record length or new-line character boundaries between data. Communicating

processes

1 must agree on a scheme to ensure that both client and server have

received all data. One way of doing this is for the sending process to send the

length of the data, followed by the data itself. The receiving process reads the

length and then loops, accepting data until all of it has been transferred.

In TCP/IP terminology, the stream socket interface defines a ″reliable″

connection-oriented service. In this context, the word reliable means that data is

sent without error or duplication and is received in the same order as it is sent.

Flow control is built in to avoid data overruns.

The datagram socket interface defines a connectionless service. Datagrams are sent

as independent packets. The service provides no guarantees; data can be lost or

duplicated, and datagrams can arrive out of order. The size of a datagram is

limited to the size that can be sent in a single transaction (currently the default is

8192 and the maximum is 65507). No disassembly and reassembly of packets is

performed by TCP/IP.

1. In TCP/IP terminology, a process is essentially the same as an application program.

4 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

The raw socket interface allows direct access to lower layer protocols, such as IP

and Internet Control Message Protocol (ICMP). This interface is often used for

testing new protocol implementations.

Addressing TCP/IP hosts

The following topic describes how one TCP/IP host addresses another TCP/IP

host.

2

Address families: An address family defines a specific addressing format.

Applications that use the same addressing family have a common scheme for

addressing socket endpoints. TCP/IP for CICS supports the AF_INET and the

AF_INET6 address family. See the API topic in z/OS Communications Server: IPv6

Network and Application Design Guide for more information about IPv6

programming issues.

Socket addresses: A socket address in the AF_INET family contains four fields:

v The name of the address family itself (AF_INET)

v A port

v An IPv4 Internet address

v An eight-byte reserved field

In COBOL, an IPv4 socket address looks like this:

01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

A socket address in the AF_INET6 family contains five fields:

v The name of the address family itself (AF_INET6)

v A port

v Flow information indicating traffic class and flow label

v An IPv6 Internet address

v A scope ID indicating link scope

In COBOL, an IPv6 socket address looks like this:

01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 FLOWINFO PIC 9(8) BINARY.

 03 IP-ADDRESS.

 05 FILLER PIC 9(16) BINARY.

 05 FILLER PIC 9(16) BINARY.

 03 SCOPE-ID PIC 9(8) BINARY.

Programs, such as servers, that support both AF_INET and AF_INET6 sockets,

should code socket address structures using the SOCKADDR layout as described

in the SYS1.MACLIB(BPXYSOCK). In COBOL, a socket address structure to

support both AF_INET and AF_INET6 looks like this:

01 SOCKADDR.

 05 SOCK-FAMILY PIC 9(4) BINARY.

 88 SOCK-FAMILY-IS-AFINET VALUE 2.

2. In TCP/IP terminology, a host is simply a computer that is running TCP/IP. There is no connotation of mainframe or large

processor within the TCP/IP definition of the word host.

Chapter 1. Introduction to CICS TCP/IP 5

88 SOCK-FAMILY-IS-AFINET6 VALUE 19.

 05 SOCK-DATA PIC X(26).

 05 SOCK-SIN REDEFINES SOCK-DATA.

 10 SOCK-SIN-PORT PIC 9(4) BINARY.

 10 SOCK-SIN-ADDR PIC 9(8) BINARY.

 10 FILLER PIC X(8).

 10 FILLER PIC X(12).

 05 SOCK-SIN6 REDEFINES SOCK-DATA.

 10 SOCK-SIN6-PORT PIC 9(4) BINARY.

 10 SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.

 10 SOCK-SIN6-ADDR.

 15 FILLER PIC 9(16) BINARY.

 15 FILLER PIC 9(16) BINARY.

 10 SOCK-SIN6-SCOPEID PIC 9(8) BINARY.

The IPv4 or IPv6 socket address structure is in every call that addresses another

TCP/IP host.

This structure contains the following fields:

FAMILY

A halfword that defines the addressing family being used. In CICS,

FAMILY is set to a value of a decimal 2 (that specifies the AF_INET

Internet address family) or a value of a decimal 19 (that specifies the

AF_INET6 Internet address family).

3

PORT Identifies the application port number and must be specified in network

byte order.

FLOWINFO

Belongs to the IPv6 socket address structure and is 4 bytes in binary

format indicating traffic class and flow label. This field is currently not

implemented.

IP-ADDRESS

The Internet address of the network interface used by the application. It

must be specified in network byte order.

RESERVED

Belongs to the IPv4 socket address structure and should be set to all zeros.

SCOPE-ID

Belongs to the IPv6 socket address structure and is used to specify link

scope for an IPv6 address as an interface index. If specified, and the

destination is not link local, then the socket call fails.

Internet (IP) addresses: An Internet address (also known as an IP address) is a

32-bit field that represents an IPv4 network interface or a 128-bit field that

represents an IPv6 network interface. An IP address is commonly represented in

dotted decimal notation, such as 129.5.25.1, or in colon-hexadecimal notation, such

as 2001:0db8:129:5:25::1. Every Internet address within an administered AF_INET or

AF_INET6 domain must be unique. A common misunderstanding is that a host

must have only one Internet address. In fact, a single host can have several

Internet addresses, one for each network interface. With IPv6, a single interface can

even have multiple addresses, such as link-local, site-local, and global unicast.

Ports: A port is a 16-bit integer that defines a specific application, within an IP

address, in which several applications use the same network interface. The port

number is a qualifier that TCP/IP uses to route incoming data to a specific

3. Note that sockets support many address families, but TCP/IP for CICS only supports the Internet address family.

6 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

application within an IP address. Some port numbers are reserved for particular

applications and are called well-known ports, such as Port 23, which is the

well-known port for Telnet.

IPv4 Example: An MVS system with an IP address of 129.9.12.7 might have CICS

as port 2000, and Telnet as port 23. In this example, a client desiring connection to

CICS would issue a CONNECT call, requesting port 2000 at IP address 129.9.12.7.

IPv6 Example: An MVS system with an IPv6 IP address of

2001:0DB8::206:2AFF:FE66:C800 might have CICS as port 2000, and Telnet as port

23. In this example, a client that wants to connect to CICS would issue a

CONNECT call, requesting port 2000 at IP address 2001:0DB8::206:2AFF:FE66:C800.

Note: It is important to understand the difference between a socket and a port.

TCP/IP defines a port to represent a certain process on a certain machine

(network interface). A port represents the location of one process in a host

that can have many processes. A bound socket represents a specific port and

the IP address of its host. In the case of CICS, the listener has a listening

socket that has a port to receive incoming connection requests. When a

connection request is received, the listener creates a new socket representing

the endpoint of this connection and passes it to the applications by way of

the givesocket/takesocket calls.

Multiple sockets can share the same port and, for CICS, all server

applications and the listener share the same port. For client applications, the

bind (or connect) socket calls assign a port to the socket that is different

from the listener or server port or any other client ports. Normally, client

applications do not share ports, but they can if you specify the

SO_REUSEADDR socket option.

Domain names: Because dotted decimal or colon-hexadecimal IP addresses are

difficult to remember, TCP/IP also allows you to represent host interfaces on the

network as alphabetic names, such as Alana.E04.IBM.COM or CrFre@AOL.COM.

Every Domain Name has an equivalent IP address or set of addresses. TCP/IP

includes service functions (GETHOSTBYNAME, GETHOSTBYADDR,

GETADDRINFO, and GETNAMEINFO) that helps you convert from one notation

to another.

Network Byte Order: In the open environment of TCP/IP, Internet addresses

must be defined in terms of the architecture of the machines. Some machine

architectures, such as IBM mainframes, define the lowest memory address to be

the high-order bit, which is called big endian. However, other architectures, such

as IBM PCs, define the lowest memory address to be the low-order bit, which is

called little endian.

Network addresses in a given network must all follow a consistent addressing

convention. This convention, known as Network Byte Order, defines the bit-order

of network addresses as they pass through the network. The TCP/IP standard

Network Byte Order is big-endian. In order to participate in a TCP/IP network,

little-endian systems usually bear the burden of conversion to Network Byte Order.

Note: The socket interface does not handle application data bit-order differences.

Application writers must handle these bit order differences themselves.

Chapter 1. Introduction to CICS TCP/IP 7

A typical client-server program flow chart

Stream-oriented socket programs generally follow a prescribed sequence. See

Figure 3 for a diagram of the logic flow for a typical client and server. As you

study this diagram, keep in mind the fact that a concurrent server typically starts

before the client does, and waits for the client to request connection at step �3�. It

then continues to wait for additional client requests after the client connection is

closed.

Concurrent and iterative servers

An iterative server handles both the connection request and the transaction

involved in the call itself. Iterative servers are fairly simple and are suitable for

transactions that do not last long.

However, if the transaction takes more time, queues can build up quickly. In

Figure 4 on page 9, after Client A starts a transaction with the server, Client B

cannot make a call until A has finished.

1 1

4

8 8

2 2

5

5

3

6,76,7 7,6
Read and write data on socket s, using the
send() and recv() calls, until all data has
been exchanged.

Create a stream socket s with the socket()
call.

Create a stream socket s with the socket()
call.

(Optional)
Bind socket s to a local address with the
bind()

Connect socket s to a foreign host with the
connect()

Close socket s and end the TCP/IP session
with the close() call.

Bind socket s to a local address with the
bind()

With the listen() call, alert the TCP/IP
machine of your willingness to accept
connections.

Accept the connection and receive a
second socket, for example ns, with the
accept()

For the server, socket s remains available
to accept new connections. Socket ns is
dedicated to the client.

Read and write data on socket ns, using
the send() and recv() calls, until all
data has been exchanged.

Close socket ns with the close() call.

Accept another connection from a client,
or close the original socket s with the
close()

CLIENT SERVER

Figure 3. A typical client-server session

8 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

So, for lengthy transactions, a different sort of server is needed — the concurrent

server, as shown in Figure 5. Here, Client A has already established a connection

with the server, which has then created a child server process to handle the

transaction. This allows the server to process Client B’s request without waiting for

A’s transaction to complete. More than one child server can be started in this way.

TCP/IP provides a concurrent server program called the CICS listener. It is

described in “The IBM listener” on page 134.

 Figure 3 on page 8 illustrates a concurrent server at work.

The basic socket calls

The following is an overview of the basic socket calls.

The following calls are used by the server:

SOCKET

Obtains a socket to read from or write to.

BIND Associates a socket with a port number.

LISTEN

Tells TCP/IP that this process is listening for connections on this socket.

SELECT

Waits for activity on a socket.

ACCEPT

Accepts a connection from a client.

The following calls are used by a concurrent server to pass the socket from the

parent server task (listener) to the child server task (user-written application).

GIVESOCKET

Gives a socket to a child server task.

Iterative
Server

Client B

Client A

TCP/IP

Figure 4. An iterative server

Concurrent
Server

child
server

process

TCP/IP

Client B

Client A

Figure 5. A concurrent server

Chapter 1. Introduction to CICS TCP/IP 9

TAKESOCKET

Accepts a socket from a parent server task.

GETCLIENTID

Optionally used by the parent server task to determine its own address

space name (if unknown) prior to issuing the GIVESOCKET.

The following calls are used by the client:

SOCKET

Allocates a socket to read from or write to.

CONNECT

Allows a client to open a connection to a server’s port.

The following calls are used by both the client and the server:

WRITE

Sends data to the process on the other host.

READ Receives data from the other host.

CLOSE

Terminates a connection, deallocating the socket.

For full discussion and examples of these calls, see Chapter 8, “Sockets extended

API,” on page 223.

Server TCP/IP calls

To understand Socket programming, the client program and the server program

must be considered separately. In this topic, the call sequence for the server is

described; the next topic discusses the typical call sequence for a client. This is the

logical presentation sequence because the server is usually already in running

before the client is started. The step numbers (such as�5�) in this topic refer to the

steps in Figure 3 on page 8.

SOCKET

The server must first obtain a socket �1�. This socket provides an end-point to

which clients can connect.

A socket is actually an index into a table of connections in the TCP/IP address

space, so TCP/IP usually assigns socket numbers in ascending order. In COBOL,

the programmer uses the SOCKET call to obtain a new socket.

The socket function specifies the address family of AF_INET or AF_INET6, the

type of socket (STREAM), and the particular networking protocol (PROTO) to use.

(When PROTO is set to zero, the TCP/IP address space automatically uses the

appropriate protocol for the specified socket type). Upon return, the newly

allocated socket’s descriptor is returned in RETCODE.

For an example of the SOCKET call, see “SOCKET” on page 340.

BIND

At this point �2�, an entry in the table of communications has been reserved for

the application. However, the socket has no port or IP address associated with it

until the BIND call is issued. The BIND function requires three parameters:

v The socket descriptor that was just returned by the SOCKET call

v The number of the port on which the server wants to provide its service

v The IP address of the network connection on which the server is listening

10 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

If the application wants to receive connection requests from any network

interface, the IP address should be set to zeros specifying INADDR_ANY for

IPv4 or the IPv6 unspecified address (in6addr_any).

For an example of the BIND call, see “BIND” on page 229.

LISTEN

After the bind, the server has established a specific IP address and port upon

which other TCP/IP hosts can request connection. Now it must notify the TCP/IP

address space that it intends to listen for connections on this socket. The server

does this with the LISTEN�3� call, which puts the socket into passive open mode.

Passive open mode describes a socket that can accept connection requests, but

cannot be used for communication. A passive open socket is used by a listener

program like the CICS listener to await connection requests. Sockets that are

directly used for communication between client and server are known as active

open sockets. In passive open mode, the socket is open for client contacts; it also

establishes a backlog queue of pending connections.

This LISTEN call tells the TCP/IP address space that the server is ready to begin

accepting connections. Normally, only the number of requests specified by the

BACKLOG parameter are queued.

For an example of the LISTEN call, see “LISTEN” on page 289.

ACCEPT

At this time �5�, the server has obtained a socket, bound the socket to an IP

address and port, and issued a LISTEN to open the socket. The server main task is

now ready for a client to request connection �4�. The ACCEPT call temporarily

blocks further progress.

4

The default mode for Accept is blocking. Accept behavior changes when the socket

is nonblocking. The FCNTL() or IOCTL() calls can be used to disable blocking for a

given socket. When this is done, calls that would normally block continue

regardless of whether the I/O call has completed. If a socket is set to nonblocking

and an I/O call issued to that socket would otherwise block (because the I/O call

has not completed) the call returns with ERRNO 35 (EWOULDBLOCK).

When the ACCEPT call is issued, the server passes its socket descriptor, S, to

TCP/IP. When the connection is established, the ACCEPT call returns a new socket

descriptor (in RETCODE) that represents the connection with the client. This is the

socket upon which the server subtask communicates with the client. Meanwhile,

the original socket (S) is still allocated, bound and ready for use by the main task

to accept subsequent connection requests from other clients.

To accept another connection, the server calls ACCEPT again. By repeatedly calling

ACCEPT, a concurrent server can establish simultaneous sessions with multiple

clients.

For an example of the ACCEPT call, see “ACCEPT” on page 226.

4. Blocking is a UNIX concept in which the requesting process is suspended until the request is satisfied. It is roughly analogous to

the MVS wait. A socket is blocked while an I/O call waits for an event to complete. If a socket is set to block, the calling program

is suspended until the expected event completes.

Chapter 1. Introduction to CICS TCP/IP 11

|
|
|

GIVESOCKET and TAKESOCKET

A server handling more than one client simultaneously acts like a dispatcher at a

messenger service. A messenger dispatcher gets telephone calls from people who

want items delivered, and the dispatcher sends out messengers to do the work. In

a similar manner, the server receives client requests, and then spawns tasks to

handle each client.

In UNIX-based servers, the fork() system call is used to dispatch a new subtask

after the initial connection has been established. When the fork() command is used,

the new process automatically inherits the socket that is connected to the client.

Because of architectural differences, CICS sockets does not implement the fork()

system call.Tasks use the GIVESOCKET and TAKESOCKET functions to pass

sockets from parent to child. The task passing the socket uses GIVESOCKET, and

the task receiving the socket uses TAKESOCKET. See “GIVESOCKET and

TAKESOCKET calls” on page 16 for more information about these calls.

READ and WRITE

After a client has been connected with the server, and the socket has been

transferred from the main task (parent) to the subtask (child), the client and server

exchange application data, using various forms of READ/WRITE calls. See

“READ/WRITE calls — the conversation” on page 13 for details about these calls.

Client TCP/IP calls

The TCP/IP call sequence for a client is simpler than the one for a concurrent

server. A client only has to support one connection and one conversation. A

concurrent server obtains a socket upon which it can listen for connection requests,

and then creates a new socket for each new connection.

The SOCKET call

In the same manner as the server, the first call �1� issued by the client is the

SOCKET call. This call causes allocation of the socket on which the client

communicates.

CALL ’EZASOKET’ USING SOCKET-FUNCTION SOCTYPE PROTO ERRNO RETCODE.

See “SOCKET” on page 340 for a sample of the SOCKET call.

The CONNECT call

Once the SOCKET call has allocated a socket to the client, the client can then

request connection on that socket with the server through use of the CONNECT

call �4�.

The CONNECT call attempts to connect socket descriptor (S) to the server with an

IP address of NAME. The CONNECT call blocks until the connection is accepted

by the server. On successful return, the socket descriptor (S) can be used for

communication with the server.

This is essentially the same sequence as that of the server; however, the client need

not issue a BIND command because the port of a client has little significance. The

client need only issue the CONNECT call, which issues an implicit BIND. When

the CONNECT call is used to bind the socket to a port, the port number is

assigned by the system and discarded when the connection is closed. Such a port

is known as an ephemeral port because its life is very short as compared with that

of a concurrent server, whose port remains available for a prolonged period of

time.

12 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

See “CONNECT” on page 233 for an example of the CONNECT call.

READ/WRITE calls — the conversation

A variety of I/O calls is available to the programmer. The READ and WRITE,

READV and WRITEV, and SEND�6� and RECV�6� calls can be used only on

sockets that are in the connected state. The SENDTO and RECVFROM, and

SENDMSG and RECVMSG calls can be used regardless of whether a connection

exists.

The WRITEV, READV, SENDMSG, and RECVMSG calls provide the additional

features of scatter and gather data. Scattered data can be located in multiple data

buffers. The WRITEV and SENDMSG calls gather the scattered data and send it.

The READV and RECVMSG calls receive data and scatter it into multiple buffers.

The WRITE and READ calls specify the socket S on which to communicate, the

address in storage of the buffer that contains the data (BUF), and the amount of

data transferred (NBYTE). The server uses the socket that is returned from the

ACCEPT call.

These functions return the amount of data that was either sent or received. Because

stream sockets send and receive information in streams of data, it can take more

than one call to WRITE or READ to transfer all of the data. It is up to the client

and server to agree on some mechanism of signaling that all of the data has been

transferred.

v For an example of the READ call, see “READ” on page 294.

v For an example of the WRITE call, see “WRITE” on page 344.

The CLOSE call

When the conversation is over, both the client and server call CLOSE to end the

connection. The CLOSE call also deallocates the socket, freeing its space in the

table of connections. For an example of the CLOSE call, see “CLOSE” on page 232.

Other socket calls

Several other calls that are often used, particularly in servers, are the SELECT call,

the GIVESOCKET/TAKESOCKET calls, and the IOCTL and FCTL calls.

The SELECT call

Applications such as concurrent servers often handle multiple sockets at once. In

such situations, the SELECT call can be used to simplify the determination of

which sockets have data to be read, which are ready for data to be written, and

which have pending exceptional conditions. An example of how the SELECT call is

used can be found in Figure 6 on page 14.

Chapter 1. Introduction to CICS TCP/IP 13

In this example, the application sends bit sets (the xSNDMASK sets) to indicate

which sockets are to be tested for certain conditions, and receives another set of

bits (the xRETMASK sets) from TCP/IP to indicate which sockets meet the

specified conditions.

The example also indicates a timeout. If the timeout parameter is NULL, this is the

C language API equivalent of a wait forever. (In Sockets Extended, a negative

timeout value is a wait forever.) If the timeout parameter is nonzero, SELECT only

waits the timeout amount of time for at least one socket to become ready under

the indicated conditions. This is useful for applications servicing multiple

connections that cannot afford to wait for data on a single connection. If the

xSNDMASK bits are all zero, SELECT acts as a timer.

With the Socket SELECT call, you can define which sockets you want to test (the

xSNDMASKs) and then wait (block) until one of the specified sockets is ready to

be processed. When the SELECT call returns, the program knows only that some

event has occurred, and it must test a set of bit masks (xRETMASKs) to determine

which of the sockets had the event, and what the event was.

To maximize performance, a server should only test those sockets that are active.

The SELECT call allows an application to select which sockets are tested and for

what. When the Select call is issued, it blocks until the specified sockets are ready

to be serviced (or, optionally) until a timer expires. When the select call returns, the

program must check to see which sockets require service, and then process them.

To allow you to test any number of sockets with just one call to SELECT, place the

sockets to test into a bit set, passing the bit set to the select call. A bit set is a string

of bits where each possible member of the set is represented by a 0 or a 1. If the

member’s bit is 0, the member is not to be tested. If the member’s bit is 1, the

member is to be tested. Socket descriptors are actually small integers. If socket 3 is

a member of a bit set, then bit 3 is set; otherwise, bit 3 is zero.

Therefore, the server specifies 3 bit sets of sockets in its call to the SELECT

function: one bit set for sockets on which to receive data; another for sockets on

which to write data; and any sockets with exception conditions. The SELECT call

tests each selected socket for activity and returns only those sockets that have

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SELECT’.

 01 MAXSOC PIC 9(8) BINARY VALUE 50.

 01 TIMEOUT.

 03 TIMEOUT-SECONDS PIC 9(8) BINARY.

 03 TIMEOUT-MILLISEC PIC 9(8) BINARY.

 01 RSNDMASK PIC X(50).

 01 WSNDMASK PIC X(50).

 01 ESNDMASK PIC X(50).

 01 RRETMASK PIC X(50).

 01 WRETMASK PIC X(50).

 01 ERETMASK PIC X(50).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC TIMEOUT

 RSNDMASK WSNDMASK ESNDMASK

 RRETMASK WRETMASK ERETMASK

 ERRNO RETCODE.

Figure 6. The SELECT call

14 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

completed. On return, if a socket’s bit is raised, the socket is ready for reading data

or for writing data, or an exceptional condition has occurred.

The format of the bit strings is a bit awkward for an assembler programmer who is

accustomed to bit strings that are counted from left to right. Instead, these bit

strings are counted from right to left.

The first rule is that the length of a bit string is always expressed as a number of

fullwords. If the highest socket descriptor you want to test is socket descriptor 3,

you have to pass a 4-byte bit string, because this is the minimum length. If the

highest number is 32, you must pass 8 bytes (2 fullwords).

The number of fullwords in each select mask can be calculated as

INT(highest socket descriptor / 32) + 1

Look at the first fullword you pass in a bit string in Table 1.

 Table 1. First fullword passed in a bit string in select

Socket

descriptor

numbers

represented by

byte Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 0 31 30 29 28 27 26 25 24

Byte 1 23 22 21 20 19 18 17 16

Byte 2 15 14 13 12 11 10 9 8

Byte 3 7 6 5 4 3 2 1 0

In these examples, we use standard assembler numbering notation; the leftmost bit

or byte is relative 0.

If you want to test socket descriptor number 5 for pending read activity, you raise

bit 2 in byte 3 of the first fullword (X'00000020'). If you want to test both socket

descriptor 4 and 5, you raise both bit 2 and bit 3 in byte 3 of the first fullword

(X'00000030').

If you want to test socket descriptor number 32, you must pass two fullwords,

where the numbering scheme for the second fullword resembles that of the first.

Socket descriptor number 32 is bit 7 in byte 3 of the second fullword. If you want

to test socket descriptors 5 and 32, you pass two fullwords with the following

content: X'0000002000000001'.

The bits in the second fullword represent the socket descriptor numbers shown in

Table 2.

 Table 2. Second fullword passed in a bit string in select

Socket

descriptor

numbers

represented by

byte Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 4 63 62 61 60 59 58 57 56

Byte 5 55 54 53 52 51 50 49 48

Chapter 1. Introduction to CICS TCP/IP 15

Table 2. Second fullword passed in a bit string in select (continued)

Socket

descriptor

numbers

represented by

byte Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 6 47 46 45 44 43 42 41 40

Byte 7 39 38 37 36 35 34 33 32

If you develop your program in COBOL or PL/I, the EZACIC06 routine, which is

provided as part of TCP/IP Services, makes it easier to build and test these bit

strings. This routine translates between a character string mask (one byte per

socket) and a bit string mask (one bit per socket).

In addition to its function of reporting completion on Read/Write events, the

SELECT call can also be used to determine completion of events associated with

the LISTEN and GIVESOCKET calls.

v When a connection request is pending on the socket for which the main process

issued the LISTEN call, it is reported as a pending read.

v When the parent process has issued a GIVESOCKET, and the child process has

taken the socket, the parent’s socket descriptor is selected with an exception

condition. The parent process is expected to close the socket descriptor when

this happens.

IOCTL and FCNTL calls

In addition to SELECT, applications can use the IOCTL or FCNTL calls to help

perform asynchronous (nonblocking) socket operations. An example of the use of

the IOCTL call is shown in “IOCTL” on page 278.

The IOCTL call has many functions; establishing blocking mode is only one of its

functions. The value in COMMAND determines which function IOCTL performs.

The REQARG of 0 specifies nonblocking. (A REQARG of 1 would request that

socket S be set to blocking mode.) When this socket is passed as a parameter to a

call that would block (such as RECV when data is not present), the call returns

with an error code in RETCODE, and ERRNO set to EWOULDBLOCK. Setting the mode

of the socket to nonblocking allows an application to continue processing without

becoming blocked.

GIVESOCKET and TAKESOCKET calls

Tasks use the GIVESOCKET and TAKESOCKET functions to pass sockets from

parent to child.

For programs using TCP/IP Services, each task has its own unique 8-byte name.

The main server task passes four arguments to the GIVESOCKET call:

v The socket number it wants to give

v The domain of the socket

v Its own name

5

v The name of the task to which it wants to give the socket

5. If a task does not know its address space name, it can use the GETCLIENTID function call to determine its unique name.

16 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

If the server does not know the name of the subtask that receives the socket, it

blanks out the name of the subtask. The first subtask calling TAKESOCKET with

the server’s unique name receives the socket.

The subtask that receives the socket must know the main task’s unique name and

the number of the socket that it is to receive. This information must be passed

from main task to subtask in a work area that is common to both tasks.

In CICS, the parent task name and the socket descriptor number are passed from

the parent (listener) to the transaction program by means of the EXEC CICS START

and EXEC CICS RETREIVE function.

Because each task has its own socket table, the socket descriptor obtained by the

main task is not the socket descriptor that the subtask uses. When TAKESOCKET

accepts the socket that has been given, the TAKESOCKET call assigns a new socket

number for the subtask to use. This new socket number represents the same

connection as the parent’s socket. (The transferred socket might be referred to as

socket number 54 by the parent task and as socket number 3 by the subtask;

however, both socket descriptors represent the same connection.)

Sockets given and taken must be of the same domain type. When GIVESOCKET is

giving an AF_INET socket, then TAKESOCKET must only take an AF_INET socket.

When GIVESOCKET is giving an AF_INET6 socket, then TAKESOCKET must only

take an AF_IENT6 socket. EBADF is set if the socket taken does not match the

domain in the tasksocket() request.

Once the socket has successfully been transferred, the TCP/IP address space posts

an exceptional condition on the parent’s socket. The parent uses the SELECT call to

test for this condition. When the parent task SELECT call returns with the

exception condition on that socket (indicating that the socket has been successfully

passed) the parent issues CLOSE to complete the transfer and deallocate the socket

from the main task.

To continue the sequence, when another client request comes in, the concurrent

server (listener) gets another new socket, passes the new socket to the new

subtask, dissociates itself from that connection, and so on.

Summary: To summarize, the process of passing the socket is accomplished in the

following way:

v After creating a subtask, the server main task issues the GIVESOCKET call to

pass the socket to the subtask. If the subtask’s address space name and subtask

ID are specified in the GIVESOCKET call (as with CICS), only a subtask with a

matching address space and subtask ID can take the socket. If this field is set to

blanks , any MVS address space requesting a socket can take this socket.

v The server main task then passes the socket descriptor and concurrent server’s

ID to the subtask using some form of commonly addressable technique such as

the CICS START/RETRIEVE commands.

v The concurrent server issues the SELECT call to determine when the

GIVESOCKET has successfully completed.

v The subtask calls TAKESOCKET with the concurrent server’s ID and socket

descriptor and uses the resulting socket descriptor for communication with the

client.

v When the GIVESOCKET has successfully completed, the concurrent server issues

the CLOSE call to complete the handoff.

Chapter 1. Introduction to CICS TCP/IP 17

An example of a concurrent server is the CICS listener. It is described in “The IBM

listener” on page 134. Figure 5 on page 9 shows a concurrent server.

What you must have to run CICS TCP/IP

TCP/IP Services is not described in this document because it is a prerequisite for

CICS TCP/IP. However, much material from the TCP/IP library has been repeated

in this document in an attempt to make it independent of that library.

A TCP/IP host can communicate with any remote CICS or non-CICS system that

runs TCP/IP. The remote system can, for example, run a UNIX or Windows

operating system.

CICS TCP/IP components

In terms of CICS operation, the CICS TCP/IP feature is a task-related user exit

(TRUE) mechanism known as an adapter. The adapting facility that it provides is

between application programs that need to access TCP/IP and the manager of the

TCP/IP resource.

CICS TCP/IP has the following main components:

v The stub program is link-edited to each application program that wants to use

it. It intercepts requests issued by the calling application program and causes

CICS to pass control to the TRUE.

v The TRUE mechanism enables programs to pass calls to the subtask and to the

TCP/IP address space.

v CICS TCP/IP supports two methods for accessing TCP/IP

– The MVS subtask translates commands for accessing TCP/IP into a form

acceptable to the TCP/IP resource manager and then passes control to the

resource manager. The subtask also handles the MVS waits incurred during

socket calls.

– Using CICS Open Transaction Environment (OTE). The TRUE mechanism

accesses TCP/IP directly, not requiring an MVS subtask for blocking

commands.
v The Administration Routine contains the EXEC CICS ENABLE and DISABLE

commands that are used to install and withdraw the TRUE program.

v The Configuration System configures the interface and its listeners.

A summary of what CICS TCP/IP provides

Figure 7 on page 19 shows how CICS TCP/IP allows your CICS applications to

access the TCP/IP network. It shows that CICS TCP/IP makes the following

facilities available to your application programs:

The socket calls

Socket calls are shown in Steps 1 and 2 in Figure 7 on page 19.

The socket API is available in the C language and in COBOL, PL/I, or assembler

language. It includes the following socket calls:

 Call type IP CICS TCP API function

Basic calls: ACCEPT, BIND, CLOSE, CONNECT, LISTEN, SHUTDOWN

18 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Call type IP CICS TCP API function

Read/Write calls: READ, READV, RECV, RECVFROM, RECVMSG, SEND, SENDMSG, SENDTO,

WRITE, WRITEV

Advanced calls: FCNTL, FREEADDRINFO, GETADDRINFO,

GETHOSTBYADDR, GETHOSTBYNAME, GETHOSTNAME,

GETNAMEINFO, GETPEERNAME, GETSOCKNAME,

GETSOCKOPT, IOCTL, NTOP, PTON, SELECT, SELECTEX,

SETSOCKOPT

IBM-specific calls: GETCLIENTID, GIVESOCKET, INITAPI,

INITAPIX, TAKESOCKET

 CICS TCP/IP provides for both connection-oriented and connectionless (datagram)

services. CICS does not support the IP (raw socket) protocol.

The listener

CICS TCP/IP includes a concurrent server application, called the IBM Listener,

which is a CICS transaction that uses the EZACIC02 program to perform its

function.

The IBM listener, EZACIC02, allows for WLM registration and deregistration in

support of connection balancing. See z/OS Communications Server: IP Configuration

Reference for information about BIND-based DNS and connection balancing.

Conversion routines

CICS TCP/IP provides the following conversion routines, which are part of the

base TCP/IP Services product:

v An EBCDIC-to-ASCII conversion routine that converts EBCDIC data to the

ASCII format used in TCP/IP networks and workstations. The routine is run by

calling module EZACIC04, which uses an EBCDIC-to-ASCII translation table as

described in z/OS Communications Server: IP Configuration Reference.

1. C language
socket calls

User
Applications

2. COBOL,ASM.
PL/I calls

4. Conversion
routines

TCP/IP
network

3. Listener

z/OS

CICS

z/OS
for

TCP/IP

CICS Sockets Applications
Operating

Environment

Figure 7. How user applications access TCP/IP networks with CICS TCP/IP (run-time environment)

Chapter 1. Introduction to CICS TCP/IP 19

|
|
|
|

v A corresponding ASCII-to-EBCDIC conversion routine, EZACIC05, which uses

an ASCII-to-EBCDIC translation table as described in z/OS Communications

Server: IP Configuration Reference.

v An alternative EBCDIC-to-ASCII conversion routine. It is run by calling

EZACIC14, which uses the translation table listed in “EZACIC14” on page 363.

v A corresponding alternate ASCII-to-EBCDIC conversion routine, EZACIC15,

which uses the translation table listed in “EZACIC15” on page 365.

Tip: A sample translation routine is also supplied in the EZACICTR member of

the SEZAINST library. You can modify this member to use alternate

EBCDIC-to-ASCII and ASCII-to-EBCDIC translations, including custom

translations. See comments in the EZACICTR member for more details.

v A module that converts COBOL character arrays into bit-mask arrays used in

TCP/IP. This module, which is run by calling EZACIC06, is used with the socket

SELECT or SELECTEX call.

v A routine that decodes the indirectly addressed, variable-length list (hostent

structure) returned by the GETHOSTBYADDR and GETHOSTBYNAME calls.

This function is provided by calling module EZACIC08.

v A routine that decodes the indirectly addressed, variable-length list (addrinfo

structure) returned by the GETADDRINFO call. This function is provided by

calling module EZACIC09.

Rules for configuring the IBM-supplied listener for IPv6

The following rules apply when configuring the IBM-supplied listener for IPv6:

v You must enable the z/OS system that the IPv6 listener uses for IPv6. See z/OS

Communications Server: IP Configuration Reference for information on IPv6 system

configuration.

v Because an IPv6 enabled listener uses the GIVESOCKET API function to give an

IPv6 socket to a child server transaction, you must enable that child server

transaction program to use IPv6 sockets. This requires that all API functions that

use a socket address structure be changed to use the larger IPv6 socket address

structure. See Chapter 7, “C language application programming,” on page 157 or

Chapter 8, “Sockets extended API,” on page 223 for more information.

If the listener gives the accepted socket to the child server program, the child

server program must be able to take that socket. If the listener is defined as an

INET6 listener, the EBADF errno is issued if the child server’s TAKESOCKET is

AF_INET. If the listener is defined as an INET listener, the EBADF errno is

issued if the child server’s TAKESOCKET is AF_INET6.

v The Security/Transaction Exit program allows the user to examine and change

certain pieces of data that are passed to the child server program by the listener.

Table 3 illustrates the listener configuration in contrast with the connected

client’s address family and indicates the contents of the IPv4 and IPv6 IP

address fields presented to the Security/Transaction Exit.

 Table 3. Security/Transaction Exit program information fields

Listener’s AF

configuration

Connected

Client’s AF

Exit’s Address

Family

Exit’s Client’s

IPv4 address

Exit’s Client’s

IPv6 address

Exit’s

Listener’s IPv4

address

Exit’s

Listener’s IPv6

address

not specified AF_INET AF_INET IPv4 addr zeros IPv4 addr zeros

AF_INET AF_INET AF_INET IPv4 addr zeros IPv4 addr zeros

AF_INET6 AF_INET AF_INET6 zeros IPv4 mapped

IPv6 addr

zeros IPv4 mapped

IPv6 addr

20 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

Table 3. Security/Transaction Exit program information fields (continued)

Listener’s AF

configuration

Connected

Client’s AF

Exit’s Address

Family

Exit’s Client’s

IPv4 address

Exit’s Client’s

IPv6 address

Exit’s

Listener’s IPv4

address

Exit’s

Listener’s IPv6

address

AF_INET6 AF_INET6 AF_INET6 zeros IPv6 addr zeros IPv6 addr

Chapter 1. Introduction to CICS TCP/IP 21

22 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Chapter 2. Setting up and configuring CICS TCP/IP

This topic describes the steps required to configure CICS TCP/IP.

It is assumed that both CICS and TCP/IP Services are already installed and

operating on MVS.

Before you can start CICS TCP/IP, you need to do the following:

 Task See

Modify the CICS job stream to enable CICS

TCP/IP startup.

“MVS JCL — Modifying CICS startup”

Define additional files, programs, maps, and

transient data queues to CICS using resource

definition online (RDO) and the CICS

resource management utility DFHCSDUP

commands.

“CICS — Defining CICS TCP/IP resources”

on page 26

Modify TCP/IP Services data sets. “TCP/IP services — Modifying data sets” on

page 49

Use the configuration macro (EZACICD), to

build the TCP Configuration data set.

“Building the configuration data set with

EZACICD” on page 51

Use the configuration transaction (EZAC) to

customize the Configuration data set.

“Customizing the configuration data set” on

page 70

Note: You can modify the data set while CICS is running by using EZAC. See

“Configuration transaction (EZAC)” on page 70.

MVS JCL — Modifying CICS startup

Figure 8 on page 24 illustrates the modifications required in the CICS startup job

stream to enable CICS TCP/IP startup. The numbers in the right margin of the JCL

correspond to the modifications that follow.

© Copyright IBM Corp. 1994, 2007 23

|
|
|
|
|

|
|

//DFHSTART PROC START=’AUTO’,

// INDEX1=’cicshlq’, High-level qualifier(s) for CICS/TS run time libs.

// INDEX2=’cicshlq’, High-level qualifier(s) for CICS/TS load libraries

// SYSHLQ=’systemhlq’, High-level qualifier(s) for z/OS system datasets

// TCPHLQ=’tcpiphlq’, High-level qualifier(s) for z/OS TCP/IP datasets

// USRHLQ=’userhlq’, High-level qualifier(s) for user libraries

// REGNAM=’1A’, Region name

// REG=’0K’, Storage required

// DUMPTR=’NO’, Dump/Trace analysis required, YES or NO

// RUNCICS=’YES’, CICS startup required, YES or NO

// OUTC=’*’, Print output class

// JVMMEMBR=’DFHJVM’, JVM member

// SIP=P Suffix of DFH$SIP member in the SYSIN dataset

//***

//******************* EXECUTE CICS ************************

//***

//CICS EXEC PGM=DFHSIP,REGION=®,TIME=1440

// PARM=’START=&START,SYSIN’

//*

//SYSIN DD DISP=SHR,

// DSN=&INDEX1..SYSIN(DFH$SIP&SIP) <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< �4��5�

//*

//DFHCMACD DD DSN=&INDEX..DFHCMACD,DISP=SHR

//***

//* THE CICS STEPLIB CONCATENATION

//* If Language Environment is required, the SCEERUN

//* dataset is needed in STEPLIB or LNKLST

//***

//STEPLIB DD DSN=&INDEX2..SDFHAUTH,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=&USRHLQ..LINKLIB,DISP=SHR

//***

//* THE CICS LIBRARY (DFHRPL) CONCATENATION

//* If Language Environment is required, the SCEECICS

//* and SCEERUN datasets are needed in DFHRPL.

//* Refer to the Systems Definition Guide for

//* information on how to run with the native

//* runtime environments such as VS COBOL II.

//***

//DFHRPL DD DSN=&INDEX2..SDFHLOAD,DISP=SHR

// DD DSN=CEE.SCEECICS,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=&USRHLQ..CICS.LOAD,DISP=SHR

// DD DSN=&TCPHLQ..SEZATCP,DISP=SHR <<<<<<<<<<<<<<<<<<<<<<<< �1�

// DD DSN=&USRHLQ..CICS.TABLLIB,DISP=SHR

//* THE AUXILIARY TEMPORARY STORAGE DATASET

//DFHTEMP DD DISP=SHR,

// DSN=&INDEX1..CNTL.CICS ®NAM..DFHTEMP

//* THE INTRAPARTITION DATASET

//DFHINTRA DD DISP=SHR,

// DSN=&INDEX1..CNTL.CICS ®NAM..DFHINTRA

//* THE AUXILIARY TRACE DATASETS

//DFHAUXT DD DISP=SHR,DCB=BUFNO=5,

// DSN=&INDEX1..CICS ®NAM..DFHAUXT

//DFHBUXT DD DISP=SHR,DCB=BUFNO=5,

// DSN=&INDEX1..CICS ®NAM..DFHBUXT

//* THE CICS LOCAL CATALOG DATASET

Figure 8. JCL for CICS startup with the TCP/IP socket interface (Part 1 of 2)

24 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

The z/OS Communication Server TCP/IP data set prefix names might have been

modified during installation. When you see the prefix hlq in this document,

substitute the prefix used in your installation.

The following are the required modifications to the startup of CICS:

1. You must concatenate the data set SEZATCP to the DFHRPL DD. This data set

contains all the other IP CICS TCP/IP modules.

2. Add a TCPDATA DD entry for the IP CICS sockets output messages (see

“Transient data definition” on page 36).

3. The SYSTCPD DD explicitly identifies which data set is to be used to obtain the

parameters defined by TCPIP.DATA. This is used to select the stack you want

to use if there are multiple TCP/IP stacks on this system. See z/OS

Communications Server: IP Configuration Guide for further information.

4. The CICS System Initialization Table (SIT) override might contain the following.

See the CICS System Definition Guide, in the CICS system initialization secttion

for more information on setting CICS SIT parameters:

v GMTEXT= WELCOME TO CICS/TS WITH z/OS CS TCP/IP SOCKETS INTERFACE

v MCT=SO

If you want IP CICS sockets to provide performance data then include the IP

CICS Sockets Monitor Control Table (MCT) entries in your MCT along with

any appropriate monitor SIT controls.

//DFHLCD DD DISP=SHR,

// DSN=&INDEX1..CICS ®NAM.DFHLCD

//* THE CICS GLOBAL CATALOG DATASET

//DFHGCD DD DISP=SHR,

// DSN=&INDEX1..CICS ®NAM..DFHGCD

//* AMP=(’BUFND=5,BUFNI=20,BUFSP=122880’)

//* THE CICS LOCAL REQUEST QUEUE DATASET

//DFHLRQ DD DISP=SHR,

// DSN=&INDEX1..CICS ®NAM..DFHLRQ

//* DATASETS FOR JVM SUPPORT

//DFHCJVM DD DUMMY

//DFHJVM DD DISP=SHR,

// DSN=&INDEX2..SDFHENV (&JVMMEMBR)

//* EXTRAPARTITION DATASETS

//DFHCXRF DD SYSOUT=&OUTC

//LOGUSR DD SYSOUT=&OUTC,DCB=(DSORG=PS,RECFM=V,BLKSIZE=136)

//MSGUSR DD SYSOUT=&OUTC,DCB=(DSORG=PS,RECFM=V,BLKSIZE=136)

//* IP CICS SOCKET INTERFACE MSGS

//TCPDATA DD SYSOUT=&OUTC,DCB=(DSORG=PS,RECFM=V,BLKSIZE=136) <<<<<<< �2�

//* RESOLVER TRACE

//SYSTCPT DD DSN=&USRHLQ..RES.TRACE,DISP=SHR <<<<<<<<<<<<<<<<<<<<<<< �6�

//*SYSTCPT DD SYSOUT=&OUTC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< �6�

//SYSPRINT DD SYSOUT=&OUTC

//SYSTCPD DD DSN=&SYSHLQ..TCPPARMS(TCPDATA),DISP=SHR <<<<<<<<<<<<<<< �3�

//CEEMSG DD SYSOUT=&OUTC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< �7�

//CEEOUT DD SYSOUT=&OUTC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< �7�

//* THE DUMP DATASETS

//DFHDMPA DD DISP=SHR,

// DSN=&INDEX1..CICS ®NAM..DFHDMPA

//DFHDMPB DD DISP=SHR,

// DSN=&INDEX1..CICS ®NAM..DFHDMPB

//PRINTER DD SYSOUT=&OUTC,DCB=BLKSIZE=121

//* THE CICS SYSTEM DEFINITION DATASET

//DFHCSD DD DISP=SHR,

// DSN=&INDEX1..DFHCSD

Figure 8. JCL for CICS startup with the TCP/IP socket interface (Part 2 of 2)

Chapter 2. Setting up and configuring CICS TCP/IP 25

v PLTPI=SI

If you want IP CICS sockets to start at Program Load Table (PLT) phase 2

then include EZACIC20 in an appropriate startup PLT.

v PLTSD=SD

If you want IP CICS sockets to shutdown at PLT phase 1, then include

EZACIC20 in an appropriate shutdown PLT.

v PLTPIUSR=PLTUSER

PLT User ID. Specify the appropriate user ID to start the IP CICS socket

interface and listeners.
5. The following CICS SIT parameters affect the IP CICS socket interface when it

is configured to use the CICS Open Transaction Environment. CICS/TS V2R2

or later is required for this support.

v MAXOPENTCBS=50

When specifying the EZACICD TYPE=CICS,OTE=YES configuration option,

carefully consider this value; it is the size of the CICS managed open API,

L8, TCB pool. This pool is used by the IP CICS socket interface and other

open API-enabled task-related user exits such as DB2®. Use the CEMT SET

DISPATCHER command to dynamically alter this value.

v FORCEQR

User programs that are defined to CICS as THREADSAFE are executed on

the quasi-reentrant TCB. Use the CEMT SET SYSTEM command to

dynamically alter this value.
6. Write the Resolver trace to either a dataset or JES spool.

7. The information is used by IP CICS C Sockets API programs for user messages.

CICS — Defining CICS TCP/IP resources

The following CICS definitions must be made:

v Transactions

v Programs (see “Program definitions” on page 28)

v Basic Mapping Support (BMS) mapset (EZACICM, shown in Figure 23 on page

30)

v Files (see “File definitions” on page 34)

v Transient data queues (see “Transient data definition” on page 36)

To ensure that the CICS system definition (CSD) file contains all necessary

socket-related resource definitions, you should execute a CSD upgrade

(DFHCSDUP) using member EZACICCT in SEZAINST. See CICS Resource

Definition Guide for information about DFHCSDUP.

Note: For the enhanced listener, more temporary storage is needed to support

passing a larger amount of data to the security/transaction exit and to the

child server. Depending upon the size of the data defined in the listener

configuration, temporary storage should be adjusted accordingly.

Transaction definitions

Figures 9, 10, 11, and 12 show the CICS CSD update (DFHCSDUP) commands to

define the four transactions. These commands can be found in

hlq.SEZAINST(EZACICCT).

EZAC Configure the socket interface

EZAO Enable the socket interface

26 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

EZAP Internal transaction that is invoked during termination of the socket

interface

CSKL Listener task

Note: This is a single listener. Each listener in the same CICS region needs

a unique transaction ID.

Note: In the following definitions we have suggested priority of 255. This ensures

timely transaction dispatching, and (in the case of CSKL) maximizes the

connection rate of clients requesting service.

Using storage protection

When running with CICS 3.3.0 or higher on a storage-protection-enabled machine,

the EZAP, EZAO, and CSKL transactions must be defined with

TASKDATAKEY(CICS). If this is not done, EZAO fails with an ASRA abend code

indicating an incorrect attempt to overwrite the CDSA by EZACIC01. The CICS

Customization Guide contains more information on storage protection with

task-related user exits (TRUEs).

In Figure 10 on page 27, Figure 11 on page 27, and Figure 12 on page 27 note that,

if the machine does not support storage protection or is not enabled for storage

protection, TASKDATAKEY(CICS) is ignored and does not cause an error.

Notes:

1. Use of the IBM-supplied listener is not required.

2. You can use a transaction name other than CSKL.

3. The TASKDATALOC values for EZAO and EZAP and the TASKDATALOC

value for CSKL must all be the same.

DEFINE TRANSACTION(EZAC)

DESCRIPTION(CONFIGURE SOCKETS INTERFACE)

GROUP(SOCKETS)

PROGRAM(EZACIC23)

TASKDATALOC(ANY) TASKDATAKEY(USER)

Figure 9. EZAC, transaction to configure the socket interface

DEFINE TRANSACTION(EZAO)

DESCRIPTION(ENABLE SOCKETS INTERFACE)

GROUP(SOCKETS)

PROGRAM(EZACIC00) PRIORITY(255)

TASKDATALOC(ANY) TASKDATAKEY(CICS)

Figure 10. EZAO, transaction to enable the socket interface

DEFINE TRANSACTION(EZAP)

DESCRIPTION(DISABLE SOCKETS INTERFACE)

GROUP(SOCKETS)

PROGRAM(EZACIC22) PRIORITY(255)

TASKDATALOC(ANY) TASKDATAKEY(CICS)

Figure 11. EZAP, transaction to disable the socket interface

DEFINE TRANSACTION(CSKL)

DESCRIPTION(LISTENER TASK)

GROUP(SOCKETS)

PROGRAM(EZACIC02) PRIORITY(255)

TASKDATALOC(ANY) TASKDATAKEY(CICS)

Figure 12. CSKL, Listener task transaction

Chapter 2. Setting up and configuring CICS TCP/IP 27

4. The user ID invoking the EZAO transaction to activate or deactivate the IP

CICS socket interface requires the UPDATE access to the EXITPROGRAM

resource when CICS command security is active. The user ID invoking the

EZAC transaction requires the UPDATE access to the EXITPROGRAM resource

to allow the EZAC transaction to perform an IPv6 run-time check when the AF

is changed to INET6. Failure to have at least the UPDATE access to the

EXITPROGRAM resource causes the IP CICS socket interface and listener to not

start or not stop.

Program definitions

Three categories of program are or could be required to support CICS TCP/IP:

v Required programs, CICS definition needed

v Optional programs, CICS definition needed

v Required programs, CICS definition not needed

Required programs, CICS definition needed

You need to define the following 11 programs and 1 mapset to run CICS TCP/IP,

or to provide supporting functions:

EZACICM

Has all the maps used by the transactions that enable and disable CICS

TCP/IP.

EZACICME

The U.S. English text delivery module.

EZACIC00

The connection manager program. It provides the enabling and disabling

of CICS TCP/IP through the transactions EZAO and EZAP.

EZACIC01

The task related user exit (TRUE).

EZACIC02

The listener program that is used by the transaction CSKL. This transaction

is started when you enable CICS TCP/IP through the EZAO transaction.

Note: While you do not need to use the IBM-supplied listener, you do

need to provide a listener function.

EZACIC12

The module that performs WLM registration and deregistration functions

for CICS sockets.

EZACIC20

The initialization and termination front-end module for CICS sockets.

EZACIC21

The initialization module for CICS sockets.

EZACIC22

The termination module for CICS sockets.

EZACIC23

The primary module for the configuration transaction (EZAC).

EZACIC24

The message delivery module for transactions EZAC and EZAO.

EZACIC25

The Domain Name Server (DNS) cache module.

28 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

The following figures show sample RDO definitions of these programs.

Using storage protection: When running with CICS 3.3.0 or higher on a

storage-protection-enabled machine, all the required CICS TCP/IP programs

(EZACIC00, EZACIC01, and EZACIC02) must have EXECKEY(CICS) as part of

their definitions. The CICS Customization Guide contains more information on

storage protection with TRUEs.

Figures 13, 14, and 15 show EZACIC00, EZACIC01, and EZACIC02 defined with

EXECKEY(CICS). Note that, if the machine does not support storage protection or

is not enabled for storage protection, EXECKEY(CICS) is ignored and does not

cause an error.

DEFINE PROGRAM(EZACIC00)

DESCRIPTION(PRIMARY PROGRAM FOR TRANSACTION EZAO)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(TRANSIENT)

Figure 13. EZACIC00, connection manager program

DEFINE PROGRAM(EZACIC01)

DESCRIPTION(TASK RELATED USER EXIT <TRUE>)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD(NO) RESIDENT(YES) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(NORMAL)

Figure 14. EZACIC01, task related user exit program

DEFINE PROGRAM(EZACIC02)

DESCRIPTION(IBM LISTENER)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

CONCURRENCY(THREADSAFE)

Figure 15. EZACIC02, listener program

DEFINE PROGRAM(EZACIC12)

DESCRIPTION(WORK LOAD MANGER REGISTRATION / DEREGISTRATION)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(TRANSIENT)

CONCURRENCY(THREADSAFE)

Figure 16. EZACIC12, WLM registration and deregistration module for CICS sockets

DEFINE PROGRAM(EZACIC20)

DESCRIPTION(INITIALIZATION/TERMINATION FOR CICS SOCKETS)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(TRANSIENT)

Figure 17. EZACIC20, front-end module for CICS sockets

Chapter 2. Setting up and configuring CICS TCP/IP 29

DEFINE PROGRAM(EZACIC21)

DESCRIPTION(INITIALIZATION MODULE FOR CICS SOCKETS)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD(NO) RESIDENT(YES) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(TRANSIENT)

Figure 18. EZACIC21, initialization module for CICS sockets

DEFINE PROGRAM(EZACIC22)

DESCRIPTION(TERMINATION MODULE FOR CICS SOCKETS)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(TRANSIENT)

Figure 19. EZACIC22, termination module for CICS sockets

DEFINE PROGRAM(EZACIC23)

DESCRIPTION(PRIMARY MODULE FOR TRANSACTION EZAC)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(TRANSIENT)

Figure 20. EZACIC23, primary module for transaction EZAC

DEFINE PROGRAM(EZACIC24)

DESCRIPTION(MESSAGE DELIVERY MODULE FOR CICS SOCKETS)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(TRANSIENT)

Figure 21. EZACIC24, message delivery module for CICS sockets

DEFINE PROGRAM(EZACIC25)

DESCRIPTION(CACHE MODULE FOR THE DOMAIN NAME SERVER)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(YES) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(NORMAL)

Figure 22. EZACIC25, domain name server cache module

DEFINE MAPSET(EZACICM)

DESCRIPTION(MAPSET FOR CICS SOCKETS INTERFACE)

GROUP(SOCKETS)

RESIDENT(NO) USAGE(TRANSIENT) USELPACOPY(NO)

STATUS(ENABLED)

Figure 23. EZACICM, maps used by the EZAO transaction

DEFINE PROGRAM(EZACICME)

DESCRIPTION(US ENGLISH TEXT DELIVERY MODULE)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD(NO) RESIDENT(YES) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(NORMAL)

CONCURRENCY(THREADSAFE)

Figure 24. EZACICME, U.S. English text delivery module

30 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Optional programs, CICS transaction and program definition

needed

The following six programs are optional. They are the supplied samples. They are

also in SEZAINST:

EZACICSC

A sample IPv4 child server that works with the IPv4 listener (EZACIC02).

See “EZACICSC” on page 463.

EZACICSS

A sample IPv4 iterative server. EZACICSS establishes the connection

between CICS and TCP/IP stacks, and receives client requests from

workstations. See “EZACICSS” on page 472.

EZACIC6C

A sample IPv6 child server that works with either a standard or enhanced

IPv6 listener (EZACIC02). See “EZACIC6C” on page 493.

EZACIC6S

A sample IPv6 iterative server. EZACIC6S establishes the connection

between CICS and TCP/IP stacks, and receives client requests from

workstations. See “EZACIC6S” on page 505.

EZACICAC

A sample assembler child server that works with either a standard or

enhanced, IPv4 or IPv6 listener (EZACIC02). See “EZACICAC” on page

529.

EZACICAS

A sample assembler iterative server that establishes the connection between

CICS and TCP/IP stacks, and accepts either ASCII or EBCDIC, IPv4 or

IPv6 (if IPv6 is enabled on the system) client connection requests. See

“EZACICAS” on page 540.

If these sample programs are used, they require DFHCSDUP definitions as shown

in Figure 26 on page 32, Figure 25, Figure 28 on page 32, Figure 27 on page 32,

Figure 29 on page 32, and Figure 30 on page 33.

DEFINE TRANSACTION(SRV1)

DESCRIPTION(SAMPLE STARTED SERVER)

GROUP(SOCKETS)

PROGRAM(EZACICSC)

TASKDATALOC(ANY) TASKDATAKEY(USER)

DEFINE PROGRAM(EZACICSC)

DESCRIPTION(SAMPLE STARTED SERVER)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(COBOL) STATUS(ENABLED) USAGE(NORMAL)

CONCURRENCY(THREADSAFE)

Figure 25. EZACICSC, sample IPv4 child server transaction and program definitions

Chapter 2. Setting up and configuring CICS TCP/IP 31

DEFINE TRANSACTION(SRV2)

DESCRIPTION(SAMPLE SERVER)

GROUP(SOCKETS)

PROGRAM(EZACICSS)

TASKDATALOC(ANY) TASKDATAKEY(USER)

DEFINE PROGRAM(EZACICSS)

DESCRIPTION(SAMPLE SERVER FOR TRANSACTION SRV2)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(COBOL) STATUS(ENABLED) USAGE(NORMAL)

Figure 26. EZACICSS, sample iterative IPv4 server transaction and program definitions

DEFINE TRANSACTION(SRV3)

DESCRIPTION(SAMPLE IPV6 CHILD SERVER)

GROUP(SOCKETS)

PROGRAM(EZACIC6C)

TASKDATALOC(ANY) TASKDATAKEY(USER)

DEFINE PROGRAM(EZACIC6C)

DESCRIPTION(SAMPLE IPV6 CHILD SERVER)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(COBOL) STATUS(ENABLED) USAGE(NORMAL)

CONCURRENCY(THREADSAFE)

Figure 27. EZACIC6C, sample IPv6 child server transaction and program definitions

DEFINE TRANSACTION(SRV4)

DESCRIPTION(SAMPLE IPV6 SERVER)

GROUP(SOCKETS)

PROGRAM(EZACIC6S)

TASKDATALOC(ANY) TASKDATAKEY(USER)

DEFINE PROGRAM(EZACIC6S)

DESCRIPTION(SAMPLE IPV6 SERVER FOR TRANSACTION SRV4)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(COBOL) STATUS(ENABLED) USAGE(NORMAL)

Figure 28. EZACIC6S, sample iterative IPv6 server transaction and program definitions

DEFINE TRANSACTION(SRV5)

DESCRIPTION(SAMPLE ASSEMBLER CHILD SERVER)

GROUP(SOCKETS)

PROGRAM(EZACICAC)

TASKDATALOC(ANY) TASKDATAKEY(USER)

DEFINE PROGRAM(EZACICAC)

DESCRIPTION(SAMPLE ASSEMBLER CHILD SERVER)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(NORMAL)

CONCURRENCY(THREADSAFE)

Figure 29. EZACICAC, sample assembler child server transaction and program definitions

32 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Required programs, CICS definition not needed

The following programs do not need to be defined to CICS.

EZACICAL

The application stub that invokes the TRUE and passes on the CICS

application’s socket call. This program is in SEZATCP.

EZACIC03

The MVS subtask that passes data between the CICS socket task and the

transport interface into TCP/IP for MVS. This program is in SEZALOAD.

Note: If the SEZALOAD load library is included in the LINKLIST, then it

does not need to be in the STEPLIB concatenation.

EZACIC07

The application stub that handles the C API for non-reentrant programs.

This program is in SEZATCP.

EZACIC17

The application stub that handles the C API for reentrant programs. This

program is in SEZATCP.

Threadsafe enablement

The following programs can be defined to CICS as threadsafe. This is particulary

important when the IP CICS socket interface is using the CICS Open Transaction

Environment. See “TYPE parameter” on page 54 for more information on

configuring the IP CICS socket interface to use CICS Open Transaction

Environment.

EZACIC02

Enables the listener to initially execute on an open API TCB. Some TCB

switching still occurs because CICS commands that are not threadsafe are

used.

EZACIC12

Enables the Work Load Manager registration/deregistration program to

initially execute on an open API TCB. Some TCB switching still occurs

because CICS commands that are not threadsafe are used. The listener

links to this program only when WLMGN1, WLMGN2, or WLMGN3 is

specified.

EZACICME

Enables the message module to initially execute on an open API TCB.

Some TCB switching still occurs because CICS commands that are not

threadsafe are used.

DEFINE TRANSACTION(SRV6)

DESCRIPTION(SAMPLE ASSEMBLER SERVER)

GROUP(SOCKETS)

PROGRAM(EZACICAS)

TASKDATALOC(ANY) TASKDATAKEY(USER)

DEFINE PROGRAM(EZACICAS)

DESCRIPTION(SAMPLE ASSEMBLER SERVER FOR TRANSACTION SRV6)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(NORMAL)

Figure 30. EZACICAS, sample assembler server transaction and program definitions

Chapter 2. Setting up and configuring CICS TCP/IP 33

Sample programs: EZACICSC, EZACIC6C, EZACICAC

These sample child servers contain logic to determine when the IP CICS socket

interface is threadsafe, and executes the interface accordingly.

Use the DFHCSDUP commands in SEZAINST(EZACICPT) to change the CICS

CONCURRENCY setting for these program definitions on a CICS/TS V2R2 or later

system. EZACICPT was originally a duplicate of EZACICCT. It is being reused to

contain the ALTER PROGRAM commands.

 Use the CEDA INSTALL command to install the new PROGRAM definitions in

your CICS system. When you put a new version of the program in your library,

you do not need to install the definition again, unless attributes specified on the

definition have changed. To make the new version available, use the CEMT

transaction:

CEMT SET PROGRAM(pgmid) NEWCOPY

File definitions

The updates to CICS TCP/IP include two files: EZACONFG, the sockets

configuration file, and EZACACHE, which is required if you want to use the

Domain Name Server Cache function (EZACIC25).

EZACONFG

Use the following DFHCSDUP commands to define EZACONFG file. The numbers

correspond to the notes that follow.

ALTER PROGRAM(EZACIC02)

 DESCRIPTION(IBM LISTENER THREADSAFE)

 GROUP(SOCKETS)

 CONCURRENCY(THREADSAFE)

ALTER PROGRAM(EZACIC12)

 DESCRIPTION(WORKLOAD MGR REGISTRATION / DEREGISTRATION THREADSAFE)

 GROUP(SOCKETS)

 CONCURRENCY(THREADSAFE)

ALTER PROGRAM(EZACICME)

 DESCRIPTION(US ENGLISH TEXT DELIVERY MODULE THREADSAFE)

 GROUP(SOCKETS)

 CONCURRENCY(THREADSAFE)

ALTER PROGRAM(EZACICSC)

 DESCRIPTION(SAMPLE IPV4 CHILD SERVER THREADSAFE)

 GROUP(SOCKETS)

 CONCURRENCY(THREADSAFE)

ALTER PROGRAM(EZACIC6C)

 DESCRIPTION(SAMPLE IPV6 CHILD SERVER THREADSAFE)

 GROUP(SOCKETS)

 CONCURRENCY(THREADSAFE)

ALTER PROGRAM(EZACICAC)

 DESCRIPTION(SAMPLE ASSEMBLER CHILD SERVER THREADSAFE)

 GROUP(SOCKETS)

 CONCURRENCY(THREADSAFE)

Figure 31. ALTER PROGRAM instructions

34 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Notes:

1. Choose a DSName to fit installation standards.

2. If you want to have EZACONFG reside in a file owning region (FOR) and be

accessed indirectly from an application owning region (AOR), the systems

programmer must assure that no CICS socket modules can execute directly in

the FOR. That is, do not install any CICS TCP/IP resources other than

EZACONFG in the FOR. Otherwise, EZACONFG can become disabled and is

not accessible from the AOR

3. If you want to have the EZAC transaction residing in an AOR and indirectly

accessing EZACONFG in the FOR, the ADD, DELETE, and UPDATE

parameters in the FOR’s file definition must be set to YES. The FOR therefore is

the only CICS region that can open EZACONFG. Thus, no sharing of

EZACONFG between different CICS regions is possible.

4. Specify OPENTIME(FIRSTREF) to reduce the overhead that is incurred when

CICS opens non-essential datasets during CICS startup.

EZACACHE

If you want to use the Domain Name Server Cache function (EZACIC25), this

definition is required.

Recommendations: The following recommendations apply when defining

EZACACHE:

v If you require improved performance for Domain Name Server lookups for both

IPv4 and IPv6 resources, you should consider configuring a caching-only BIND

9 name server on the local system. Doing this has the following benefits:

– After a hostname is resolved, it is cached locally, allowing all other

applications running in the system to retrieve this information without

incurring the overhead of network communications.

– A caching domain name server honors the time to live (TTL) value that

indicates when a resource record’s information should expire.

– BIND 9 supports caching of both IPv4 and IPv6 resources.

– IBM recommends that a caching-only BIND 9 name server be used to support

both IPv4 and IPv6 names.
v Do not attempt to share a cache file.

v If the server intends to use WLM connection balancing, it is recommended that

the client does not cache DNS names. Connection balancing relies on up-to-date

information about current capacity of hosts in the sysplex. If DNS names are

retrieved from a cache instead of the DNS/WLM name server, connections are

made without regard for current host capacity, degrading the effectiveness of

DEFINE FILE(EZACONFG)

DESCRIPTION(CICS SOCKETS CONFIGURATION FILE)

GROUP(SOCKETS)

DSNAME(EZACONFG) �1� LSRPOOLID(1) DSNSHARING(ALLREQS)

STRINGS(01)

REMOTESYSTEM(....) REMOTENAME(........)

RECORDSIZE(....) KEYLENGTH(...) �2�

OPENTIME(STARTUP) �4�STATUS(ENABLED)

DISPOSITION(SHARE) TABLE(NO) RECORDFORMAT(V)

READ(YES) BROWSE(YES) ADD(NO)

DELETE(NO) UPDATE(NO) �3�

DATABUFFERS(2) INDEXBUFFERS(1) JNLSYNCWRITE(NO)

Figure 32. DFHCSDUP commands to define EZACONFG

Chapter 2. Setting up and configuring CICS TCP/IP 35

connection balancing. Of course, not caching names can mean more IP traffic,

which in some cases can outweigh the benefits of connection balancing.

See z/OS Communications Server: IP Configuration Reference for information about

caching issues.

v DNS/WLM continues to support CICS listeners wanting to participate in work

load balancing for IPv4 clients. IPv6 enabled listeners are still able to participate

in work load balancing for their IPv4 clients and IPv6 clients. DNS/WLM is not

possible when using IPv6 addresses because DNS/WLM is only supported on

the BIND 4.9.3 server. Use a DNS/BIND 9 caching-only server to support IPv6

addresses.

If you want to support IPv6 clients and DNS/WLM (for IPv4 clients), set up a

caching-only BIND 9 name server to support both IPv4 and IPv6 addresses and

keep your BIND 4.9.3 name server in the sysplex for DNS/WLM support. Have

your IPv6-enabled client get the IPv4 address for the participating listener from

the DNS/WLM server and then convert the returned IPv4 address to an

IPv4-mapped IPv6 address. Use this address to connect to the IPv6-enabled

listener. Note that this is not a true IPv6 connection as DNS/WLM because does

not give an IPv6 address. Clients that want to connect to the server over an IPv6

network should use an IPv6 address.

Use the following DFHCSDUP commands to define EZACACHE file:

Notes:

1. Choose a DSName to fit installation standards.

2. For strings, specify the maximum number of concurrent users.

3. Databuffers should equal strings multiplied by two.

4. Indexbuffers equals the number of records in the index set.

5. Although it is optional, it is recommended that you specify TABLE(USER)

because it makes the process run faster. For more information on data tables,

see CICS Resource Definition Guide.

6. Maxnumrecs equals the maximum number of destinations queried.

Transient data definition

Figure 34 on page 37 shows the DFHCSDUP commands required to define the

TCPM transient data queue for CICS TCP/IP. For more information about

DFHCSDUP commands, see CICS Resource Definition Guide.

The destination TCPM can be changed. If it is changed, it must match the name

specified in the ERRORTD parameter of the EZAC DEFINE CICS, the EZACICD

TYPE=CICS, or both (see “Building the configuration data set with EZACICD” on

page 51).

DEFINE FILE(EZACACHE)

DESCRIPTION(DOMAIN NAME SERVER CACHE CONFIGURATION FILE)

GROUP(SOCKETS)

DSNAME(EZACACHE) �1� LSRPOOLID(1) DSNSHARING(ALLREQS)

STRINGS(20) �2� OPENTIME(STARTUP) STATUS(ENABLED)

DISPOSITION(OLD) TABLE(USER) RECORDFORMAT(V)

READ(YES) BROWSE(YES) ADD(YES)

DELETE(YES) UPDATE(YES) MAXNUMRECS(4000)

DATABUFFERS(060) �3� INDEXBUFFERS(2000) �4� JNLSYNCWRITE(NO)

TABLE(USER) �5� MAXNUMRECS(4000) �6�

Figure 33. DFHCSDUP commands to define EZACACHE

36 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

The listener writes to the TCPM queue while CICS TCP/IP is enabled. In addition

to this, your own sockets applications can write to this queue using EXEC CICS

WRITEQ TD commands. It is recommended that an extrapartition transient data

queue be defined, as shown in Figure 34.

The CICS startup JCL must include a DD statement for the extrapartition transient

data queue being defined (as in Figure 8 on page 24, line �3�).

The listener transaction can start a server using a transient data queue, as

described in “Listener input format” on page 135. The intrapartition transient data

queue definition in Figure 34 shows an entry for an application that is started

using the trigger-level mechanism of destination control.

CICS monitoring

The CICS Sockets Feature uses the CICS Monitoring Facility to collect data about

its operation. There are two collection points: the Task Related User Exit (TRUE)

and the listener. This data is collected as Performance Class Data. The TRUE uses

Event Monitoring Points (EMPs) with the identifier EZA01 and the listener uses

Event Monitoring Points (EMPs) with the identifier EZA02. If the Monitor Control

Table entries are not defined, the following records are written to the CICS internal

trace when CICS Socket calls are made:

EXC - Invalid monitoring point

When this occurs, the TRUE mechanism and the listener disable use of this specific

EMP and no further data is written to SMF. An EMP is dependent on its associated

entry in the MCT, so when an EMP is disabled it must be re-enabled as follows:

1. By adding entries to the Monitor Control table

2. Restarting CICS

3. Starting IP CICS socket interface and listener

You can tailor your MCT to only monitor events required by your installation. This

can be done by only supplying the MCT entries you require as the TRUE and the

listener disables those not coded and continue to execute EMPs matching the

entries in the MCT.

DEFINE TDQUEUE(TCPM) GROUP(SOCKETS)

DESCRIPTION(USED FOR SOCKETS MESSAGES)

TYPE(EXTRA)

DATABUFFERS(1)

DDNAME(TCPDATA)

ERROROPTION(IGNORE)

OPENTIME(INITIAL)

TYPEFILE(OUTPUT)

RECORDSIZE(132)

RECORDFORMAT(VARIABLE)

BLOCKFORMAT(UNBLOCKED)

DISPOSITION(SHR)

DEFINE TDQUEUE(TRAA) GROUP(SOCKETS)

DESCRIPTION(USED FOR SOCKETS APPLICATION)

TYPE(INTRA)

ATIFACILITY(FILE)

TRIGGERLEVEL(1)

TRANSID(TRAA)

Figure 34. CICS TCP/IP Transient Data Queue definitions

Chapter 2. Setting up and configuring CICS TCP/IP 37

See the CICS Performance Guide for more information on the CICS monitoring

facility.

Event monitoring points for the TRUE

The TRUE monitors call activity plus use of reusable, attached or OTE tasks. The

call activity is monitored by the following classes of calls:

v Initialization (INITAPI or other first call)

v Read (inbound data transfer) calls

v Write (outbound data transfer) calls

v Select calls

v All other calls

There are counters and clocks for each of these classes. In addition, there are

counters for use of reusable tasks, attached tasks and the use of open API tasks.

v Counter/Clock 1 - Initialization Call

v Counter/Clock 2 - Read Call

v Counter/Clock 3 - Write Call

v Counter/Clock 4 - Select Call

v Counter/Clock 5 - Other Call

v Counter 6 - Use of a reusable task

v Counter 7 - Use of an attached task

v Counter 8 - Use of an open API, L8, TCB

v Counter 9 - Number of times at TCBLIM

The following Monitor Control Table (MCT) entries use the event monitoring

points in the performance class used by the Task Related User Exit (TRUE). These

entries are in hlq.SEZAINST(EZACIMCT).

38 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|

DFHMCT TYPE=INITIAL,SUFFIX=SO

*

* ENTRIES FOR IP CICS SOCKETS TASK-RELATED USER EXIT

*

 DFHMCT TYPE=EMP,ID=(EZA01.01),CLASS=PERFORM, X

 PERFORM=SCLOCK(1), X

 CLOCK=(1,INIT,READ,WRITE,SELECT,OTHER)

 DFHMCT TYPE=EMP,ID=(EZA01.02),CLASS=PERFORM, X

 PERFORM=PCLOCK(1)

*

* SOCKET FUNCTIONS READING DATA

*

 DFHMCT TYPE=EMP,ID=(EZA01.03),CLASS=PERFORM, X

 PERFORM=SCLOCK(2)

 DFHMCT TYPE=EMP,ID=(EZA01.04),CLASS=PERFORM, X

 PERFORM=PCLOCK(2)

*

* SOCKET FUNCTIONS WRITING DATA

*

 DFHMCT TYPE=EMP,ID=(EZA01.05),CLASS=PERFORM, X

 PERFORM=SCLOCK(3)

 DFHMCT TYPE=EMP,ID=(EZA01.06),CLASS=PERFORM, X

 PERFORM=PCLOCK(3)

*

* SOCKET FUNCTIONS SELECTING SOCKETS

*

 DFHMCT TYPE=EMP,ID=(EZA01.07),CLASS=PERFORM, X

 PERFORM=SCLOCK(4)

 DFHMCT TYPE=EMP,ID=(EZA01.08),CLASS=PERFORM, X

 PERFORM=PCLOCK(4)

*

* OTHER SOCKET FUNCTIONS

*

 DFHMCT TYPE=EMP,ID=(EZA01.09),CLASS=PERFORM, X

 PERFORM=SCLOCK(5)

 DFHMCT TYPE=EMP,ID=(EZA01.10),CLASS=PERFORM, X

 PERFORM=PCLOCK(5)

*

* CICS TASK TERMINATION

*

 DFHMCT TYPE=EMP,ID=(EZA01.13),CLASS=PERFORM, X

 PERFORM=(MLTCNT(1,5)), X

 COUNT=(1,TINIT,TREAD,TWRITE,TSELECT,TOTHER)

*

* REUSABLE SUBTASK POOL

*

 DFHMCT TYPE=EMP,ID=(EZA01.11),CLASS=PERFORM, X

 PERFORM=ADDCNT(6,1), X

 COUNT=(6,REUSABLE,ATTACHED,OPENAPI,TCBLIM)

*

* DYNAMICALLY DEFINED SUBTASKS

Figure 35. The Monitor Control Table (MCT) for TRUE (Part 1 of 2)

Chapter 2. Setting up and configuring CICS TCP/IP 39

In the ID parameter, the following specifications are used:

(EZA01.01)

Start of Initialization Call

(EZA01.02)

End of Initialization Call

(EZA01.03)

Start of Read Call

(EZA01.04)

End of Read Call

(EZA01.05)

Start of Write Call

(EZA01.06)

End of Write Call

(EZA01.07)

Start of Select Call

(EZA01.08)

End of Select Call

(EZA01.09)

Start of Other Call

(EZA01.10)

End of Other Call

(EZA01.11)

First call to Interface Using Reusable Task

(EZA01.12)

First call to Interface Using Attached Task

(EZA01.13)

CICS Task Termination

(EZA01.14)

CICS socket interface Termination

*

 DFHMCT TYPE=EMP,ID=(EZA01.12),CLASS=PERFORM, X

 PERFORM=ADDCNT(7,1)

*

* OPEN API

*

 DFHMCT TYPE=EMP,ID=(EZA01.15),CLASS=PERFORM, X

 PERFORM=ADDCNT(8,1)

*

* TCBLIM

*

 DFHMCT TYPE=EMP,ID=(EZA01.16),CLASS=PERFORM, X

 PERFORM=ADDCNT(9,1)

*

* CICS TASK INTERFACE TERMINATION

*

 DFHMCT TYPE=EMP,ID=(EZA01.14),CLASS=PERFORM, X

 PERFORM=(MLTCNT(10,4)), X

 COUNT=(10,TREUSABL,TATTACHE,TOPENAPI,TTCBLIM)

Figure 35. The Monitor Control Table (MCT) for TRUE (Part 2 of 2)

40 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

(EZA01.15)

First call to Interface Using an open API TCB

(EZA01.16)

Number of times at TCBLIM

Event monitoring points for the listener

The listener monitors the activities associated with connection acceptance and

server task startup. Since it uses the TRUE, the data collected by the TRUE can be

used to evaluate listener performance.

The listener counts the following events:

v Number of Connection Requested Accepted

v Number of Transactions Started

v Number of Transactions Rejected Due To Invalid Transaction ID

v Number of Transactions Rejected Due To Disabled Transaction

v Number of Transactions Rejected Due To Disabled Program

v Number of Transactions Rejected Due To Givesocket Failure

v Number of Transactions Rejected Due To Negative Response from Security Exit

v Number of Transactions Not Authorized to Run

v Number of Transactions Rejected Due to I/O Error

v Number of Transactions Rejected Due to No Space

v Number of Transactions Rejected Due to TD Length Error

The following Monitor Control Table (MCT) entries use the event-monitoring

points in the performance class used by the listener. These entries can be found in

hlq.SEZAINST(EZACIMCL).

Chapter 2. Setting up and configuring CICS TCP/IP 41

|
|
|

* ENTRIES FOR IP CICS SOCKETS LISTENER

*

*

* NUMBER OF TIMES ACCEPT COMPLETED SUCCESSFULLY

*

 DFHMCT TYPE=EMP,ID=(EZA02.01),CLASS=PERFORM, X

 PERFORM=ADDCNT(1,1),COUNT=(1,CONN)

*

* NUMBER OF CHILD SERVER TASKS STARTED

*

 DFHMCT TYPE=EMP,ID=(EZA02.02),CLASS=PERFORM, X

 PERFORM=ADDCNT(2,1),COUNT=(2,STARTED)

*

* NUMBER OF REQUESTS FOR UNDEFINED CHILD SERVER TRANSACTIONS

*

 DFHMCT TYPE=EMP,ID=(EZA02.03),CLASS=PERFORM, X

 PERFORM=ADDCNT(3,1),COUNT=(3,INVALID)

*

* NUMBER OF REQUESTS FOR DISABLED CHILD SERVER TRANSACTIONS

*

 DFHMCT TYPE=EMP,ID=(EZA02.04),CLASS=PERFORM, X

 PERFORM=ADDCNT(4,1),COUNT=(4,DISTRAN)

*

* NUMBER OF REQUESTS FOR DISABLED CHILD SERVER PROGRAMS

*

 DFHMCT TYPE=EMP,ID=(EZA02.05),CLASS=PERFORM, X

 PERFORM=ADDCNT(5,1),COUNT=(5,DISPROG)

*

* NUMBER OF GIVESOCKET FAILURES

*

 DFHMCT TYPE=EMP,ID=(EZA02.06),CLASS=PERFORM, X

 PERFORM=ADDCNT(6,1),COUNT=(6,GIVESOKT)

*

* NUMBER OF TRMS REJECTED BY THE SECURITY/USER EXIT

*

 DFHMCT TYPE=EMP,ID=(EZA02.07),CLASS=PERFORM, X

 PERFORM=ADDCNT(7,1),COUNT=(7,SECEXIT)

*

* NUMBER OF TIME CHILD SERVER TRANSACTION NOT AUTHORIZED

*

 DFHMCT TYPE=EMP,ID=(EZA02.08),CLASS=PERFORM, X

 PERFORM=ADDCNT(8,1),COUNT=(8,NOTAUTH)

*

* NUMBER OF TRMS TD QUEUE I/O ERROR

*

 DFHMCT TYPE=EMP,ID=(EZA02.09),CLASS=PERFORM, X

 PERFORM=ADDCNT(9,1),COUNT=(9,IOERR)

*

* NUMBER OF TIMES NO SPACE ON CHILD SERVER TD QUEUE

*

 DFHMCT TYPE=EMP,ID=(EZA02.10),CLASS=PERFORM, X

 PERFORM=ADDCNT(10,1),COUNT=(10,NOSPACE)

Figure 36. The Monitor Control Table (MCT) for listener (Part 1 of 2)

42 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

In the ID parameter, the following specifications are used:

(EZA02.01)

Completion of ACCEPT call

(EZA02.02)

Completion of CICS transaction initiation

(EZA02.03)

Detection of Invalid Transaction ID

(EZA02.04)

Detection of Disabled Transaction

(EZA02.05)

Detection of Disabled Program

(EZA02.06)

Detection of Givesocket Failure

(EZA02.07)

Transaction Rejection by Security Exit

(EZA02.08)

Transaction Not Authorized

(EZA02.09)

I/O Error on Transaction Start

(EZA02.10)

No Space Available for TD Start Message

(EZA02.11)

TD Length Error

(EZA02.12)

Program Termination

Open TCB measurements

When migrating IP CICS sockets-enabled applications to exploit the CICS

Transaction Server Open Transaction Environment it is important to consider that

the CPU usage is spent on both the QR TCB and the L8 TCB.

The time spent on the QR TCB can be used on the following:

v Task startup

v Processing a non-threadsafe CICS command

*

* NUMBER OF TIMES LENGTH ERROR ON CHILD SERVER TD QUEUE

*

 DFHMCT TYPE=EMP,ID=(EZA02.11),CLASS=PERFORM, X

 PERFORM=ADDCNT(11,1),COUNT=(11,LENERR)

*

* LISTENER TERMINATION

*

 DFHMCT TYPE=EMP,ID=(EZA02.12),CLASS=PERFORM, X

 PERFORM=(MLTCNT(12,11)), X

 COUNT=(12,TCONN,TSTARTED,TINVALID,TDISTRAN,TDISPROG,TGIVX

 ESOK,TSECEXIT,TNOTAUTH,TIOERR,TNOSPACE,TLENERR)

 DFHMCT TYPE=FINAL

 END

Figure 36. The Monitor Control Table (MCT) for listener (Part 2 of 2)

Chapter 2. Setting up and configuring CICS TCP/IP 43

v Processing application code when switched back to the QR TCB

v Processing non-threadsafe subprograms

v Final task processing

The time spent on the L8 TCB can be used on the following:

v OPEN TCB processing

v Processing the EZASOKET call

v Running the application code

v Processing threadsafe CICS commands

v Processing threadsafe subprograms

v TCP/IP processing the socket call

If the application makes use of other non-CICS resources that are enabled to

exploit OTE (such as DB2) then that CPU usage time is also accumulated against

the QR and L8 TCBs.

If IP CICS sockets is not using OTE, then all the CPU time that is used to process

the EZASOKET call occurs on the private MVS subtasks and shows up on the SMF

30 record.

If IP CICS sockets is using OTE, then the CPU time that is used to process the

EZASOKET call shows up for the CICS transaction.

The following figure shows a EZASOKET threadsafe transaction. The numbers

correspond to the list that follows.

44 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

1. Represents the task startup and the application until it issues the first

EZASOKET call.

2. Actual time spent in Sockets Extended, processing the first EZASOKET call.

3. Time spent in the resource manager interface (RMI), processing the EZASOKET

call

4. Threadsafe application code and EXEC CICS commands running.

5. Time spent in Sockets Extended, processing the second EZASOKET call.

6. Time spent in the RMI, processing the second request.

7. Final application code, which issues a non-threadsafe EXEC CICS WRITEQ TD

command causing a change_mode back to the QR TCB.

8. Final task processing on the QR TCB.

EZASOKET Threadsafe Transaction

L8002 TCBQR TCB

TRNB

EZASOH03

EZASOKET
CHANGE MODE

CHANGE MODE

EXEC CICS
WRITEQ TD

WRITEQ TD
RETURN

EXEC CICS
Threadsafe
commands

EZASOKET
EZASOH03

1

2

3

4

6

5

7

8

Figure 37. EZASOKET threadsafe transaction

Chapter 2. Setting up and configuring CICS TCP/IP 45

CICS program list table (PLT)

You can allow automatic startup/shutdown of the CICS socket interface through

updates to the PLT. This is achieved through placing the EZACIC20 module in the

appropriate PLT.

To start the IP CICS socket interface automatically, make the following entry in

PLTPI after the DFHDELIM entry:

*

* PLT USED TO SUPPORT IP CICS SOCKETS STARTUP

*

 DFHPLT TYPE=INITIAL,SUFFIX=SI

 DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM

 DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

*

* Add other IP CICS Socket PLT startup programs here...

*

 DFHPLT TYPE=FINAL

 END

To shut down the IP CICS socket interface automatically (including all other IP

CICS sockets enabled programs), make the following entry in the PLTSD before the

DFHDELIM entry:

*

* PLT USED TO SUPPORT IP CICS SOCKETS SHUTDOWN

*

 DFHPLT TYPE=INITIAL,SUFFIX=SD

*

* Add other IP CICS Socket PLT shutdown programs here...

*

 DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

 DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM

 DFHPLT TYPE=FINAL

 END

System recovery table

The system recovery table (SRT) contains a list of codes for abends that CICS

intercepts. After intercepting one, CICS attempts to remain operational by causing

the offending task to abend.

You can modify the default recovery action by writing your own recovery

program. You do this using the XSRAB global user exit point within the system

recovery program (SRP). For programming information about the XSRAB exit, see

the CICS Customization Guide.

Note: Recovery is attempted only if a user task (not a system task) is in control at

the time the abend occurs.

DFHSRT macroinstruction types

The following macroinstructions can be coded in a system recovery table:

v DFHSRT TYPE=INITIAL establishes the control section.

v DFHSRT TYPE=SYSTEM or DFHSRT TYPE=USER specifies the abend codes that

are to be handled.

v DFHSRT TYPE=FINAL concludes the SRT. For details about the TYPE=FINAL

macroinstruction, see the CICS Resource Definition Guide.

Control section: The DFHSRT TYPE=INITIAL macroinstruction generates the

system recovery table control section.

46 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

�� DFHSRT TYPE=INITIAL

,

SUFFIX=

xx
 ��

For general information about TYPE=INITIAL macroinstructions, including the use

of the SUFFIX operand, see the CICS Resource Definition Guide.

Abend codes: The DFHSRT TYPE=SYSTEM and DFHSRT TYPE=USER

macroinstructions indicate the type of abend codes to be intercepted.

�� DFHSRT TYPE= SYSTEM , ABCODE= (codes)

USER

NO

,

RECOVER=

YES

 ��

SYSTEM

The abend code is an operating system abend code corresponding to an MVS

Sxxx abend code. The abend code must be three hexadecimal digits (xxx)

representing the MVS system abend code Sxxx.

USER

The abend code is a user (including CICS) abend code corresponding to an

MVS Unnnn abend code. The abend code must be a decimal number (nnnn)

representing the user part of the MVS abend code Unnnn. This is usually the

same number as the CICS message that is issued before CICS tries to terminate

abnormally (see CICS Messages and Codes).

ABCODE=(codes)

ABCODE includes the abend code (or codes) to be intercepted. If you specify a

single abend code, parentheses are not required. To specify multiple abend

codes, separate the codes with commas.

RECOVER

Specifies whether codes are to be added or removed from the SRT. Code YES

to add the specified codes to the SRT. Code NO to remove the specified codes

from the SRT.

CICS intercepts the following abend codes automatically and tries to recover:

001,002,013,020,025,026,030,032,033,034,035,

036,037,03A,03B,03D,0F3,100,113,137,213,214,

237,283,285,313,314,337,400,413,437,513,514,

613,614,637,713,714,737,813,837,913,A13,A14,

B13,B14,B37,D23,D37,E37

Abend code 0F3 covers various machine check conditions. It also covers the

Alternate Processor Retry condition that can occur only when running on a

multiprocessor. CICS-supplied recovery code attempts to recover from

instruction-failure machine checks on the assumption that they are not permanent.

It also attempts to recover from Alternate Processor Retry conditions.

CICS tries to recover from the standard abend codes above if you code the system

recovery table simply as follows. There is no need to list the standard codes

individually.

 DFHSRT TYPE=INITIAL

 DFHSRT TYPE=FINAL

 END

If you want CICS to handle other errors, you can code the SRT as follows:

Chapter 2. Setting up and configuring CICS TCP/IP 47

DFHSRT TYPE=INITIAL

 DFHSRT TYPE=SYSTEM,or USER,

 ABCODE=(user or system codes),

 RECOVER=YES

 DFHSRT TYPE=FINAL

 END

If you do not want CICS to try to recover after one or more of the above standard

abend codes occurs, specify the codes with RECOVER=NO (or without the

RECOVER parameter).

Note: Recovery is attempted only if a user task (not a system task) is in control at

the time the abend occurs.

DFHSRT example

Following is an example of the coding required to generate a SRT:

 DFHSRT TYPE=INITIAL, *

 SUFFIX=K1

 DFHSRT TYPE=SYSTEM, *

 ABCODE=777, *

 RECOVER=YES

 DFHSRT TYPE=USER,

 ABCODE=(888,999), *

 RECOVER=YES

 DFHSRT TYPE=USER, *

 ABCODE=020

 DFHSRT TYPE=FINAL

 END

Security considerations

The following transactions should be added to your xCICSTRN RACF® class:

EZAC Configure sockets interface.

EZAO Enable sockets interface.

EZAP Disable socket interface started by the EZAO, STOP, and YES transactions.

CSKL Listener. Also, any user defined transactions that execute EZACIC02.

The EZAC and EZAO transactions are designed to be run with a terminal. If you

want a user to administer the IP CICS sockets configuration then you must grant

the user authorization to the EZAC transaction. If you want a user to manually

start and stop the IP CICS socket interface then you must grant the user

authorization to the EZAO and EZAP transactions . If you want a user to manually

start and stop the listener then you must grant the user authorization to the EZAO

and CSKL (and any user defined transaction defined to execute EZACIC02)

transactions.

For terminal tasks where a user has not signed on, the user ID is the CICS user ID

associated with the terminal and is either:

v The default CICS user ID as specified on the CICS parameter DFLTUSER coded

in the CICS System Initialization Table, SIT.

v A preset security user ID specified on the terminal definition.

The IP CICS socket interface can be started and shutdown by placing EZACIC20 in

the PLT; therefore, an entry must be placed in your PLT RACF class to allow this

action. User ID’s that are used to start the IP CICS socket interface include those

defined with the PLTPIUSR SIT macro should be allowed USE access to the

48 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

resource class where the IP CICS sockets transactions are defined. The CICS region

user ID must also be authorized to be the surrogate of the user ID specified on the

PLTPIUSR parameter.

User ID’s used to manage the starting and stopping of the CICS socket interface

(EZAO), the listener (CSKL or user defined transactions executing EZACIC02) and

user application programs linking to the IP CICS domain name server module,

EZACICxx should at least be granted UPDATE access to the EXITPROGRAM

resource.

There are three WLM Group Name listener configuration options. When these are

specified, the listener registers and deregister the listeners group names with

WLM. The CICS address space user ID requires read access to the

BPX.WLMSERVER profile if that profile is defined and one of the WLM Group

Name configuration options is specified.

For more information about RACF security management in the CICS environment,

see the CICS RACF Security Guide.

TCP/IP services — Modifying data sets

To run CICS TCP/IP, you need to make entries in the hlq.PROFILE.TCPIP

configuration data set.

6

The hlq.PROFILE.TCPIP data set

You define the CICS region to TCP/IP on z/OS in the hlq.PROFILE.TCPIP data set

(described in z/OS Communications Server: IP Configuration Reference and z/OS

Communications Server: IP Configuration Guide). In it, you must provide entries for

the CICS region in the PORT statement, as shown in Figure 38 on page 50.

The format for the PORT statement is:

 port_number TCP CICS_jobname

Write an entry for each port that you want to reserve for an application. Figure 38

on page 50 shows two entries, allocating port number 3000 for SERVA, and port

number 3001 for SERVB. SERVA and SERVB are the job names of our CICS regions.

These two entries reserve port 3000 for exclusive use by SERVA and port 3001 for

exclusive use by SERVB. The listener transactions for SERVA and SERVB should be

bound to ports 3000 and 3001 respectively. Other applications that want to access

TCP/IP on z/OS are prevented from using these ports.

Ports that are not defined in the PORT statement can be used by any application,

including SERVA and SERVB if they need other ports.

6. Note that in this document, the abbreviation hlq stands for high level qualifier. This qualifier is installation dependent.

Chapter 2. Setting up and configuring CICS TCP/IP 49

Two different CICS listeners running on the same host can share a port. See the

discussion on port descriptions in z/OS Communications Server: IP Configuration

Reference for more information about ports.

The hlq.TCPIP.DATA data set

For CICS TCP/IP, you do not have to make any extra entries in hlq.TCPIP.DATA.

However, you need to check the TCPIPJOBNAME parameter that was entered during

TCP/IP Services setup. This parameter is the name of the started procedure used

to start the TCP/IP Services address space.

You need it when you initialize CICS TCP/IP (see Chapter 4, “Managing IP CICS

sockets,” on page 103). In the example below, TCPIPJOBNAME is set to TCPV3. The

default name is TCPIP.

 ;

 ; hlq.PROFILE.TCPIP

 ; ===================

 ;

 ; This is a sample configuration file for the TCPIP address space.

 ; For more information about this file, see "Configuring the TCPIP

 ; Address Space" and "Configuring the Telnet Server" in the

 ; Customization and Administration Manual.

 ; --

 ; Reserve PORTs for the following servers.

 ;

 ; NOTE: A port that is not reserved in this list can be used by

 ; any user. If you have TCP/IP hosts in your network that

 ; reserve ports in the range 1-1023 for privileged

 ; applications, you should reserve them here to prevent users

 ; from using them.

 PORT

 3000 TCP SERVA ; CICS Port for SERVA �1�

 3001 TCP SERVB ; CICS Port for SERVB

Figure 38. Definition of the hlq.TCP/IP profile

;**

; *

; Name of Data Set: hlq.TCPIP.DATA *

; *

; This data, TCPIP.DATA, is used to specify configuration *

; information required by TCP/IP client programs. *

; *

;**

; TCPIPJOBNAME specifies the name of the started procedure which was

; used to start the TCP/IP address space. TCPIP is the default.

;

TCPIPJOBNAME TCPV3

Figure 39. The TCPIPJOBNAME parameter in the hlq.TCPIP.DATA data set

50 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

z/OS UNIX Systems Services — adding a UNIX system services

segment

The user ID associated with the CICS/TS region where z/OS IP CICS Sockets is

used requires a z/OS UNIX System Services segment. See the information in z/OS

Security Server RACF Security Administrator’s Guide about defining groups and

users, user profiles, and the OMVS segment in user profiles for more details about

specifying a segment.

Configuring the CICS TCP/IP environment

The Configuration File contains information about the CICS sockets environment.

The file is organized by two types of objects—CICS instances and listeners within

those instances. The creation of this data set is done in three stages:

1. Create the empty data set using VSAM IDCAMS (Access Method Services).

2. Initialize the data set using the program generated by the EZACICD macro.

The first two steps are described in “JCL for the configuration macro” on page

66.

3. Add to or modify the data set using the configuration transaction EZAC. This

step is described in “Customizing the configuration data set” on page 70.7

Building the configuration data set with EZACICD

The configuration macro (EZACICD) is used to build the configuration data set.

This data set can then be incorporated into CICS using resource definition online

(RDO) and can be modified using the configuration transactions (see

“Configuration transaction (EZAC)” on page 70). The macro is keyword driven; the

TYPE keyword controlling the specific function request. The data set contains one

record for each instance of CICS that it supports, and one record for each listener.

The following is an example of the macros required to create a configuration file

for two instances of the CICS socket interface listeners each:

7. The EZAC transaction is modeled after the CEDA transaction used by CICS Resource Definition Online (RDO).

Chapter 2. Setting up and configuring CICS TCP/IP 51

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

EZACICD TYPE=INITIAL, Start of macro assembly input X

 FILNAME=EZACICDF, DD name for configuration file X

 PRGNAME=EZACICDF Name of batch program to run

 EZACICD TYPE=CICS, CICS record definition X

 APPLID=CICSPROD, APPLID of CICS region not using OTE X

 TCPADDR=TCPIP, Job/Step name for TCP/IP X

 PLTSDI=YES, PLT shutdown method is immediately X

 NTASKS=20, Number of subtasks X

 DPRTY=0, Subtask dispatch priority difference X

 CACHMIN=15, Minimum refresh time for cache X

 CACHMAX=30, Maximum refresh time for cache X

 CACHRES=10, Maximum number of resident resolvers X

 ERRORTD=CSMT, Transient data queue for error msgs X

 TCBLIM=0, Open API TCB Limit X

 OTE=NO, Use Open Transaction Environment X

 TRACE=NO, Trace CICS Sockets X

 APPLDAT=YES, Register Application Data X

 SMSGSUP=NO, STARTED Messages Suppressed? X

 TERMLIM=100 Subtask Termination Limit

 EZACICD TYPE=CICS, CICS record definition X

 APPLID=CICSPRDB, APPLID of CICS region using OTE X

 TCPADDR=TCPIP, Job/Step name for TCP/IP X

 PLTSDI=NO, PLT shutdown method is deferred X

 CACHMIN=15, Minimum refresh time for cache X

 CACHMAX=30, Maximum refresh time for cache X

 CACHRES=10, Maximum number of resident resolvers X

 ERRORTD=CSMT, Transient data queue for error msgs X

 TCBLIM=12, Open API TCB Limit X

 OTE=YES, Use Open Transaction Environment X

 TRACE=NO, Trace CICS Sockets X

 APPLDAT=NO, No Application Data X

 SMSGSUP=NO STARTED Messages Suppressed?

 EZACICD TYPE=LISTENER, Listener record definition X

 FORMAT=STANDARD, Standard Listener X

 APPLID=CICSPROD, Applid of CICS region X

 TRANID=CSKL, Transaction name for Listener X

 PORT=3010, Port number for Listener X

 IMMED=YES, Listener starts up at initialization? X

 BACKLOG=20, Backlog value for Listener X

 NUMSOCK=50, # of sockets supported by Listener X

 MINMSGL=4, Minimum input message length X

 ACCTIME=30, Timeout value for Accept X

 GIVTIME=30, Timeout value for Givesocket X

 REATIME=30, Timeout value for Read X

Figure 40. EZACICFG configuration file (Part 1 of 3)

52 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|

|

|

|

RTYTIME=10, Wait 10 seconds for TCP to come back X

 LAPPLD=YES, Register Application Data X

 TRANTRN=YES, Is TRANUSR=YES conditional? X

 TRANUSR=YES, Translate user data? X

 SECEXIT=EZACICSE, Name of security exit program X

 WLMGN1=WLMGRP01, WLM group name 1 X

 WLMGN2=WLMGRP02, WLM group name 2 X

 WLMGN3=WLMGRP03 WLM group name 3

 EZACICD TYPE=LISTENER, Listener record definition X

 FORMAT=ENHANCED, Enhanced Listener X

 APPLID=CICSPROD, Applid of CICS region X

 TRANID=CSKM, Transaction name for Listener X

 PORT=3011, Port number for Listener X

 IMMED=YES, Listener starts up at initialization? X

 BACKLOG=20, Backlog value for Listener X

 NUMSOCK=50, # of sockets supported by Listener X

 ACCTIME=30, Timeout value for Accept X

 GIVTIME=30, Timeout value for Givesocket X

 REATIME=30, Timeout value for Read X

 RTYTIME=20, Wait 20 seconds for TCP to come back X

 LAPPLD=INHERIT, Inherit interface setting X

 CSTRAN=TRN1, Name of child IPv4 server transaction X

 CSSTTYP=KC, Child server startup type X

 CSDELAY=000000, Child server delay interval X

 MSGLEN=0, Length of input message X

 PEEKDAT=NO, Peek option X

 MSGFORM=ASCII, Output message format X

 SECEXIT=EZACICSE, Name of security exit program X

 WLMGN1=WLMGRP04, WLM group name 1 X

 WLMGN2=WLMGRP05, WLM group name 2 X

 WLMGN3=WLMGRP06 WLM group name 3

 EZACICD TYPE=LISTENER, Listener record definition X

 FORMAT=STANDARD, Standard listener X

 APPLID=CICSPRDB, Applid of CICS region X

 TRANID=CS6L, Transaction name for listener X

 PORT=3012, Port number for listener X

 AF=INET6, Listener Address Family X

 IMMED=YES, Listener starts up at initialization? X

 BACKLOG=20, Backlog value for listener X

 NUMSOCK=50, # of sockets supported by listener X

 MINMSGL=4, Minimum input message length X

 ACCTIME=30, Timeout value for Accept X

 GIVTIME=30, Timeout value for Givesocket X

 REATIME=30, Timeout value for Read X

 RTYTIME=0, Listener will end when TCP ends X

 LAPPLD=NO, No Application Data X

 TRANTRN=YES, Is TRANUSR=YES conditional? X

 TRANUSR=YES, Translate user data? X

 SECEXIT=EZACICSE, Name of security exit program X

 WLMGN1=WLMGRP01, WLM group name 1 X

Figure 40. EZACICFG configuration file (Part 2 of 3)

Chapter 2. Setting up and configuring CICS TCP/IP 53

|
|

|
|

|
|

TYPE parameter

The TYPE parameter controls the function requests. It can have the following

values:

Value Meaning

INITIAL

Initialize the generation environment. This value should be used only once

per generation and it should be in the first invocation of the macro. For

subparameters, see “TYPE=INITIAL.”

CICS Identify a CICS object. This value corresponds to a specific instance of

CICS. Specifying this value creates a configuration record. For

subparameters, see “TYPE=CICS” on page 55.

LISTENER

Identify a listener object. This value creates a listener record. For

subparameters, see “TYPE=LISTENER” on page 59.

FINAL

Indicates the end of the generation. There are no subparameters.

TYPE=INITIAL: When TYPE=INITIAL is specified, the following parameters

apply:

Value Meaning

PRGNAME

The name of the generated initialization program. The default value is

EZACICDF.

 WLMGN2=WLMGRP02, WLM group name 2 X

 WLMGN3=WLMGRP03 WLM group name 3

 EZACICD TYPE=LISTENER, Listener record definition X

 FORMAT=ENHANCED, Enhanced listener X

 APPLID=CICSPRDB, Applid of CICS region X

 TRANID=CS6M, Transaction name for listener X

 PORT=3013, Port number for listener X

 AF=INET6, Listener Address Family X

 IMMED=YES, Listener starts up at initialization? X

 BACKLOG=20, Backlog value for listener X

 NUMSOCK=50, # of sockets supported by listener X

 ACCTIME=30, Timeout value for Accept X

 GIVTIME=30, Timeout value for Givesocket X

 REATIME=30, Timeout value for Read X

 RTYTIME=0, Listener will end when TCP ends X

 LAPPLD=INHERIT, Inherit interface setting X

 CSTRAN=TRN6, Name of IPv6 child server transaction X

 CSSTTYP=KC, Child server startup type X

 CSDELAY=000000, Child server delay interval X

 MSGLEN=0, Length of input message X

 PEEKDAT=NO, Peek option X

 MSGFORM=ASCII, Output message format X

 SECEXIT=EZACICSE, Name of security exit program X

 WLMGN1=WLMGRP04, WLM group name 1 X

 WLMGN2=WLMGRP05, WLM group name 2 X

 WLMGN3=WLMGRP06 WLM group name 3

 EZACICD TYPE=FINAL End of assembly input

Figure 40. EZACICFG configuration file (Part 3 of 3)

54 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|

FILNAME

The DDNAME used for the Configuration File in the execution of the

initialization program. The default value is EZACICDF.

TYPE=CICS: When TYPE=CICS is specified, the following parameters apply:

Value Meaning

APPLDAT

Indicates whether the IP CICS socket interface automatically registers

application data that is unique to IP CICS sockets TCP connections. All

socket-enabled CICS programs are affected. Listener programs are affected

based on the LAPPLD configuration option. See the listener’s LAPPLD

configuration option for information about configuring listeners to register

application data. Possible values for the APPLDAT option are YES and NO;

NO is the default when the APPLDAT parameter is not specified. Specify

the value APPLDAT=YES to automatically apply application data to the

TCP connection when the following socket commands are invoked:

v Before LISTEN or listen()

v Before GIVESOCKET for the IBM listener

v After TAKESOCKET or takesocket()

v After CONNECT or connect()

The IBM listener’s optional security exit can override this setting for each

accepted connection that is to be given to a child server. Overriding the

setting enables application data that is specific to the child server to be

registered against the accepted connections. For more information about

using the security exit to register application data, see Chapter 6,

“Application programming guide,” on page 123 and application data in

z/OS Communications Server: IP Configuration Reference. For more

information about programming applications, see application data in z/OS

Communications Server: IP Configuration Reference. The associated application

data is made available on the Netstat ALL/-A, ALLConn/-a and COnn/-c

reports, in the SMF 119 TCP connection termination records, and through

the network management interface (NMI) on the GetTCPListeners and

GetConnectionDetail poll requests. The Netstat and NMI interfaces support

new filters for selecting sockets based on wildcard comparisons of the

application data. This support can assist in locating application sockets

during problem determination and can aid capacity planning and

accounting applications to correlate TCP/IP SMF resource records with

other applications records. It is the responsibility of the using applications

to document the content, format, and meaning of the associated data.

APPLID

The APPLID of the CICS address space in which this instance of

CICS/sockets is to run. This field is mandatory.

CACHMAX

The maximum refresh time for the Domain Name Server cache in minutes.

This value depends on the stability of your network, that is, the time you

would expect a domain name to have the same Internet address. Higher

values improve performance but increase the risk of getting an incorrect

(expired) address when resolving a name. The value must be greater than

CACHMIN. The default value is 30.

CACHMIN

The minimum refresh time for the Domain Name Server cache in minutes.

This value depends on the stability of your network, that is, the time you

Chapter 2. Setting up and configuring CICS TCP/IP 55

|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

would expect a domain name to have the same Internet address. Higher

values improve performance but increase the risk of getting an incorrect

(expired) address when resolving a name. The value must be less than

CACHMAX. The default value is 15.

CACHRES

The maximum number of concurrent resolvers desired. If the number of

concurrent resolvers is equal to or greater than this value, refresh of cache

records does not happen unless their age is greater than the CACHMAX

value. The default value is 10.

DPRTY

The difference between the dispatching priority of the subtasks and the

attaching CICS task. Use this parameter to balance the CPU demand

between CICS and the socket interface subtasks. Specifying a nonzero

value causes the subtasks to be dispatched at a lower priority than CICS.

Use the default value of 0 unless tuning data indicates that CICS is

CPU-constrained. This value should be specified as 0 or not specified when

OTE=YES is specified because the pool of reusable MVS subtasks is not

needed. If DPRTY is specified as a nonzero value and OTE=YES, DPTRY is

forced to 0.

ERRORTD

The name of a Transient Data destination to which error messages are

written. The default value is CSMT. A check is made when the IP CICS

socket interface is initialized to determine whether the transient data

destination is defined to CICS. If the destination is not defined, the

interface sends its messages to CSMT.

NTASKS

The number of reusable MVS subtasks that are allocated for this execution.

This number should approximate the highest number of concurrent CICS

transactions using the TCP/sockets interface, excluding listeners. The

default value is 20. This value should be specified as 0 or not specifed

when OTE=YES is specified because the pool of reusable MVS subtasks is

not needed. If NTASKS is specified as a nonzero value and OTE=YES,

NTASKS is forced to 0.

OTE The value for OTE is YES or NO (the default). A value of YES causes the

IP CICS sockets task-related user exit to execute using the CICS Open

Transaction Environment.

Note: OTE is supported on CICS/TS V2R2M0 and later. If OTE=YES is

specified on a pre-CICS/TS V2R2M0 system, the IP CICS socket

interface fails initialization.

When OTE=YES is specified, CICS/TS switches all EZASOKET calls and

all IP CICS C socket functions from the QR TCB to an L8 TCB. IP CICS

sockets applications must be coded using threadsafe programming

practices as defined by CICS, and must be defined to CICS as threadsafe.

A value of NO causes IP CICS sockets to continue executing EZASOKET

calls on an MVS subtask managed by the IP CICS sockets interface. If

OTE=YES, the values of NTASKS, DPRTY and TERMLIM are forced to 0 (if

specified).

 Table 4 on page 57 shows the relationships between the configuration

options affected by OTE.

56 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 4. Configuration options affected by OTE

OTE TCBLIM NTASKS DPRTY TERMLIM

YES 0 then

v No IP CICS sockets

applications are subject

to TCBLIM

v IP CICS sockets

applications are subject

to MAXOPENTCBS

If specified,

forced to 0

If specified,

forced to 0

If specified,

forced to 0

YES TCBLIM= MAXOPENTCBS

As MAXOPENTCBS takes

precedence over TCBLIM,

IP CICS sockets

applications are suspended

by CICS/TS.

If specified,

forced to 0

If specified,

forced to 0

If specified,

forced to 0

YES 1-MAXOPENTCBS If specified,

forced to 0

If specified,

forced to 0

If specified,

forced to 0

Not numeric, then MNOTE

12

NO 0 Using MVS

subtasks

Using MVS

subtasks

Using MVS

subtasks

NO 1-MAXOPENTCBS, forced

to 0

Using MVS

subtasks

Using MVS

subtasks

Using MVS

subtasks

If neither YES or

NO, then

MNOTE 12

PLTSDI

The IP CICS sockets program load table (PLT) shutdown immediate

configuration option. When IP CICS sockets is being shutdown using the

EZACIC20 PLT program, then the PLTSDI parameter specifies whether the

interface should shutdown immediately. The values are NO and YES. The

default, if not specified, is NO. The value NO specifies a deferred

shutdown. The value YES specifies an immediate shutdown. If the PLTSDI

parameter is not specified then a deferred shutdown is performed. A

deferred shutdown enables all IP CICS sockets tasks to end gracefully. An

immediate shutdown directs all IP CICS sockets tasks to be immediately

terminated.

SMSGSUP

The value for SMSGSUP is either YES or NO (the default). A value of YES

causes messages EZY1318E, EZY1325I, and EZY1330I to be suppressed. A

value of NO allows these messages to be issued. If OTE=YES and when

SMSGSUP is specified as YES then no TCB switch from the open API TCB

to the QR TCB occurs for the above messages.

 For detailed information on CICS sockets messages, see Appendix D,

“CICS sockets messages,” on page 417.

TCBLIM

Specifies the maximum number of open API (L8) TCBs that can be used by

the IP CICS socket interface to support socket calls, which, in turn, limits

the maximum number of concurrently supported socket calls.

Chapter 2. Setting up and configuring CICS TCP/IP 57

|
|
|
|
|
|
|
|
|
|
|

Note: TCBLIM is supported on CICS/TS V2R2M0 and later. If OTE=YES is

specified on a pre-CICS/TS V2R2M0 system then the IP CICS socket

interface fails initialization.

The CICS MAXOPENTCBS system initialization parameter controls the

total number of open API, L8, TCBs that the CICS region can have in

operation at any one time. It is relevant when CICS is connected to DB2

Version 6 or later, when open API TCBs are used to run threads into DB2,

and when open API TCBs are used to support sockets extended calls into

TCP/IP. In the open transaction environment, TCBLIM controls how many

open API TCB’s can be used by the IP CICS sockets task-related user exit

to support socket calls into TCP/IP. The listener is not subjected to this

limitation; however, it is subject to MAXOPENTCBS. This allows listeners

to be started prohibiting a possible denial of service. If MAXOPENTCBS is

reached then no more open API TCBs are available in the CICS region and

the IP CICS sockets task-related user exit cannot obtain an open TCB for its

use. The default value for TCBLIM is 0. If this value is set to zero and

OTE=YES, then the IP CICS socket interface uses the entire open API (L8)

pool. This value should be set high enough to accommodate the number of

concurrently active child server tasks and the number of concurrently

active outbound clients. TCBLIM can be set from 0 to the value specified

by CICS’s MAXOPENTCBS. If OTE=NO and TCBLIM>0, TCBLIM is forced

to 0.

 A check is made when the IP CICS socket interface is initialized to

determine if TCBLIM>MAXOPENTCBS. If so then TCBLIM is dynamically

set to the value specified by MAXOPENTCBS and message EZY1355I is

issued and the interface continues to initialize. Use the EZAC configuration

transaction to update the configuration to reflect this change or adjust the

offending TYPE=CICS,TCBLIM entry in your configuration macro.

 Use the EZAO Operator transaction to inquire on the current IP CICS

socket interface levels and also to dynamically alter the value specified by

TCBLIM. When TCBLIM is reached, message EZY1356E is issued. Message

EZY1360I is issued once the TCBLIM condition is relieved. See Table 4 on

page 57 for more information.

TCPADDR

The name of the z/OS Communication Server TCP/IP address space.

TERMLIM

During a quiescent termination of the CICS sockets interface, the

termination program posts unused reusable subtasks (see NTASKS) for

termination. TERMLIM specifies the maximum number of these posts that

can be issued in a single second. Too low of a TERMLIM value can cause

termination to take a long time to complete. Too high of a TERMLIM value

can cause the CICS region to ABEND due to storage shortage. The default

is 100. A value of 0 causes the default value of 100 to be used. This value

should be specified as zero or not specified when OTE=YES is specified as

the pool of reusable MVS subtasks are not needed. If TERMLIM is

specified as a nonzero value and OTE=YES, TERMLIM is forced to zero.

TRACE

The value for TRACE is either YES (the default) or NO. A value of NO will

direct the TRUE and the listener to not generate CICS AP trace records

even if CICS trace is active. The value of YES will direct the TRUE and the

listener to generate CICS AP trace records which also requires that CICS

Trace be active. Trace records are generated only if CICS tracing is active

and TRACE=YES. See the CICS Transaction Server for z/OS CICS Supplied

58 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Transactions publication for guidance on enabling and disabling the CICS

trace. See the CICS Transaction Server for z/OS CICS Operations and Utilities

Guide for guidance printing the CICS trace. Use the

EZAO,START|STOP,TRAce to dynamically enable or disable tracing.

Suppressing the generation of trace records after IP CICS sockets

application programs are tested and debugged or for normal operations

can improve performance.

TYPE=LISTENER: When TYPE=LISTENER is specified the following parameters

apply:

ACCTIME

The time in seconds this listener waits for a connection request before

checking for a CICS/sockets shutdown or CICS shutdown. The default

value is 60. A value of 0 results in the listener continuously checking for a

connection request without waiting. Setting this to a high value reduces the

resources used to support the listener on a lightly loaded system and

consequently lengthens shutdown processing. Conversely, setting this to a

low value increases resources used to support the listener but facilitate

shutdown processing.

AF Determines if the listener being defined supports IPv6 partners and be able

to give an IPv6 socket descriptor to an IPv6 child server program. YES

indicates that the listener gives an IPv6 socket to the child server program.

NO, the default, indicates that the listener gives an IPv4 socket to the child

server program. You must ensure that the child server program performing

the TAKESOCKET command must match the domain of the socket being

given by the listener.

APPLID

The APPLID value of the CICS object for which this listener is being

defined. If this is omitted, the APPLID from the previous TYPE=CICS

macro is used.

BACKLOG

The number of unaccepted connections that can be queued to this listener.

The default value is 20.

Note: The BACKLOG value specified on the LISTEN call cannot be greater

than the value configured by the SOMAXCONN statement in the

stack’s TCP/IP profile (default=10); no error is returned if a greater

BACKLOG value is requested. If you want a larger backlog, update

the SOMAXCONN statement. See z/OS Communications Server: IP

Configuration Reference for details.

CSDELAY

This parameter is specific to the enhanced version of the listener and is

applicable only if CSSTTYPE is IC. It specifies the delay interval to be used

on the EXEC CICS START command, in the form hhmmss

(hours/minutes/seconds).

CSSTTYPE

This parameter is specific to the enhanced version of the listener and

specifies the default start method for the child server task. This can be

overridden by the security/transaction exit. Possible values are IC, KC, and

TD.

IC Indicates that the child server task is started using EXEC CICS

START with the value specified by CSDELAY (or an overriding

value from the security/transaction exit) as the delay interval.

Chapter 2. Setting up and configuring CICS TCP/IP 59

|
|
|
|
|
|

KC Indicates that the child server task is started using EXEC CICS

START with no delay interval. This is the default.

TD Indicates that the child server task is started using the EXEC CICS

WRITEQ TD command, which uses transient data to trigger the

child server task. If OTE=YES, the listener incurs a TCB switch

from an open API TCB to the QR TCB when starting the specified

child server transaction.

CSTRANID

This parameter is specific to the enhanced version of the listener and

specifies the default child server transaction that the listener starts. This

can be overridden by the security/transaction exit. The child server

transaction is verified to be defined to CICS and enabled when the listener

is started by the EZAO Operator transaction.

FORMAT

The default value of STANDARD indicates that this is the original CICS

listener that requires the client to send the standard header. The value of

ENHANCED indicates that this is the enhanced CICS listener that does not

expect the standard header from the client.

GETTID

The GETTID parameter is provided for the CICS listener that

communicates with clients using SSL/TLS (Secure Socket Layer/Transport

Layer Security) services available with the Application Transparent

Transport Layer Security (AT-TLS) function provided by the TCP/IP stack.

Specifically, it allows the listener to receive the user ID that is associated in

the system’s security product (such as RACF), with the connecting client’s

SSL certificate. This allows the listener to pass this user ID to the security

exit where it can be accepted or overridden.

 The GETTID values have the following meaning for the listener:

NO The listener does not request the client’s certificate or user ID. This

is the default action for GETTID.

YES The listener accepts the connection and asks for the client’s

certificate and user ID if available. If available, the address and the

length of the client’s certificate are sent to the security exit

COMMAREA (if the security exit is specified) to signify that the

client’s certificate exists along with any received user ID. This

allows the security exit to examine the contents. If the user ID is

not extracted (either the client certificate does not exist or the client

certificate does not contain a user ID), the security exit

COMMAREA USERID field contains binary zeros.

 GETTID values of YES should only be specified if the following is

true:

v AT-TLS is currently enabled by the TCP/IP stack with the TTLS

parameter specified on the TCPCONFIG TCP/IP profile

statement.

v AT-TLS policy is in effect for connections processed by this

listener, and the TTLSEnvironmentAction or

TTLSConnectionAction statement associated with the listener

must specify the HandshakeRole as ServerWithClientAuth. The

level of client authentication for a connection is determined by

the TTLSEnvironmentAdvancedParms statement ClientAuthType

parameter.

60 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

If GETTID is YES then the listener attempts to obtain that user ID.

If a user ID is successfully obtained and the start type is task

control (KC) or interval control (IC), the listener uses that to

initialize the user ID of the child server. The security exit can

override it. If there is no security exit or the security exit chooses

not to override it, that is the user ID of the child server task unless

the start type is transient data (TD).

Note: The user ID under which the listener executes must have

CICS RACF surrogate authority to any user ID that it uses

to initialize the child server. See the CICS RACF Security

Guide for details.

 See Application Transparent Transport Layer Security (AT-TLS)

topic of the z/OS Communications Server: IP Configuration Guide for

more information.

GIVTIME

The time in seconds this listener waits for a response to a GIVESOCKET. If

this time expires, the listener assumes that either the server transaction did

not start or the TAKESOCKET failed. At this time, the listener sends the

client a message indicating the server failed to start and close the socket

(connection). If this parameter is not specified, the ACCTIME value is used.

IMMED

Specify YES or NO. YES indicates this listener is to be started when the

interface starts. No indicates this listener is to be started independently

using the EZAO transaction. The default is YES.

LAPPLD

This optional configuration option indicates whether the IP CICS socket

interface automatically registers IP CICS sockets-unique application data

for the listener’s connection being defined. Both the IBM listener and user

written listeners are affected. When defined for the IBM listener then it

additionally registers application data against the accepted connections to

be given to a child server. Only the listener being defined is affected. The

possible values for LAPPLD are YES, NO, or INHERIT (the default). If the

LAPPLD option is not specified or specified as INHERIT, then the option

inherits the value specified by the APPLDAT configuration option.

Alternatively, when LAPPLD is specified as YES or NO, then the option

overrides the value specified by the APPLDAT configuration option. When

the value of LAPPLD=NO is specified or it inherits the APPLDAT=NO

specification, then no application data is automatically registered for the

listener being defined. When LAPPLD=YES or it inherits the

APPLDAT=YES specification then application data is automatically

registered against a socket when the following socket commands are

successfully invoked:

v Before LISTEN or listen()

v Before GIVESOCKET for the IBM listener

v After TAKESOCKET or takesocket()

v After CONNECT or connect()

The IBM listener’s optional security exit can override this setting for each

accepted connection that is to be given to a child server. Overriding the

setting enables application data that is specific to the child server to be

registered against the accepted connections to be given. For more

information about programming applications, see Chapter 6, “Application

Chapter 2. Setting up and configuring CICS TCP/IP 61

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|

programming guide,” on page 123 and application data in z/OS

Communications Server: IP Configuration Reference. For more information

about programming applications, see application data in z/OS

Communications Server: IP Configuration Reference. The associated application

data is made available on the Netstat ALL/-A, ALLConn/-a and COnn/-c

reports, in the SMF 119 TCP connection termination records and through

the network management interface (NMI) on the GetTCPListeners and

GetConnectionDetail poll requests. The Netstat and NMI interfaces support

new filters for selecting sockets based on wildcard comparisons of the

application data. This support can assist in locating application sockets

during problem determination and can aid capacity planning and

accounting applications to correlate TCP/IP SMF resource records with

other applications records. It is the responsibility of the using applications

to document the content, format, and meaning of the associated data.

 Result: Listener configurations defined before V1R9 is set to the value NO.

MINMSGL

This parameter is specific to the standard version of the listener. The

minimum length of the Transaction Initial Message from the client to the

listener. The default value is 4. The listener continues to read on the

connection until this length of data has been received. FASTRD handles

blocking.

MSGFORM

This parameter is specific to the enhanced version of the listener and

indicates whether an error message returned to the client should be in

ASCII or EBCDIC. ASCII is the default. MSGFORM is displayed as

MSGFORMat on the EZAC screens.

MSGLEN

This parameter is specific to the enhanced version of the listener and

specifies the length of the data to be received from the client. The valid

range is 0 to 999. If the value is 0, the listener does not read in any data

from the client.

NUMSOCK

The number of sockets supported by this listener. One socket is the

listening socket. The others are used to pass connections to the servers

using the GIVESOCKET call so, in effect, one less than this number is the

maximum number of concurrent GIVESOCKET requests that can be active.

The default value is 50.

 The number of CICS transactions must be less than what is specified on

the MAXFILEPROC parameter on the BPXPRMxx parmlib member. For

more detail on setting the MAXFILEPROC parameter, see z/OS UNIX

System Services Planning.

PEEKDAT

This parameter is specific to the enhanced version of the listener and

applies only if MSGLEN is not 0. A value of NO indicates that the listener

performs a normal read of the client data. The child server application

accesses this data in the data area-2 portion of the transaction input

message (TIM). A value of YES indicates that the listener reads the data

using the peek option; the data remains queued in TCP/IP and the child

server applications actually read it in rather than accessing it through the

TIM.

PORT The port number this listener uses for accepting connections. This

62 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

parameter is mandatory. The ports can be shared. See z/OS Communications

Server: IP Configuration Reference for more information on port sharing.

REATIME

The time in seconds this listener waits for a response to a RECV request. If

this time expires, the listener assumes that the client has failed and

terminates the connection by closing the socket. If this parameter is not

specified, checking for read timeout is not performed.

RTYTIME

This optional configuration option specifies the length of time, in seconds,

that the listener waits after a TCP/IP stack outage occurs before it attempts

to connect or reconnect. The value 0 specifies that the listener cleans up

any resources and then the listener ends. A value greater than 0 and less

than 15 results in a RTYTIME value of 15 seconds; the listener task is

delayed 15 seconds before it attempts to connect or reconnect. The stack

that it tries to connect to is the stack specified by the listener's IP CICS

socket interface TCPADDR configuration option. If the connection fails,

then the listener task is delayed for the length of time specified by the

RTYTIME parameter. After this interval lapses, the listener attempts to

connect to its stack. The listener continues to attempt to connect to the

stack until either it succeeds or is terminated by the operator. Valid values

are in the range 0 - 999. The default setting is 15 seconds. Table 5 shows a

summary of the listener's action based on the combination of the RTYTIME

value and the state of the listener's TCP stack.

 Table 5. Listener’s action based on RTYTIME and stack state

Listener RTYTIME TCP down TCP up

Initially started 0 Listener ends Listener initializes

>0 Listener waits

Previously active 0 Listener ends

>0 Listener waits

SECEXIT

The name of the user written security exit used by this listener. The default

is no security exit. The listener uses the EXEC CICS LINK command to

give control to the security exit. If OTE=YES then it should be expected

that the security exit program is defined to CICS as threadsafe, implying it

is coded to threadsafe standards. A flag which indicates that the IP CICS

socket interface is using CICS’s Open Transaction Environment is passed to

the security exit. This flag enables the security exit to decide which child

server transaction to use and if it should possibly limit its use of

non-threadsafe resources or commands. See “Writing your own

security/transaction link module for the listener” on page 143 for a

thorough discussion on the data passed to the exit. See “Threadsafe

considerations for IP CICS sockets applications” on page 148 for more

information about coding threadsafe programs. A check is made to ensure

the specified security exit program is defined to CICS and enabled for use

when the listener is started by the EZAO Operator transaction.

TRANID

The transaction name for this listener. The default is CSKL.

TRANTRN

This parameter is specific to the standard version of the listener. Specify

YES or NO. YES indicates that the translation of the user data is based on

Chapter 2. Setting up and configuring CICS TCP/IP 63

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

||||

||||

||

|||

||
|

|

the character format of the transaction code. That is, with YES specified for

TRANTRN, the user data is translated if and only if TRANUSR is YES and

the transaction code is not uppercase EBCDIC. If NO specified for

TRANTRN, the user data is translated if and only if TRANUSR is YES. The

default value for TRANTRN is YES. See Table 6 for more information.

Note: Regardless of how TRANTRN is specified, translation of the

transaction code occurs if and only if the first character is not

uppercase EBCDIC.

TRANUSR

This parameter is specific to the standard version of the listener. Specify

YES or NO. NO indicates that the user data from the Transaction Initial

Message should not be translated from ASCII to EBCDIC. YES indicates

that the user data can be translated depending on TRANTRN and whether

the transaction code is uppercase EBCDIC. The default value for

TRANUSR is YES. See Table 6 for more information.

Note: Previous implementations functioned as if TRANTRN and

TRANUSR were both set to YES. Normally, data on the Internet is

ASCII and should be translated. The exceptions are data coming

from an EBCDIC client or binary data in the user fields. In those

cases, you should set these values accordingly. If you are operating

in a mixed environment, use of multiple listeners on multiple ports

is recommended.

Table 6 shows how the listener handles translation with different

combinations of TRANTRN, TRANSUSR, and character format of the

transaction code.

 Table 6. Conditions for translation of tranid and user data

TRANTRN TRANUSR Tranid format

Translate

tranid?

Translate user

data?

YES YES EBCDIC NO NO

YES NO EBCDIC NO NO

NO YES EBCDIC NO YES

NO NO EBCDIC NO NO

YES YES ASCII YES YES

YES NO ASCII YES NO

NO YES ASCII YES YES

NO NO ASCII YES NO

USERID

The 8-character user ID under which the listener runs. If this parameter is

not specified, then the listener task obtains the user ID from either the

CICS PLT user ID (if the listener is started via the CICS PLT) or the ID of

the user that invoked the EZAO transaction (if the listener is started using

the EZAO transaction). If this parameter is specified, then any user that

starts the listener (the PLT user if the listener is started using the PLT)

must have surrogate security access to this user ID. This user ID has to be

permitted to any resources the listener accesses such as child server

transactions and programs. See the CICS RACF Security Guide for details.

 The value specified for the user ID's FILEPROCMAX parameter should be

configured appropriately. If the number of sockets that the listener creates

64 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|

exceeds FILEPROCMAX value on the listener's user ID, then the listener

stops accepting new sockets until the number of active sockets is equal to

or less than the FILEPROCMAX value. For more information about the

FILEPROCMAX specification, see the documentation provided for the SAF

product in use on your system. If you are using RACF, see z/OS Security

Server RACF Security Administrator’s Guide..

WLMGN1

The group name this listener uses to participate in workload connection

balancing. The group name is used to register the CICS listener with

Workload Manager (WLM) so that a BIND-based Domain Name System

(DNS) can be used to balance requests across multiple MVS hosts in a

sysplex. DNS/WLM continues to support CICS listeners desiring to

participate in work load balancing for IPv4 clients. IPv6-enabled listeners

can participate in work load balancing for their IPv4 and IPv6 clients.

Note: BIND4 does not support IPv6; therefore, this option does not

provide IPv6 balancing.

IPv6 clients should use unique hostnames and you should enable DNS

entries to allow unique host names to exist in different DNS zones. This

enables an IPv6 client to get an AAAA address to use when connecting to

an IPv6 enabled listener. IPv6 enabled clients wanting to participate in

work load balancing should continue to get the IPv4 address of the

participating listener from the DNS/WLM server and then convert the

IPv4 address to an IPv4-mapped IPv6 address. Use this address to connect

to the IPv6 enabled listener. Note that this is not a true IPv6 connection as

DNS/WLM does not give an IPv6 address. Clients that want to connect to

the server over an IPv6 network should use an IPv6 address.

 The group name can be 1 – 12 characters in length. The name is padded to

the right with blanks to meet the 18-character name requirement by the

Workload Manager.

 The default is no registration.

 When a you specify a group name, the listener registers and deregisters the

listeners group names with WLM. The CICS address space user ID requires

read access to the BPX.WLMSERVER profile if that profile is defined and

one of the WLM group name configuration options is specified.

 See z/OS Communications Server: IP Configuration Reference for information

about connection balancing and BIND-based DNS.

 Tip: The automated domain name registration (ADNR) application cannot

provide WLM-based load balancing; however, you can configure it to

provide round-robin connection balancing as supported by the BIND 9

name server. See the information in z/OS Communications Server: IP

Configuration Guide for more about load balancing using an external load

balancer and one or more load balancing agents. See automated domain

name registration information in z/OS Communications Server: IP

Configuration Guide for more details about dynamically updating name

servers with information about sysplex resources in near real time.

WLMGN2

See WLMGN1 for information.

WLMGN3

See WLMGN1 for information.

Chapter 2. Setting up and configuring CICS TCP/IP 65

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

JCL for the configuration macro

The configuration macro is used as part of a job stream to create and initialize the

configuration file. The job stream consists of IDCAMS steps to create the file, the

assembly of the initialization module generated by the configuration macro, linking

of the initialization module, and execution of the initialization module that

initializes the file.

Figure 41 on page 67 illustrates a job stream used to define a configuration file. See

hlq.SEZAINST(EZACICFG) for a sample job stream.

66 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

//**//

//* THE FOLLOWING JOB DEFINES AND THEN LOADS THE VSAM *//

//* FILE USED FOR CICS/TCP CONFIGURATION. THE JOBSTREAM *//

//* CONSISTS OF THE FOLLOWING STEPS. *//

//* 1). DELETE A CONFIGURATION FILE IF ONE EXISTS *//

//* 2). DEFINE THE CONFIGURATION FILE TO VSAM *//

//* 3). ASSEMBLE THE INITIALIZATION PROGRAM *//

//* 4). LINK THE INITIALIZATION PROGRAM *//

//* 5). EXECUTE THE INITIALIZATION PROGRAM TO LOAD THE *//

//* FILE *//

//**//

//CONFIG JOB MSGLEVEL=(1,1)

//*

//* THIS STEP DELETES AN OLD COPY OF THE FILE

//* IF ONE IS THERE.

//*

//DEL EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DELETE -

 CICS.TCP.CONFIG -

 PURGE -

 ERASE

//*

//* THIS STEP DEFINES THE NEW FILE

//*

//DEFILE EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DEFINE CLUSTER (NAME(CICS.TCP.CONFIG) VOLUMES(CICSVOL) -

 CYL(1 1) -

 IMBED -

 RECORDSIZE(150 150) FREESPACE(0 15) -

 INDEXED -

 SHAREOPTIONS(2,3)) -

 DATA (-

 NAME(CICS.TCP.CONFIG.DATA) -

 KEYS (16 0)) -

 INDEX (-

 NAME(CICS.TCP.CONFIG.INDEX))

/*

//*

//* THIS STEP ASSEMBLES THE INITIALIZATION PROGRAM

//*

//PRGDEF EXEC PGM=ASMA90,PARM=’OBJECT,TERM’,REGION=1024K

//SYSLIB DD DISP=SHR,DSNAME=SYS1.MACLIB

// DD DISP=SHR,DSNAME=TCPIP.SEZACMAC

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSPUNCH DD DISP=SHR,DSNAME=NULLFILE

//SYSLIN DD DSNAME=&&OBJSET,DISP=(MOD,PASS),UNIT=SYSDA,

// SPACE=(400,(500,50)),

// DCB=(RECFM=FB,BLKSIZE=400,LRECL=80)

//SYSTERM DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

Figure 41. Example of JCL to define a configuration file (Part 1 of 4)

Chapter 2. Setting up and configuring CICS TCP/IP 67

EZACICD TYPE=INITIAL, Start of macro assembly input X

 FILNAME=EZACICDF, DD name for configuration file X

 PRGNAME=EZACICDF Name of batch program to run

 EZACICD TYPE=CICS, CICS record definition X

 APPLID=CICSPROD, APPLID of CICS region not using OTE X

 TCPADDR=TCPIP, Job/Step name for TCP/IP X

 NTASKS=20, Number of subtasks X

 DPRTY=0, Subtask dispatch priority difference X

 CACHMIN=15, Minimum refresh time for cache X

 CACHMAX=30, Maximum refresh time for cache X

 CACHRES=10, Maximum number of resident resolvers X

 ERRORTD=CSMT, Transient data queue for error msgs X

 TCBLIM=0, Open API TCB Limit X

 OTE=NO, Open Transaction Environment X

 TRACE=NO, No CICS Trace records X

 SMSGSUP=NO STARTED Messages Suppressed?

 EZACICD TYPE=CICS, CICS record definition X

 APPLID=CICSPRDB, APPLID of CICS region using OTE X

 TCPADDR=TCPIP, Job/Step name for TCP/IP X

 CACHMIN=15, Minimum refresh time for cache X

 CACHMAX=30, Maximum refresh time for cache X

 CACHRES=10, Maximum number of resident resolvers X

 ERRORTD=CSMT, Transient data queue for error msgs X

 TCBLIM=12, Open API TCB Limit X

 OTE=YES, Open Transaction Environment X

 TRACE=NO, No CICS Trace records X

 SMSGSUP=NO STARTED Messages Suppressed?

 EZACICD TYPE=LISTENER macro, Listener record definition X

 FORMAT=STANDARD, Standard listener X

 APPLID=CICSPROD, Applid of CICS region X

 TRANID=CSKL, Transaction name for listener X

 PORT=3010, Port number for listener X

 IMMED=YES, Listener starts up at initialization? X

 BACKLOG=20, Backlog value for listener X

 NUMSOCK=50, # of sockets supported by listener X

 MINMSGL=4, Minimum input message length X

 ACCTIME=30, Timeout value for Accept X

 GIVTIME=30, Timeout value for Givesocket X

 REATIME=30, Timeout value for Read X

 TRANTRN=YES, Is TRANUSR=YES conditional? X

 TRANUSR=YES, Translate user data? X

 SECEXIT=EZACICSE, Name of security exit program X

 WLMGN1=WLMGRP01, WLM group name 1 X

 WLMGN2=WLMGRP02, WLM group name 2 X

 WLMGN3=WLMGRP03 WLM group name 3

 EZACICD TYPE=LISTENER macro, Listener record definition X

 FORMAT=ENHANCED, Enhanced listener X

 APPLID=CICSPROD, Applid of CICS region X

 TRANID=CSKM, Transaction name for listener X

 PORT=3011, Port number for listener X

 IMMED=YES, Listener starts up at initialization? X

 BACKLOG=20, Backlog value for listener X

 NUMSOCK=50, # of sockets supported by listener X

 ACCTIME=30, Timeout value for Accept X

 GIVTIME=30, Timeout value for Givesocket X

 REATIME=30, Timeout value for Read X

 CSTRAN=TRN1, Name of child IPv4 server transaction X

 CSSTTYP=KC, Child server startup type X

 CSDELAY=000000, Child server delay interval X

 MSGLEN=0, Length of input message X

Figure 41. Example of JCL to define a configuration file (Part 2 of 4)

68 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

PEEKDAT=NO, Peek option X

 MSGFORM=ASCII, Output message format X

 SECEXIT=EZACICSE, Name of security exit program X

 WLMGN1=WLMGRP04, WLM group name 1 X

 WLMGN2=WLMGRP05, WLM group name 2 X

 WLMGN3=WLMGRP06 WLM group name 3

 EZACICD TYPE=LISTENER macro, Listener record definition X

 FORMAT=STANDARD, Standard listener X

 APPLID=CICSPRDB, Applid of CICS region X

 TRANID=CS6L, Transaction name for listener X

 PORT=3012, Port number for listener X

 AF=INET6, Listener Address Family X

 IMMED=YES, Listener starts up at initialization? X

 BACKLOG=20, Backlog value for listener X

 NUMSOCK=50, # of sockets supported by listener X

 MINMSGL=4, Minimum input message length X

 ACCTIME=30, Timeout value for Accept X

 GIVTIME=30, Timeout value for Givesocket X

 REATIME=30, Timeout value for Read X

 TRANTRN=YES, Is TRANUSR=YES conditional? X

 TRANUSR=YES, Translate user data? X

 SECEXIT=EZACICSE, Name of security exit program X

 WLMGN1=WLMGRP01, WLM group name 1 X

 WLMGN2=WLMGRP02, WLM group name 2 X

 WLMGN3=WLMGRP03 WLM group name 3

 EZACICD TYPE=LISTENER, Listener record definition X

 FORMAT=ENHANCED, Enhanced listener X

 APPLID=CICSPRDB, Applid of CICS region X

 TRANID=CS6M, Transaction name for listener X

 PORT=3013, Port number for listener X

 AF=INET6, Listener Address Family X

 IMMED=YES, Listener starts up at initialization? X

 BACKLOG=20, Backlog value for listener X

 NUMSOCK=50, # of sockets supported by listener X

 ACCTIME=30, Timeout value for Accept X

 GIVTIME=30, Timeout value for Givesocket X

 REATIME=30, Timeout value for Read X

 CSTRAN=TRN6, Name of child IPv6 server transaction X

 CSSTTYP=KC, Child server startup type X

 CSDELAY=000000, Child server delay interval X

 MSGLEN=0, Length of input message X

 PEEKDAT=NO, Peek option X

 MSGFORM=ASCII, Output message format X

 SECEXIT=EZACICSE, Name of security exit program X

 WLMGN1=WLMGRP04, WLM group name 1 X

 WLMGN2=WLMGRP05, WLM group name 2 X

 WLMGN3=WLMGRP06 WLM group name 3

 EZACICD TYPE=FINAL End of assembly input

Figure 41. Example of JCL to define a configuration file (Part 3 of 4)

Chapter 2. Setting up and configuring CICS TCP/IP 69

Customizing the configuration data set

There is a CICS object for each CICS that uses the TCP/IP socket interface and is

controlled by the configuration file. The CICS object is identified by the APPLID of

the CICS it references.

There is a listener object for each listener defined for a CICS. It is possible that a

CICS does not have a listener, but this is not common practice. A CICS can have

multiple listeners that are either multiple instances of the supplied listener with

different specifications, multiple user-written listeners, or some combination.

Configuration transaction (EZAC)

The EZAC transaction is a panel-driven interface that lets you add, delete, or

modify the configuration file. The following table lists and describes the functions

supported by the EZAC transaction.

Modifying data sets: You can use the EZAC transaction to modify the

configuration data set while CICS is running.

/*

//*

//* THIS STEP LINKS THE INITIALIZATION PROGRAM

//*

//LINK EXEC PGM=IEWL,PARM=’LIST,MAP,XREF’,

// REGION=512K,COND=(4,LT)

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD SPACE=(CYL,(5,1)),DISP=(NEW,PASS),UNIT=SYSDA

//SYSLMOD DD DSNAME=&&LOADSET(EZACICDF),DISP=(MOD,PASS),UNIT=SYSDA,

// SPACE=(TRK,(1,1,1)),

// DCB=(DSORG=PO,RECFM=U,BLKSIZE=32760)

//SYSLIN DD DSNAME=&&OBJSET,DISP=(MOD,PASS)

 NAME EZACICDF(R)

//*

//* THIS STEP EXECUTES THE INITIALIZATION PROGRAM

//*

//FILELOAD EXEC PGM=EZACICDF,COND=(4,LT)

//STEPLIB DD DSN=&&LOADSET,DISP=(MOD,PASS)

//EZACICDF DD DSNAME=hlq.EZACONFG,DISP=OLD

Figure 41. Example of JCL to define a configuration file (Part 4 of 4)

70 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 7. Functions supported by the EZAC transaction

Command Object Function

ALTER CICS/listener Modifies the attributes of an existing

resource definition

CONVERT Listener Converts listener from the standard listener

that requires the standard header to the

enhanced listener that does not require the

header.

COPY CICS/listener v CICS - Copies the CICS object and its

associated listeners to create another

CICS object. COPY fails if the new CICS

object already exists.

v Listener - Copies the listener object to

create another listener object. COPY fails

if the new listener object already exists.

DEFINE CICS/listener Creates a new resource definition

DELETE CICS/listener v CICS - Deletes the CICS object and all of

its associated listeners.

v Listener - Deletes the listener object.

DISPLAY CICS/listener Shows the parameters specified for the

CICS/listener object.

RENAME CICS/listener Performs a COPY followed by a DELETE of

the original object.

If you enter EZAC, the following screen is displayed:

ALTER function: The ALTER function is used to change CICS objects or their

listener objects. If you specify ALter on the EZAC Initial Screen or enter

EZAC,ALT on a blank screen, the following screen is displayed:

 EZAC, APPLID =

 Enter One of the Following

 ALTer

 CONvert

 COPy

 DEFine

 DELete

 DISplay

 REName

 PF 3 END 12 CNCL

Figure 42. EZAC initial screen

Chapter 2. Setting up and configuring CICS TCP/IP 71

Note: You can skip this screen by entering either EZAC,ALTER,CICS or

EZAC,ALTER,LISTENER.

ALTER,CICS: For alteration of a CICS object, the following screen is displayed:

After the APPLID is entered, the following screen is displayed:

 EZAC,ALTer, APPLID =

 Enter One of the Following

 CICS

 LISTENER

 PF 3 END 12 CNCL

Figure 43. EZAC,ALTER screen

 EZAC,ALTer,CICS APPLID =

 Enter all fields

 APPLID ===> APPLID of CICS System

 PF 3 END 12 CNCL

Figure 44. EZAC,ALTER,CICS screen

72 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

The system requests a confirmation of the values displayed. After the changes are

confirmed, the changed values are in effect for the next initialization of the CICS

sockets interface.

ALTER,LISTENER: For alteration of a listener, the following screen is displayed:

If you are altering a standard listener, the first screen shows the attributes of the

standard listener:

 EZAC,ALTer,CICS APPLID =

 Overtype to Enter

 APPLID ===> APPLID of CICS System

 TCPADDR ===> Name of TCP Address Space

 NTASKS ===> ... Number of Reusable Tasks

 DPRTY ===> ... DPRTY Value for ATTACH

 CACHMIN ===> ... Minimum Refresh Time for Cache

 CACHMAX ===> ... Maximum Refresh Time for Cache

 CACHRES ===> ... Maximum Number of Resolvers

 ERRORTD ===> TD Queue for Error Messages

 SMSGSUP ===> ... Suppress Task Started Messages

 TERMLIM ===> ... Subtask Termination Limit

 TRACE ===> ... Trace CICS Sockets

 OTE ===> ... Open Transaction Environment

 TCBLIM ===> Number of open API TCBs

 PLTSDI ===> ... CICS PLT Shutdown Immediate

 APPLDAT ===> ... Register Application Data

 Press ENTER or PF3 to exit

 PF 3 END 12 CNCL

Figure 45. EZAC,ALTER,CICS detail screen

 EZAC,ALTer,LISTENER APPLID =

 Enter all fields

 APPLID ===> APPLID of CICS System

 TRANID ===> Transaction Name of listener

 PF 3 END 12 CNCL

Figure 46. EZAC,ALTER,LISTENER screen

Chapter 2. Setting up and configuring CICS TCP/IP 73

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Pressing PF8 displays the screen used to manage the unique attributes of the

standard listener

 Pressing PF7 displays the screen used to manage the common attributes of the

standard listener.

If altering an enhanced listener, then the first screen shows the attributes of the

enhanced listener.

 EZAC,ALTer,LISTENER (standard listener. screen 1 of 2) APPLID =

 Overtype to Enter

 APPLID ===> APPLID of CICS System

 TRANID ===> Transaction Name of listener

 PORT ===> Port Number of listener

 AF ===> Listener Address Family

 IMMEDIATE ===> ... Immediate Startup Yes|No

 BACKLOG ===> ... Backlog Value for listener

 NUMSOCK ===> ... Number of Sockets in listener

 ACCTIME ===> ... Timeout Value for ACCEPT

 GIVTIME ===> ... Timeout Value for GIVESOCKET

 REATIME ===> ... Timeout Value for READ

 RTYTIME ===> ... Stack Connection Retry Time

 LAPPLD ===> ... Register Application Data

 Verify parameters, press PF8 to go to screen 2

 or ENTER if finished making changes

 PF 3 END 8 NEXT 12 CNCL

Figure 47. EZAC,ALTER,LISTENER detail screen 1- Standard listener

 EZAC,ALTer,LISTENER (standard listener. screen 2 of 2) APPLID =

 Overtype to Enter

 MINMSGL ===> ... Minimum Message Length

 TRANTRN ===> ... Translate TRNID Yes|No

 TRANUSR ===> ... Translate User Data Yes|No

 SECEXIT ===> Name of Security Exit

 GETTID ===> ... Get TTLS ID (YES|NO)

 USERID ===> Listeners User ID

 WLM group 1 ===> Workload Manager Group Name 1

 WLM group 2 ===> Workload Manager Group Name 2

 WLM group 3 ===> Workload Manager Group Name 3

 Verify parameters, press PF7 to go back to screen 1

 or ENTER if finished making changes

 PF 3 END 7 PREV 12 CNCL

Figure 48. EZAC,ALTER,LISTENER detail screen 2- Standard listener

74 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Pressing PF8 displays the screen used to manage the unique attributes of the

enhanced listener.

 Pressing PF7 displays the screen used to manage the common attributes of the

enhanced listener.

The system requests a confirmation of the values displayed. After the changes are

confirmed, the changed values is in effect for the next initialization of the CICS

sockets interface.

CONVERT function: The CONVERT function is used to convert between

standard and enhanced versions of the listener. If you specify CONvert on the

EZAC Initial Screen or enter EZAC,CON on a blank screen, the following screen is

 EZAC,ALTer,LISTENER (enhanced listener. screen 1 of 2) APPLID =

 Overtype to Enter

 APPLID ===> APPLID of CICS System

 TRANID ===> Transaction Name of listener

 PORT ===> Port Number of listener

 AF ===> Listener Address Family

 IMMEDIATE ===> ... Immediate Startup Yes|No

 BACKLOG ===> ... Backlog Value for listener

 NUMSOCK ===> ... Number of Sockets in listener

 ACCTIME ===> ... Timeout Value for ACCEPT

 GIVTIME ===> ... Timeout Value for GIVESOCKET

 REATIME ===> ... Timeout Value for READ

 RTYTIME ===> ... Stack Connection Retry Time

 LAPPLD ===> ... Register Application Data

 Verify parameters, press PF8 to go to screen 2

 PF 3 END 8 NEXT 12 CNCL

Figure 49. EZAC,ALTER,LISTENER detail screen 1- Enhanced listener

 EZAC,ALTer,LISTENER (enhanced listener. screen 2 of 2) APPLID =

 Overtype to Enter

 CSTRANid ===> Child Server Transaction Name

 CSSTTYPe ===> .. Startup Method (KC|IC|TD)

 CSDELAY ===> Delay Interval (hhmmss)

 MSGLENgth ===> ... Message Length (0-999)

 PEEKDATa ===> ... Enter Y|N

 MSGFORMat ===> Enter ASCII|EBCDIC

 USEREXIT ===> Name of User/Security exit

 GETTID ===> ... Get TTLS ID (YES|NO)

 USERID ===> Listeners User ID

 WLM group 1 ===> Workload Manager Group Name 1

 WLM group 2 ===> Workload Manager Group Name 2

 WLM group 3 ===> Workload Manager Group Name 3

 Verify parameters, press PF7 to go back to screen 1

 or ENTER if finished making changes

 PF 3 END 7 PREV 12 CNCL

Figure 50. EZAC,ALTER,LISTENER detail screen 2- Enhanced listener

Chapter 2. Setting up and configuring CICS TCP/IP 75

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

displayed:

 After the names and format type are entered, one of the following two screens is

displayed. The first screen is displayed for the standard version:

If converting to a standard listener, then the first screen shows the attributes of the

standard listener.

 Pressing PF8 displays the screen used to manage the unique attributes of the

standard listener.

 EZAC,CONvert,LISTENER APPLID =

 Enter all fields

 APPLID ===> APPLID of CICS System

 TRANID ===> Transaction Name of listener

 Format ===> STANDARD Enter STANDARD|ENHANCED

 PF 3 END 12 CNCL

Figure 51. EZAC,CONVERT,LISTENER screen

 EZAC,CONvert,LISTENER (standard listener. screen 1 of 2) APPLID =

 Overtype to Enter

 APPLID ===> APPLID of CICS System

 TRANID ===> Transaction Name of listener

 PORT ===> Port Number of listener

 AF ===> Listener Address Family

 IMMEDIATE ===> ... Immediate Startup Yes|No

 BACKLOG ===> ... Backlog Value for listener

 NUMSOCK ===> ... Number of Sockets in listener

 ACCTIME ===> ... Timeout Value for ACCEPT

 GIVTIME ===> ... Timeout Value for GIVESOCKET

 REATIME ===> ... Timeout Value for READ

 RTYTIME ===> ... Stack Connection Retry Time

 LAPPLD ===> ... Register Application Data

 Verify parameters, press PF8 to go to screen 2

 PF 3 END 8 NEXT 12 CNCL

Figure 52. EZAC,CONVERT,LISTENER detail screen 1- Standard listener

76 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Pressing PF7 displays the screen used to manage the common attributes of the

standard listener.

If converting to an enhanced listener, the first screen shows the attributes of the

enhanced listener.

 Pressing PF8 displays the screen used to manage the unique attributes of the

enhanced listener

 EZAC,CONvert,LISTENER (standard listener. screen 2 of 2) APPLID =

 Overtype to Enter

 MINMSGL ===> ... Minimum Message Length

 TRANTRN ===> ... Translate TRNID Yes|No

 TRANUSR ===> ... Translate User Data Yes|No

 SECEXIT ===> Name of Security Exit

 GETTID ===> ... Get TTLS ID (YES|NO)

 USERID ===> Listeners User ID

 WLM group 1 ===> Workload Manager Group Name 1

 WLM group 2 ===> Workload Manager Group Name 2

 WLM group 3 ===> Workload Manager Group Name 3

 Verify parameters, press PF7 to go back to screen 1

 or ENTER if finished making changes

 PF 3 END 7 PREV 12 CNCL

Figure 53. EZAC,CONVERT,LISTENER detail screen 2- Standard listener

 EZAC,CONvert,LISTENER (enhanced listener. screen 1 of 2) APPLID =

 Overtype to Enter

 APPLID ===> APPLID of CICS System

 TRANID ===> Transaction Name of listener

 PORT ===> Port Number of listener

 AF ===> Listener Address Family

 IMMEDIATE ===> ... Immediate Startup Yes|No

 BACKLOG ===> ... Backlog Value for listener

 NUMSOCK ===> ... Number of Sockets in listener

 ACCTIME ===> ... Timeout Value for ACCEPT

 GIVTIME ===> ... Timeout Value for GIVESOCKET

 REATIME ===> ... Timeout Value for READ

 RTYTIME ===> ... Stack Connection Retry Time

 LAPPLD ===> ... Register Application Data

 Verify parameters, press PF8 to go to screen 2

 PF 3 END 8 NEXT 12 CNCL

Figure 54. EZAC,CONVERT,LISTENER detail screen 1- Enhanced listener

Chapter 2. Setting up and configuring CICS TCP/IP 77

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Pressing PF7 displays the screen used to manage the common attributes of the

enhanced listener.

The system requests a confirmation of the values displayed. After the changes are

confirmed, the changed values are in effect for the next initialization of the CICS

sockets interface.

COPY function: The COPY function is used to copy an object into a new object. If

you specify COPy on the EZAC Initial Screen or enter EZAC,COP on a blank

screen, the following screen is displayed:

Note: You can skip this screen by entering either EZAC,COPY,CICS or

EZAC,COPY,LISTENER.

 EZAC,CONvert,LISTENER (enhanced listener. screen 2 of 2) APPLID =

 Overtype to Enter

 CSTRANid ===> Child Server Transaction Name

 CSSTTYPe ===> .. Startup Method (KC|IC|TD)

 CSDELAY ===> Delay Interval (hhmmss)

 MSGLENgth ===> ... Message Length (0-999)

 PEEKDATa ===> ... Enter Y|N

 MSGFORMat ===> Enter ASCII|EBCDIC

 USEREXIT ===> Name of User/Security exit

 GETTID ===> ... Get TTLS ID (YES|NO)

 USERID ===> Listeners User ID

 WLM group 1 ===> Workload Manager Group Name 1

 WLM group 2 ===> Workload Manager Group Name 2

 WLM group 3 ===> Workload Manager Group Name 3

 Verify parameters, press PF7 to go back to screen 1

 or ENTER if finished making changes

 PF 3 END 7 PREV 12 CNCL

Figure 55. EZAC,CONVERT,LISTENER detail screen 2- Enhanced listener

 EZAC,COPy, APPLID =

 Enter One of the Following

 CICS

 LISTENER

 PF 3 END 12 CNCL

Figure 56. EZAC,COPY screen

78 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

COPY,CICS: If you specify CICS on the previous screen, the following screen is

displayed:

After the APPLIDs of the source CICS object and the target CICS object are

entered, confirmation is requested. When confirmation is entered, the copy is

performed.

COPY,LISTENER: If you specify COPY,LISTENER, the following screen is

displayed:

 After the APPLIDs of the source and target CICS objects and the names of the

source and target listeners are entered, confirmation is requested. When the

confirmation is entered, the copy is performed.

 EZAC,COPy,CICS APPLID =

 Enter all fields

 SCICS ===> APPLID of Source CICS

 TCICS ===> APPLID of Target CICS

 PF 3 END 12 CNCL

Figure 57. EZAC,COPY,CICS screen

 EZAC,COPy,LISTENER APPLID =

 Enter all fields

 SCICS ===> APPLID of Source CICS

 SLISTENER ===> Name of Source listener

 TCICS ===> APPLID of Target CICS

 TLISTENER ===> Name of Target listener

 PF 3 END 12 CNCL

Figure 58. EZAC,COPY,LISTENER screen

Chapter 2. Setting up and configuring CICS TCP/IP 79

DEFINE function: The DEFINE function is used to create CICS objects and their

listener objects. If you specify DEFine on the EZAC Initial Screen or enter

EZAC,DEF on a blank screen, the following screen is displayed:

Note: You can skip this screen by entering either EZAC,DEFINE,CICS or

EZAC,DEFINE,LISTENER.

DEFINE,CICS: For definition of a CICS object, the following screen is displayed:

After the APPLID is entered, the following screen is displayed.

 EZAC,DEFine, APPLID =

 Enter One of the Following

 CICS

 LISTENER

 PF 3 END 12 CNCL

Figure 59. EZAC,DEFINE screen

 EZAC,DEFine,CICS APPLID =

 Enter all fields

 APPLID ===> APPLID of CICS System

 PF 3 END 12 CNCL

Figure 60. EZAC,DEFINE,CICS screen

80 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

After the definition is entered, confirmation is requested. When confirmation is

entered, the object is created on the configuration file.

DEFINE,LISTENER: For definition of a listener, the following screen is displayed:

If defining a standard listener, the first screen shows the attributes of the standard

listener.

 EZAC,DEFine,CICS APPLID =

 Overtype to Enter

 APPLID ===> APPLID of CICS System

 TCPADDR ===> Name of TCP Address Space

 NTASKS ===> ... Number of Reusable Tasks

 DPRTY ===> ... DPRTY Value for ATTACH

 CACHMIN ===> ... Minimum Refresh Time for Cache

 CACHMAX ===> ... Maximum Refresh Time for Cache

 CACHRES ===> ... Maximum Number of Resolvers

 ERRORTD ===> TD Queue for Error Messages

 SMSGSUP ===> ... Suppress Task Started Messages

 TERMLIM ===> ... Subtask Termination Limit

 TRACE ===> ... Trace CICS Sockets

 OTE ===> ... Open Transaction Environment

 TCBLIM ===> Number of open API TCBs

 PLTSDI ===> ... CICS PLT Shutdown Immediate

 APPLDAT ===> ... Register Application Data

 Press ENTER or PF3 to exit

 PF 3 END 12 CNCL

Figure 61. EZAC,DEFINE,CICS detail screen

 EZAC,DEFine,LISTENER APPLID =

 Enter all fields

 APPLID ===> APPLID of CICS System

 TRANID ===> Transaction Name of listener

 Format ===> Enter STANDARD|ENHANCED

 PF 3 END 12 CNCL

Figure 62. EZAC,DEFINE,LISTENER screen

Chapter 2. Setting up and configuring CICS TCP/IP 81

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Pressing PF8 displays the screen used to manage the unique attributes of the

standard listener.

 Pressing PF7 displays the screen used to manage the common attributes of the

standard listener.

If defining an enhanced listener, the first screen shows the attributes of the

enhanced listener.

 EZAC,DEFine,LISTENER (standard listener. screen 1 of 2) APPLID =

 Overtype to Enter

 APPLID ===> APPLID of CICS System

 TRANID ===> Transaction Name of listener

 PORT ===> Port Number of listener

 AF ===> Listener Address Family

 IMMEDIATE ===> ... Immediate Startup Yes|No

 BACKLOG ===> ... Backlog Value for listener

 NUMSOCK ===> ... Number of Sockets in listener

 ACCTIME ===> ... Timeout Value for ACCEPT

 GIVTIME ===> ... Timeout Value for GIVESOCKET

 REATIME ===> ... Timeout Value for READ

 RTYTIME ===> ... Stack Connection Retry Time

 LAPPLD ===> ... Register Application Data

 Verify parameters, press PF8 to go to screen 2

 PF 3 END 8 NEXT 12 CNCL

Figure 63. EZAC,DEFINE,LISTENER detail screen 1- Standard listener

 EZAC,DEFine,LISTENER (standard listener. screen 2 of 2) APPLID =

 Overtype to Enter

 MINMSGL ===> ... Minimum Message Length

 TRANTRN ===> ... Translate TRNID Yes|No

 TRANUSR ===> ... Translate User Data Yes|No

 SECEXIT ===> Name of Security Exit

 GETTID ===> ... Get TTLS ID (YES|NO)

 USERID ===> Listeners User ID

 WLM group 1 ===> Workload Manager Group Name 1

 WLM group 2 ===> Workload Manager Group Name 2

 WLM group 3 ===> Workload Manager Group Name 3

 Verify parameters, press PF7 to go back to screen 1

 or ENTER if finished making changes

 PF 3 END 7 PREV 12 CNCL

Figure 64. EZAC,DEFINE,LISTENER detail screen 2- Standard listener

82 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Pressing PF8 displays the screen used to manage the unique attributes of the

enhanced listener

 Pressing PF7 displays the screen used to manage the common attributes of the

enhanced listener.

After the definition is entered, confirmation is requested. When confirmation is

entered, the object is created on the configuration file.

DELETE function: The DELETE function is used to delete a CICS object or a

listener object. Deleting a CICS object deletes all listener objects within that CICS

object. If you specify DELete on the EZAC initial screen or enter EZAC,DEL on a

 EZAC,DEFine,LISTENER (enhanced listener. screen 1 of 2) APPLID =

 Overtype to Enter

 APPLID ===> APPLID of CICS System

 TRANID ===> Transaction Name of listener

 PORT ===> Port Number of listener

 AF ===> Listener Address Family

 IMMEDIATE ===> ... Immediate Startup Yes|No

 BACKLOG ===> ... Backlog Value for listener

 NUMSOCK ===> ... Number of Sockets in listener

 ACCTIME ===> ... Timeout Value for ACCEPT

 GIVTIME ===> ... Timeout Value for GIVESOCKET

 REATIME ===> ... Timeout Value for READ

 RTYTIME ===> ... Stack Connection Retry Time

 LAPPLD ===> ... Register Application Data

 Verify parameters, press PF8 to go to screen 2

 PF 3 END 8 NEXT 12 CNCL

Figure 65. EZAC,DEFINE,LISTENER detail screen 1- Enhanced listener

 EZAC,DEFine,LISTENER (enhanced listener. screen 2 of 2) APPLID =

 Overtype to Enter

 CSTRANid ===> Child Server Transaction Name

 CSSTTYPe ===> .. Startup Method (KC|IC|TD)

 CSDELAY ===> Delay Interval (hhmmss)

 MSGLENgth ===> ... Message Length (0-999)

 PEEKDATa ===> ... Enter Y|N

 MSGFORMat ===> Enter ASCII|EBCDIC

 USEREXIT ===> Name of User/Security exit

 GETTID ===> ... Get TTLS ID (YES|NO)

 USERID ===> Listeners User ID

 WLM group 1 ===> Workload Manager Group Name 1

 WLM group 2 ===> Workload Manager Group Name 2

 WLM group 3 ===> Workload Manager Group Name 3

Verify parameters, press PF7 to go back to screen 1

 or ENTER if finished making changes

 PF 3 END 7 PREV 12 CNCL

Figure 66. EZAC,DEFINE,LISTENER detail screen 2- Enhanced listener

Chapter 2. Setting up and configuring CICS TCP/IP 83

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

blank screen, the following screen is displayed:

DELETE,CICS: If you specify DELETE,CICS, the following screen is displayed:

 After the APPLID is entered, confirmation is requested. When the confirmation is

entered, the CICS object is deleted.

DELETE,LISTENER: If you specify DELETE,LISTENER, the following screen is

displayed:

 EZAC,DELete, APPLID =

 Enter One of the Following

 CICS

 LISTENER

 PF 3 END 12 CNCL

Figure 67. EZAC,DELETE screen

 EZAC,DELete,CICS APPLID =

 Enter all fields

 APPLID ===> APPLID of CICS System

 PF 3 END 12 CNCL

Figure 68. EZAC,DELETE,CICS screen

84 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

After the APPLID and listener name are entered, confirmation is requested. When

confirmation is entered, the listener object is deleted

DISPLAY function: The DISPLAY function is used to display the specification of

an object. If you specify DISplay on the initial EZAC screen or enter EZAC,DIS on

a blank screen, the following screen is displayed:

Note: You can skip this screen by entering either EZAC,DISPLAY,CICS or

EZAC,DISPLAY,LISTENER.

DISPLAY,CICS: If you specify DISPLAY,CICS, the following screen is displayed:

 EZAC,DELete,LISTENER APPLID =

 Enter all fields

 APPLID ===> APPLID of CICS System

 TRANID ===> Transaction Name of listener

 PF 3 END 12 CNCL

Figure 69. EZAC,DELETE,LISTENER screen

 EZAC,DISplay, APPLID =

 Enter One of the Following

 CICS

 LISTENER

 PF 3 END 12 CNCL

Figure 70. EZAC,DISPLAY screen

Chapter 2. Setting up and configuring CICS TCP/IP 85

After the APPLID is entered, the following screen is displayed:

DISPLAY,LISTENER: If you specify DISPLAY,LISTENER, the following screen is

displayed:

 EZAC,DISplay,CICS APPLID =

 Enter all fields

 APPLID ===> APPLID of CICS System

 PF 3 END 12 CNCL

Figure 71. EZAC,DISPLAY,CICS screen

 EZAC,DISplay,CICS APPLID =

 APPLID ===> APPLID of CICS System

 TCPADDR ===> Name of TCP Address Space

 NTASKS ===> ... Number of Reusable Tasks

 DPRTY ===> ... DPRTY Value for ATTACH

 CACHMIN ===> ... Minimum Refresh Time for Cache

 CACHMAX ===> ... Maximum Refresh Time for Cache

 CACHRES ===> ... Maximum Number of Resolvers

 ERRORTD ===> TD Queue for Error Messages

 SMSGSUP ===> ... Suppress Task Started Messages

 TERMLIM ===> ... Subtask Termination Limit

 TRACE ===> ... Trace CICS Sockets

 OTE ===> ... Open Transaction Environment

 TCBLIM ===> Number of open API TCBs

 PLTSDI ===> ... CICS PLT Shutdown Immediate

 APPLDAT ===> ... Register Application Data

 Press ENTER or PF3 to exit

 PF 3 END 12 CNCL

Figure 72. EZAC,DISPLAY,CICS detail screen

86 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

If displaying a standard listener, the first screen shows the attributes of the

standard listener.

 Pressing PF8 displays the screen used to manage the unique attributes of the

standard listener.

 EZAC,DISplay,LISTENER APPLID =

 Enter all fields

 APPLID ===> APPLID of CICS System

 TRANID ===> Transaction Name of listener

 PF 3 END 12 CNCL

Figure 73. EZAC,DISPLAY,LISTENER screen

 EZAC,DISplay,LISTENER (standard listener. screen 1 of 2) APPLID =

 APPLID ===> APPLID of CICS System

 TRANID ===> Transaction Name of listener

 PORT ===> Port Number of listener

 AF ===> Listener Address Family

 IMMEDIATE ===> ... Immediate Startup Yes|No

 BACKLOG ===> ... Backlog Value for listener

 NUMSOCK ===> ... Number of Sockets in listener

 ACCTIME ===> ... Timeout Value for ACCEPT

 GIVTIME ===> ... Timeout Value for GIVESOCKET

 REATIME ===> ... Timeout Value for READ

 RTYTIME ===> ... Stack Connection Retry Time

 LAPPLD ===> ... Register Application Data

 Verify parameters, press PF8 to go to screen 2

 PF 3 END 8 NEXT 12 CNCL

Figure 74. EZAC,DISPLAY,LISTENER detail screen 1- Standard listener

Chapter 2. Setting up and configuring CICS TCP/IP 87

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Pressing PF7 displays the screen used to manage the common attributes of the

standard listener.

If displaying an enhanced listener, the first screen shows the attributes of the

enhanced listener.

 Pressing PF8 displays the screen used to manage the unique attributes of the

enhanced listener.

 EZAC,DISplay,LISTENER (standard listener. screen 2 of 2) APPLID =

 MINMSGL ===> ... Minimum Message Length

 TRANTRN ===> ... Translate TRNID Yes|No

 TRANUSR ===> ... Translate User Data Yes|No

 SECEXIT ===> Name of Security Exit

 GETTID ===> ... Get TTLS ID (YES|NO)

 USERID ===> Listeners User ID

 WLM group 1 ===> Workload Manager Group Name 1

 WLM group 2 ===> Workload Manager Group Name 2

 WLM group 3 ===> Workload Manager Group Name 3

 Verify parameters, press PF7 to go back to screen 1

 Press ENTER or PF3 to exit

 PF 3 END 7 PREV 12 CNCL

Figure 75. EZAC,DISPLAY,LISTENER detail screen 2- Standard listener

 EZAC,DISplay,LISTENER (enhanced listener. screen 1 of 2) APPLID =

 APPLID ===> APPLID of CICS System

 TRANID ===> Transaction Name of listener

 PORT ===> Port Number of listener

 AF ===> Listener Address Family

 IMMEDIATE ===> ... Immediate Startup Yes|No

 BACKLOG ===> ... Backlog Value for listener

 NUMSOCK ===> ... Number of Sockets in listener

 ACCTIME ===> ... Timeout Value for ACCEPT

 GIVTIME ===> ... Timeout Value for GIVESOCKET

 REATIME ===> ... Timeout Value for READ

 RTYTIME ===> ... Stack Connection Retry Time

 LAPPLD ===> ... Register Application Data

 Verify parameters, press PF8 to go to screen 2

 PF 3 END 8 NEXT 12 CNCL

Figure 76. EZAC,DISPLAY,LISTENER detail screen 1- Enhanced listener

88 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RENAME function: The RENAME function is used to rename a CICS or listener

object. It consists of a COPY followed by a DELETE of the source object. For a

CICS object, the object and all of its associated listeners are renamed. For a listener

object, only that listener is renamed.

If you specify REName on the initial EZAC screen or enter EZAC,REN on a blank

screen, the following screen is displayed:

Note: You can skip this screen by entering either EZAC,RENAME,CICS or

EZAC,RENAME,LISTENER.

 EZAC,DISplay,LISTENER (enhanced listener. screen 2 of 2) APPLID =

 CSTRANid ===> Child Server Transaction Name

 CSSTTYPe ===> .. Startup Method (KC|IC|TD)

 CSDELAY ===> Delay Interval (hhmmss)

 MSGLENgth ===> ... Message Length (0-999)

 PEEKDATa ===> ... Enter Y|N

 MSGFORMat ===> Enter ASCII|EBCDIC

 USEREXIT ===> Name of User/Security exit

 GETTID ===> ... Get TTLS ID (YES|NO)

 USERID ===> Listeners User ID

 WLM group 1 ===> Workload Manager Group Name 1

 WLM group 2 ===> Workload Manager Group Name 2

 WLM group 3 ===> Workload Manager Group Name 3

Verify parameters, press PF7 to go back to screen 1

 Press ENTER or PF3 to exit

 PF 3 END 7 PREV 12 CNCL

Figure 77. EZAC,DISPLAY,LISTENER detail screen 2- Enhanced listener

 EZAC,REName, APPLID =

 Enter One of the Following

 CICS

 LISTENER

 PF 3 END 12 CNCL

Figure 78. EZAC,RENAME screen

Chapter 2. Setting up and configuring CICS TCP/IP 89

RENAME,CICS: If you specify CICS on the previous screen, the following screen

is displayed:

After the APPLIDs of the source CICS object and the target CICS object are

entered, confirmation is requested. When confirmation is entered, the rename is

performed.

RENAME,LISTENER: If you specify RENAME,LISTENER, the following screen is

displayed:

 After the APPLIDs of the source and target CICS objects and the names of the

source and target listeners are entered, confirmation is requested. When the

confirmation is entered, the rename is performed.

 EZAC,REName,CICS APPLID =

 Enter all fields

 SCICS ===> APPLID of Source CICS

 TCICS ===> APPLID of Target CICS

 PF 3 END 12 CNCL

Figure 79. EZAC,RENAME,CICS screen

 EZAC,REName,LISTENER APPLID =

 Enter all fields

 SCICS ===> APPLID of Source CICS

 SLISTENER ===> Name of Source listener

 TCICS ===> APPLID of Target CICS

 TLISTENER ===> Name of Target listener

 PF 3 END 12 CNCL

Figure 80. EZAC,RENAME,LISTENER screen

90 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

UNIX Systems Services environment effects on IP CICS sockets

The UNIX Systems Services provides controls on the number of sockets that can be

opened concurrently by a single process (in a CICS region). You can use this to

limit the number of socket descriptors that a process can have, thereby limiting the

amount of CICS and system resources a single process can use at one time.

Two specifications affect this limit:

v The MAXFILEPROC parameter of the BPXPRMxx parmlib member, which

specifies a default limit for any process in the system

v FILEPROCMAX specification in the OMVS segment of the SAF profile for the

CICS region’s userid, which overrides the default; NOFILEPROCMAX can also

be specified, which removes this limit

For more information on how MAXFILEPROC affects tuning applications, see z/OS

UNIX System Services Planning. The z/OS configuration tool, called Managed

System Infrastructure (msys), contains additional information about the impacts of

the UNIX MAXFILEPROC parameter settings.

For more information about the FILEPROCMAX specification, see the

documentation provided for the SAF product in use on your system. If using

RACF, this can be found in the z/OS Security Server RACF Security Administrator’s

Guide

Chapter 2. Setting up and configuring CICS TCP/IP 91

92 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Chapter 3. Configuring the CICS Domain Name System cache

The Domain Name System (DNS) is like a telephone book that contains a person’s

name, address, and telephone number. The name server maps a host name to an IP

address, or an IP address to a host name. For each host, the name server can

contain IP addresses, nicknames, mailing information, and available well-known

services (for example, SMTP, FTP, or Telnet).

Translating host names into IP addresses is just one way of using the DNS. Other

types of information related to hosts can also be stored and queried. The different

possible types of information are defined through input data to the name server in

the resource records.

Although the CICS DNS cache function is optional, it is useful in a highly active

CICS client environment. It combines the GETHOSTBYNAME() call supported in

CICS sockets and a cache that saves results from the GETHOSTBYNAME() for

future reference. If your system receives repeated requests for the same set of

domain names, using the DNS improves performance significantly. Your threadsafe

program is switched to the QR TCB if you have specified that IP CICS sockets

should use the Open Transaction Environment and you link to the Domain Name

Service module, EZACIC25. Instead of using this service module to resolve a host

name to an address, consider using a caching-only BIND 9 name server on a local

system.

If the server intends to use WLM connection balancing, the client should not cache

DNS names. Connection balancing relies on up-to-date information about the

current capacity of hosts in the sysplex. If DNS names are retrieved from a cache

instead of the DNS/WLM name server, connections are made without regard for

current host capacity, This degrades the effectiveness of connection balancing.

Choosing not to cache names can mean more IP traffic, which in some cases can

outweigh the benefits of connection balancing.

See z/OS Communications Server: IP Configuration Reference for information about

caching issues.

Recommendations for CICS DNS Caching and DNS/WLM support: The

following recommendations apply when configuring CICS DNS Caching:

v DNS Caching does not support the caching of IPv6 addresses as the

gethostbyname() function is not IPv6 enabled.

v If you require improved performance for Domain Name Server lookups for both

IPv4 and IPv6 resources, consider configuring a caching-only BIND 9 name

server on the local system. This has the following benefits:

– After a hostname is resolved, it is cached locally, allowing all other

applications running in the system to retrieve this information without

incurring the overhead of network communications.

– A caching domain name server honors the time to live (TTL) value that

indicates when a resource record’s information should expire.

– BIND 9 supports caching of both IPv4 and IPv6 resources.
v DNS Caching continues to support the caching of an IPv4 address. You can also

start using a DNS BIND 9 caching-only server for both IPv4 and IPv6 name

resolution. In this case, IPv6 clients should use unique hostnames and you

© Copyright IBM Corp. 1994, 2007 93

should enable DNS entries to allow unique host names to exist in different DNS

zones. This enables an IPv6 client to get an AAAA address to use when

connecting to an IPv6 enabled listener.

v DNS/WLM continues to support CICS listeners wanting to participate in work

load balancing. IPv6 enabled listeners are still able to participate in work load

balancing for their IPv4 clients and IPv6 clients.

v DNS/WLM is not possible when using IPv6 addresses because DNS/WLM is

supported only on the BIND 4.9.3 server, and BIND 4.9.3 does not support

AAAA records.

v The IPv6 client is not able to get an IPv6 address back from DNS/WLM for the

IPv6 listener to which they are trying to connect. The IP address from

DNS/WLM must be turned into an IPv4-mapped IPv6 address for the IPv6

enabled listener.

v If you want to support IPv6 clients and DNS/WLM (for IPv4 clients), set up a

caching-only BIND 9 name server to support both IPv4 and IPv6 addresses and

keep your BIND 4.9.3 name server in the sysplex for DNS/WLM support. Have

your IPv6-enabled client get the IPv4 address from the DNS/WLM server and

then convert the IPv4 address to an IPv4-mapped IPv6 address. Use this address

to connect to the IPv6-enabled listener. This is not a true IPv6 connection

because DNS/WLM do not give an IPv6 address. Clients that want to connect to

the server over an IPv6 network should use an IPv6 address.

Function components

The function consists of three parts.

v A VSAM file which is used for the cache.

Note: The CICS DATATABLE option can be used with the cache.

v A macro, EZACICR, which is used to initialize the cache file.

v A CICS application program, EZACIC25, which is invoked by the CICS

application in place of the GETHOSTBYNAME socket call.

VSAM cache file

The cache file is a VSAM KSDS (Key Sequenced Data Set) with a key of the host

name padded to the right with binary zeros. The cache records contain a

compressed version of the hostent structure returned by the name server plus a

time of last refresh field. When a record is retrieved, EZACIC25 determines if it is

usable based on the difference between the current time and the time of last

refresh.

EZACICR macro

The EZACICR macro builds an initialization module for the cache file, because the

cache file must start with at least one record to permit updates by the EZACIC25

module. To optimize performance, you can preload dummy records for the host

names which you expect to be used frequently. This results in a more compact file

and minimizes the I/O required to use the cache. If you do not specify at least one

dummy record, the macro builds a single record of binary zeros. See “Step 1:

Create the initialization module” on page 96.

EZACIC25 module

This module is a normal CICS application program which is invoked by an EXEC

CICS LINK command. The COMMAREA passes information between the invoking

CICS program and the DNS Module. If domain name resolves successfully,

94 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

EZACIC25 obtains storage from CICS and builds a hostent structure in that

storage. When finished with the hostent structure, release this storage using the

EXEC CICS FREEMAIN command.

The EZACIC25 module uses four configuration parameters plus the information

passed by the invoking application to manage the cache. These configuration

parameters are as follows:

Error destination - ERRORTD

The Transient Data destination to which error messages are sent.

Minimum refresh time - CACHMIN

The minimum time in minutes between refreshes of a cache record. If a

cache record is younger than this time, it is used. This value is set to 15

minutes.

Maximum refresh time - CACHMAX

The maximum time in minutes between refreshes of a cache record. If a

cache record is older than this time, it is refreshed. This value is set to 30

minutes.

Maximum resolver requests - CACHRES

The maximum number of concurrent requests to the resolver. It is set at 10.

See “How the DNS cache handles requests.”

If the transaction program is executing in the Open Transaction Environment,

expect a TCB switch to occur for each call to EZACIC25.

How the DNS cache handles requests

When a request is received where cache retrieval is specified, the following takes

place:

1. Attempt to retrieve this entry from the cache. If unsuccessful, issue the

GETHOSTBYNAME call unless request specifies cache only.

2. If cache retrieval is successful, calculate the age of the record. This is the

difference between the current time and the time this record was created or

refreshed.

v If the age is not greater than minimum cache refresh, use the cache

information and build the Hostent structure for the requestor. Then return to

the requestor.

v If the age is greater than the maximum cache refresh, issue the

GETHOSTBYNAME call and refresh the cache record with the results.

v If the age is between the minimum and maximum cache refresh values, do

the following:

a. Calculate the difference between the maximum and minimum cache

refresh times and divide it by the maximum number of concurrent

resolver requests. The result is called the time increment.

b. Multiply the time increment by the number of currently active resolver

requests. Add this time to the minimum refresh time giving the adjusted

refresh time.

c. If the age of the record is less than the adjusted refresh time, use the

cache record.

d. If the age of the record is greater than the adjusted refresh time, issue the

GETHOSTBYNAME call and refresh the cache record with the results.

Chapter 3. Configuring the CICS Domain Name System cache 95

v If the GETHOSTBYNAME is issued and is successful, the cache is updated

and the update time for the entry is changed to the current time.

Using the DNS cache

There are three steps to using the DNS cache.

1. Create the initialization module, which in turn defines and initializes the file

and the EZACIC25 module. See “Step 1: Create the initialization module.”

2. Define the cache files to CICS. See “Step 2: Define the cache file to CICS” on

page 99.

3. Use EZACIC25 to replace GETHOSTBYNAME calls in CICS application

modules. See “Step 3: Execute EZACIC25” on page 100.

Step 1: Create the initialization module

The initialization module is created using the EZACICR macro. A minimum of two

invocations of the macro are coded and assembled and the assembly produces the

module. An example follows:

 EZACICR TYPE=INITIAL

 EZACICR TYPE=FINAL

This produces an initialization module which creates one record of binary zeros. If

you want to preload the file with dummy records for frequently referenced domain

names, it resembles the following:

 EZACICR TYPE=INITIAL

 EZACICR TYPE=RECORD,NAME=HOSTA

 EZACICR TYPE=RECORD,NAME=HOSTB

 EZACICR TYPE=RECORD,NAME=HOSTC

 EZACICR TYPE=FINAL

where HOSTA, HOSTB, AND HOSTC are the host names you want in the dummy

records. The names can be specified in any order.

The specifications for the EZACICR macro are as follows:

Operand Meaning

TYPE There are three acceptable values:

Value Meaning

INITIAL Indicates the beginning of the generation input.

This value should only appear once and should be

the first entry in the input stream.

RECORD Indicates a dummy record the user wants to

generate. There can be from 0 to 4096 dummy

records generated and each of them must have a

unique name. Generating dummy records for

frequently used host names improves the

performance of the cache file. A TYPE=INITIAL

must precede a TYPE=RECORD statement.

FINAL Indicates the end of the generation input. This

value should only appear once and should be the

last entry in the input stream. A TYPE=INITIAL

must precede a TYPE=FINAL.

AVGREC The length of the average cache record. This value is specified on

96 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

the TYPE=INITIAL macro and has a default value of 500. It is

recommend that you use the default value until you have adequate

statistics to determine a better value. This parameter is the same as

the first subparameter in the RECORDSIZE parameter of the

IDCAMS DEFINE statement. Accurate definition of this parameter

along with use of dummy records minimizes control interval and

control area splits in the cache file.

NAME Specifies the host name for a dummy record. The name must be

from 1 to 255 bytes long. The NAME operand is required for

TYPE=RECORD entries.

The macro can be used in conjunction with IDCAMS to define and load the file.

Figure 81 on page 98 shows a sample job to define and initialize a cache file:

Chapter 3. Configuring the CICS Domain Name System cache 97

//**//

//* THE FOLLOWING JOB DEFINES AND THEN LOADS THE VSAM *//

//* FILE USED FOR THE CACHE. THE DEFINITION CONSISTS OF *//

//* TWO IDCAMS STEPS TO PERFORM THE VSAM DEFINITION *//

//* AND A STEP USING EZACICR TO BUILD THE FILE LOAD *//

//* PROGRAM. THE FINAL STEP EXECUTES THE FILE LOAD *//

//* PROGRAM TO CREATE THE FILE. *//

//**//

//CACHEDEF JOB MSGLEVEL=(1,1)

//*

//* THIS STEP DELETES AN OLD COPY OF THE FILE

//* IF ONE IS THERE.

//*

//DEL EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DELETE -

 CICS.USER.CACHE -

 PURGE -

 ERASE

//*

//* THIS STEP DEFINES THE NEW FILE

//*

//DEFILE EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DEFINE CLUSTER (NAME(CICS.USER.CACHE) VOLUMES(CICVOL) -

 CYL(1 1) -

 IMBED -

 RECORDSIZE(500 1000) FREESPACE(0 15) -

 INDEXED) -

 DATA (-

 NAME(CICS.USER.CACHE.DATA) -

 KEYS (255 0)) -

 INDEX (-

 NAME(CICS.USER.CACHE.INDEX))

/*

//*

//* THIS STEP DEFINES THE FILE LOAD PROGRAM

//*

//PRGDEF EXEC PGM=ASMA90,PARM=’OBJECT,TERM’,REGION=1024K

//SYSLIB DD DISP=SHR,DSNAME=SYS1.MACLIB

// DD DISP=SHR,DSNAME=TCPV34.SEZACMAC

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSPUNCH DD DISP=SHR,DSNAME=NULLFILE

//SYSLIN DD DSNAME=&&OBJSET,DISP=(MOD,PASS),UNIT=SYSDA,

// SPACE=(400,(500,50)),

// DCB=(RECFM=FB,BLKSIZE=400,LRECL=80)

//SYSTERM DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

Figure 81. Example of defining and initializing a DNS cache file (Part 1 of 2)

98 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

After the cache file has been created, it has the following layout:

Field name Description

Host name A 255-byte character field specifying the host name. This field is

the key to the file.

Record type A 1-byte binary field specifying the record type. The value is

X’00000001’.

Last refresh time

An 8-byte packed field specifying the last refresh time. It is

expressed in seconds because 0000 hours on January 1, 1990 and is

derived by taking the ABSTIME value obtained from an EXEC

CICS ASKTIME and subtracting the value for January 1, 1990.

Offset to alias pointer list

A halfword binary field specifying the offset in the record to

DNSALASA.

Number of INET addresses

A halfword binary field specifying the number of INET addresses

in DNSINETA.

INET addresses

One or more fullword binary fields specifying INET addresses

returned from GETHOSTBYNAME().

Alias names An array of variable length character fields specifying the alias

names returned from the name server cache. These fields are

delimited by a byte of binary zeros. Each of these fields have a

maximum length of 255 bytes.

Step 2: Define the cache file to CICS

All CICS definitions required to add this function to a CICS system can be done

using CICS RDO without disruption to the operation of the CICS system.

Use the following parameters with RDO FILE to define the cache file:

RDO keyword Value

File EZACACHE

//SYSIN DD *

 EZACICR TYPE=INITIAL

 EZACICR TYPE=RECORD,NAME=RALVM12

 EZACICR TYPE=FINAL

/*

//LINK EXEC PGM=IEWL,PARM=’LIST,MAP,XREF’,

// REGION=512K,COND=(4,LT)

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD SPACE=(CYL,(5,1)),DISP=(NEW,PASS),UNIT=SYSDA

//SYSLMOD DD DSNAME=&&LOADSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,

// SPACE=(TRK,(1,1,1)),

// DCB=(DSORG=PO,RECFM=U,BLKSIZE=32760)

//SYSLIN DD DSNAME=&&OBJSET,DISP=(OLD,DELETE)

//*

//* THIS STEP EXECUTES THE FILE LOAD PROGRAM

//*

//LOAD EXEC PGM=*.LINK.SYSLMOD,COND=((4,LT,ASM),(4,LT,LINK))

//EZACICRF DD DSN=CICS.USER.CACHE,DISP=OLD

Figure 81. Example of defining and initializing a DNS cache file (Part 2 of 2)

Chapter 3. Configuring the CICS Domain Name System cache 99

Group Name of group you are placing this function in.

DSName Must agree with name defined in the IDCAMS step

above (for example, CICS.USER.CACHE).

STRings Maximum number of concurrent users.

Opentime Startup

Disposition Old

DAtabuffers STRings value X 2

Indexbuffers Number of records in index set.

Table User

Maxnumrecs Maximum number of destinations queried.

RECORDFormat V

Use the following parameters with RDO PROGRAM to define the EZACIC25

module:

RDO keyword Value

PROGram EZACIC25

Group Name of group you are placing this function in

Language Assembler

Step 3: Execute EZACIC25

EZACIC25 replaces the GETHOSTBYNAME socket call. It is invoked by a EXEC

CICS LINK COMMAREA(com-area) where com-area is defined as follows:

Field name Description

Return code A fullword binary variable specifying the results of the function:

Value Meaning

-1 ERRNO value returned from GETHOSTBYNAME() call.

Check ERRNO field.

0 Host name could not be resolved either within the cache or

by use of the GETHOSTBYNAME call.

Note: In some instances, a 10214 errno is returned from

the resolve, which can mean that the host name

could not be resolved by use of the

GETHOSTBYNAME call.

1 Host name was resolved using cache.

2 Host name was resolved using GETHOSTBYNAME call.

ERRNO A fullword binary field specifying the ERRNO returned from the

GETHOSTBYNAME call.

HOSTENT address

The address of the returned HOSTENT structure.

Command A 4-byte character field specifying the requested operation.

Value Meaning

100 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

GHBN

GETHOSTBYNAME. This is the only function supported.

Namelen A fullword binary variable specifying the actual length of the host

name for the query.

Query_Type A 1-byte character field specifying the type of query:

Value Meaning

0 Attempt query using cache. If unsuccessful, attempt using

GETHOSTBYNAME() call.

1 Attempt query using GETHOSTBYNAME() call. This forces

a cache refresh for this entry.

2 Attempt query using cache only.

Note: If the cache contains a matching record, the contents of that

record is returned regardless of its age.

Name A 256-byte character variable specifying the host name for the

query.

If the transaction program is executing in the Open Transaction Environment, a

TCB switch occurs for each call to EZACIC25.

HOSTENT structure

The returned HOSTENT structure is shown in Figure 82.

Hostent

Hostname

Address of

Address of

X'00000002'

X'00000004'

Address of

Name X'00'

Address of

Address of

Address of

Address of

Address of

Address of INET Addr#3

Alias#3 X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#1

Alias#1 X'00'

X'00000000'

X'00000000'

Figure 82. The DNS HOSTENT

Chapter 3. Configuring the CICS Domain Name System cache 101

102 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Chapter 4. Managing IP CICS sockets

Use the CICS TCP/IP interface to:

v Customize your system so that CICS TCP/IP starts and stops automatically. See

“Starting and stopping CICS automatically.”

v Manually start and stop CICS TCP/IP after CICS has been initialized. An

operator can also query and change specific CICS TCP/IP interface attributes

after CICS has been initialized. See “IP CICS socket interface management” on

page 104.

v Start and stop CICS TCP/IP from a CICS application program. See

“Starting/stopping CICS TCP/IP with program link” on page 116.

Starting and stopping CICS automatically

Modify the CICS Program List Table (PLT) to start and stop the CICS socket

interface automatically.

v Startup (PLTPI)

To start the IP CICS socket interface automatically, make the following entry in

PLTPI after the DFHDELIM entry:

*

* PLT USED TO SUPPORT IP CICS SOCKETS STARTUP

*

 DFHPLT TYPE=INITIAL,SUFFIX=SI

 DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM

 DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

*

* Add other IP CICS Socket PLT startup programs here...

*

 DFHPLT TYPE=FINAL

 END

v Shutdown (PLTSD)

To shut down the IP CICS socket interface automatically (including all other IP

CICS sockets enabled programs), make the following entry in the PLTSD before

the DFHDELIM entry:

*

* PLT USED TO SUPPORT IP CICS SOCKETS SHUTDOWN

*

 DFHPLT TYPE=INITIAL,SUFFIX=SD

*

* Add other IP CICS Socket PLT shutdown programs here...

*

 DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

 DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM

 DFHPLT TYPE=FINAL

 END

Requirement: If the IP CICS socket interface is started in the PLT (started by

invoking EZACIC20), the PLTPIUSR user ID also requires the UPDATE access to

the EXITPROGRAM resource when CICS command security is active. Failure to

have at least the UPDATE access to the EXITPROGRAM resource causes the IP

CICS socket interface and listener to not start when starting or not stop when

stopping. Message EZY1350E is issued, and the IP CICS socket interface does not

start.

© Copyright IBM Corp. 1994, 2007 103

IP CICS socket interface management

Use the EZAO operator transaction to start CICS TCP/IP manually. You should

run the EZAO transaction on the CICS region where you want the intended action

to occur.

This operational transaction has the following functions:

Interface Startup

Starts the interface in a CICS address space and starts all listeners that are

identified for immediate start.

 Requirement: The EZAO transaction must be running on the CICS where

you want to start the CICS sockets interface. You cannot start a CICS

socket interface from a different CICS.

Interface Shutdown

Stops the interface in a CICS address space.

Listener Startup

Starts a listener in a CICS address space.

Listener Shutdown

Stops a listener in a CICS address space.

Set Interface

Alters some attributes of the IP CICS socket interface and listener.

Query Interface

Shows the current value of some attributes of the IP CICS socket interface

and listener.

Trace startup

Starts CICS tracing for the CICS socket interface in a CICS address space.

Trace shutdown

Stops CICS tracing for the CICS socket interface in a CICS address space.

When you enter EZAO, the following screen is displayed:

104 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|
|

INQUIRE function

Use the INQUIRE function to query certain IP CICS socket interface and listener

attributes. Use the EZAO,SET command to dynamically change any values. The

INQUIRE function can be abbreviated as INQ. Use the EZAO,INQUIRE command

to query certain values. If you enter INQ in the screen shown in Figure 83 or enter

the EZAO,INQ command on a blank screen, the following screen is displayed:

 If you enter INQUIRE CICS, the following screen is displayed:

 EZAO APPLID =

 Enter one of the following

 SET

 INQUIRE

 START

 STOP

 PF 3 END 12 CNCL

Figure 83. EZAO initial screen

 EZAO,INQUIRE APPLID =

 Enter one of the following

 CICS ===> ... Enter Yes|No

 LISTENER ===> ... Enter Yes|No

 PF 3 END 12 CNCL

Figure 84. EZAO INQUIRE screen

Chapter 4. Managing IP CICS sockets 105

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

This screen displays the following information:

v TRACE is the current IP CICS sockets CICS tracing flag.

v MAXOPENTCBS is the CICS limit of open API TCBs.

v ACTOPENTCBS is the current number of open API TCBs in use across all CICS.

v TCBLIM is the IP CICS sockets-imposed TCB limit.

v ACTTCBS is the current number of open API TCBs in use by IP CICS sockets.

v QUEUEDEPTH is the current number of CICS tasks suspended as the result of

TCB limit (TCBLIM).

v SUSPENDHWM is the high-water mark of CICS tasks suspended as the result of

TCB limit (TCBLIM).

v APPLDAT indicates whether the IP CICS socket interface automatically registers

socket application data.

If you enter INQUIRE LISTENER, the following screen is displayed where you can

choose from a list of active listeners:

 EZAO,INQUIRE,CICS APPLID =

 TRACE ===> ... Trace CICS Sockets

 MAXOPENTCBS ===> CICS open API, L8, TCB Limit

 ACTOPENTCBS ===> Active CICS open API, L8, TCBs

 TCBLIM ===> Open API TCB Limit

 ACTTCBS ===> Number of Active open API TCBs

 QUEUEDEPTH ===> Number of Suspended Tasks

 SUSPENDHWM ===> Suspended Tasks HWM

 APPLDAT ===> ... Register Application Data

 PF 3 END 12 CNCL

Figure 85. EZAO INQUIRE CICS screen

Figure 86. EZAO INQUIRE LISTENER selection screen

106 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

EZAO,INQUIRE,LISTENER APPLID =

 Choose a listener transaction:

 Sel Tran Task# Type Day Date Time Message

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 PF 3 END 7 DOWN 8 UP 9 TOP 10 BOTTOM 12 CNCL ENTER SELECT

If you select a listener transaction, the following screen is displayed:

EZAO,INQUIRE,LISTENER(....) APPLID =

 LAPPLD ===> ... Register Application Data

 PF 3 END 12 CNCL

The LAPPLD entry indicates whether the IP CICS socket interface automatically

registers socket application data for the listener.

SET function

Use the SET function to dynamically change certain attributes of the IP CICS

socket interface and listener. Changes made in this way are not reflected in the

configuration options contained in the EZACONFG dataset. Use the

EZAO,INQUIRE command to query some values. If you enter SET in the screen

shown in Figure 83 on page 105 or if you enter EZAO,SET on a blank screen, the

Figure 87. EZAO INQUIRE LISTENER screen

Chapter 4. Managing IP CICS sockets 107

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

following screen is displayed:

 If you enter SET CICS, the following screen is displayed:

 This screen displays the following information:

v TRACE is the current IP CICS sockets CICS tracing flag. Specify YES or NO to

dynamically enable or disable IP CICS sockets CICS tracing.

v TCBLIM is the current IP CICS sockets-imposed TCB limit. Specify a value in the

range 0 to the value specified by the MAXOPENTCBS option to dynamically

change the TCB limiting factor.

 EZAO,SET APPLID =

 Enter one of the following

 CICS ===> ... Enter Yes|No

 LISTENER ===> ... Enter Yes|No

 PF 3 END 12 CNCL

Figure 88. EZAO SET screen

 EZAO,SET,CICS APPLID =

 Overtype to Enter

 TRACE ===> ... Trace CICS Sockets

 TCBLIM ===> Open API TCB Limit

 APPLDAT ===> ... Register Application Data

 PF 3 END 12 CNCL

Figure 89. EZAO SET CICS screen

108 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

v APPLDAT is the current IP CICS socket interface socket application data

registration flag. Specify YES or NO to dynamically enable or disable the

registration of socket application data.

If you enter SET LISTENER, the following screen is displayed where you can

choose from a list of active listeners:

 EZAO,SET,LISTENER APPLID =

 Choose a listener transaction:

 Sel Tran Task# Type Day Date Time Message

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 _ mm/dd/yy hh:mm:ss

 PF 3 END 7 DOWN 8 UP 9 TOP 10 BOTTOM 12 CNCL ENTER SELECT

If you select a listener transaction, the following screen is displayed:

 EZAO,SET,LISTENER(....) APPLID =

 Overtype to Enter

 LAPPLD ===> Register Application Data

 PF 3 END 12 CNCL

Figure 90. EZAO SET LISTENER selection screen

Figure 91. EZAO SET LISTENER screen

Chapter 4. Managing IP CICS sockets 109

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The LAPPLD entry indicates whether the IP CICS socket interface registers socket

application data for the listener.

START function

The START function starts the CICS socket interface or a listener within the

interface. When the interface is started, all listeners marked for immediate start are

also started. The START function also enables CICS tracing for the CICS socket

interface and the listener.

If you type STA on the current screen or type EZAO STA on a blank screen, the

following screen is displayed:

START CICS

If you type START CICS, the following screen is displayed:

 EZAO,START APPLID =

 Enter one of the following

 CICS ===> ... Enter Yes|No

 LISTENER ===> ... Enter Yes|No

 TRACE ===> ... Enter Yes|No

 PF 3 END 12 CNCL

Figure 92. EZAO START screen

110 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

START LISTENER

If you type START LISTENER, the following screen is displayed:

After you type the listener name, the listener starts. The following screen is

displayed, and the results appear in the message area:

 EZAO,START,CICS APPLID =

 APPLID= ===> APPLID of CICS

 CICS socket interface Startup Complete

 PF 3 END 12 CNCL

Figure 93. EZAO START CICS response screen

 EZAO,START,LISTENER APPLID =

 APPLID= ===> APPLID of CICS

 LISTENER ===> Enter Name of listener

 PF 3 END 12 CNCL

Figure 94. EZAO START LISTENER screen

Chapter 4. Managing IP CICS sockets 111

START TRACE

If you type START TRACE, the following screen is displayed:

Issue the EZAO,START,TRACE command on the CICS region where APPLID

matches the IP CICS socket interface and where CICS tracing is to be started.

STOP function

The STOP function is used to stop the CICS socket interface or a listener within the

interface. If the interface is stopped, all listeners are stopped before the interface is

stopped. The STOP function also disables CICS tracing for the CICS socket

interface and the listener. If you type STO in the screen shown in Figure 83 on

page 105

 EZAO,START,LISTENER(CSKL) APPLID =

 APPLID= ===> APPLID of CICS

 LISTENER ===> Enter Name of listener

 CICS socket interface listener CSKL is Started

 PF 3 END 12 CNCL

Figure 95. EZAO START LISTENER result screen

 EZAO,START,TRACE APPLID =

 APPLID= ===> APPLID of CICS

 CICS/SOCKETS CICS TRACING IS ENABLED

 PF 3 END 12 CNCL

Figure 96. EZAO START TRACE screen

112 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

page 105 or enter EZAO STO on a blank screen, the following screen is displayed:

STOP CICS

If you specify STOP CICS, the following screen is displayed:

The following options are available to stop CICS TCP/IP:

IMMEDIATE=NO

Used this option in most cases because it gracefully terminates the

interface. This option has the following effects on applications using this

API:

v If no other socket applications are active or suspended, the listener

transaction (CSKL) quiesces after a maximum wait of 3 minutes.

 EZAO,STOP APPLID =

 Enter one of the following

 CICS ===> ... Enter Yes|No

 LISTENER ===> ... Enter Yes|No

 TRACE ===> ... Enter Yes|No

 PF 3 END 12 CNCL

Figure 97. EZAO STOP screen

 EZAO,STOP,CICS APPLID =

 APPLID= ===> APPLID of CICS

 IMMEDIATE ===> ... Enter Yes|No

 PF 3 END 12 CNCL

Figure 98. EZAO STOP CICS screen

Chapter 4. Managing IP CICS sockets 113

v If active or suspended sockets applications exist, the listener allows them

to continue processing. When all of these tasks are complete, the listener

terminates.

v This option denies access to this API for all new CICS tasks. Tasks that

start after CICS TCP/IP has been stopped END with the CICS abend

code AEY9.

IMMEDIATE=YES

This option is reserved for unusual situations and abruptly terminates the

interface. It has the following effect on applications using this API:

v Purges the master server (listener) CSKL.

v Denies access to the API for all CICS tasks. Tasks that have successfully

called the API previously abend with the AETA abend code on the next

socket call. New tasks that have started are denied by the AEY9 abend

code.

After you choose an option, the stop is attempted. The screen is displayed again,

and the results appear in the message area.

STOP LISTENER

If you specify STOP LISTENER, the following screen is displayed:

When you input the listener named, that listener is stopped. The screen is

displayed again, and the results appear in the message area.

STOP TRACE

If you specify STOP TRACE, the following screen is displayed:

 EZAO,STOP,LISTENER APPLID =

 APPLID= ===> APPLID of CICS

 LISTENER ===> Enter Name of listener

 PF 3 END 12 CNCL

Figure 99. EZAO STOP LISTENER screen

114 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Issue the EZAO,STOP,TRACE command on the CICS region where APPLID

matches the IP CICS socket interface and where CICS tracing is to be stopped.

Abbreviating the EZAO transaction parameters

It is possible to abbreviate the parameters of the EZAO transaction, but a

minimum of three characters must be specified. This capability allows the

command to be issued using minimal keystrokes. The following list of commands

shows the abbreviated parameters:

EZAO,STArt,CICs

Starts the interface

EZAO,STOp,CICs

Stops the interface

EZAO,STArt,LIStener

Starts a listener

EZAO,STOp,LIStener

Stops a listener

EZAO,STArt,TRAce

Enables CICS tracing

EZAO,STOp,TRAce

Disables CICS tracing

Notes:

1. The values in uppercase characters are the minimal acceptable value for

parameters.

2. You can use spaces instead of commas as a parameter delimiter. This is shown

in the following example:

EZAO STArt CICs

This is the same as the following:

EZAO,STArt,CICs

 EZAO,STOP,TRACE APPLID =

 APPLID= ===> APPLID of CICS

 CICS/SOCKETS CICS TRACING IS DISABLED

 PF 3 END 12 CNCL

Figure 100. EZAO STOP TRACE screen

Chapter 4. Managing IP CICS sockets 115

Starting/stopping CICS TCP/IP with program link

Issue an EXEC CICS LINK to program EZACIC20 to start or stop the CICS socket

interface. Include the following steps in the LINKing program:

1. Define the COMMAREA for EZACIC20 by including the following instruction

in your DFHEISTG definition:

 EZACICA AREA=P20,TYPE=CSECT

The length of the area is equated to P20PARML, and the name of the structure

is P20PARMS.

2. Initialize the COMMAREA values as follows:

P20TYPE

I Initialization

T Immediate termination

D Deferred termination

Q Query the PLT shutdown immediate configuration option

P20OBJ

C CICS sockets interface

L Listener

P20LIST

Name of listener (if this is listener initialization or termination)
3. Issue the EXEC CICS LINK to program EZACIC20. EZACIC20 does not return

until the function is complete.

4. Check the P20RET field for the response from EZACIC20.

EZACIC20 can issue the following user abend codes:

v Abend code E20L is issued if the CICS socket interface is not in startup or

termination and no COMMAREA was provided.

v Abend code E20T is issued if CICS is not active or if you run the EZACIC20

program at the wrong PLT phase. See “CICS program list table (PLT)” on page

46 for more information about setting CICS TCP sockets to automatically startup

or shutdown by using updates to the PLT.

116 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||

|
|
|
|

Chapter 5. Writing your own listener

The IP CICS socket interface provides a structure that supports multiple listeners.

These listeners can be multiple copies of the IBM-supplied listener, user-written

listeners, or a combination of the two. You can also run without a listener.

For each listener (IBM-supplied or user-written), there are certain basic

requirements that enable the interface to manage the listeners correctly, particularly

during initialization and termination. They are:

v Each listener instance must have a unique transaction name, even if you are

running multiple copies of the same listener.

v Each listener should have an entry in the CICS sockets configuration data set.

Even if you do not use automatic initiation for your listener, the lack of an entry

would prevent correct termination processing and could prevent CICS from

completing a normal shutdown.

For information on the IBM-supplied listener, see “The IBM listener” on page 134.

Prerequisites

Some installations can require a customized, user-written listener. Writing your

own listener has the following prerequisites:

1. Determine what capability is required that is not supplied by the IBM-supplied

listener. Is this capability a part of the listener or a part of the server?

2. Knowledge of the CICS-Assembler environment is required.

3. Knowledge of multi-threading applications is required. A listener must be able

to perform multiple functions concurrently to achieve good performance.

4. Knowledge of the CICS socket interface is required.

5. Knowledge of how to use compare and swap logic for serially updating shared

resources.

Using IBM’s environmental support

A user-written listener can use the environmental support supplied and used by

the IBM-supplied listener. To employ this support, the user-written listener must

do the following in addition to the requirements described above:

v The user-written listener must be written in Assembler.

v The RDO definitions for the listener transaction and program should be identical

to those for the IBM-supplied listener with the exception of the

transaction/program names. Reference the program definition for the

IBM-supplied listener, EZACIC02, in SEZAINST(EZACICCT).

DEFINE PROGRAM(EZACIC02)

DESCRIPTION(IBM LISTENER)

GROUP(SOCKETS) CEDF(YES) DATALOCATION(ANY) EXECKEY(CICS)

RELOAD(NO) RESIDENT(YES) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(NORMAL)

CONCURRENCY(THREADSAFE)

Figure 101. Program Definition for listener EZACIC02

© Copyright IBM Corp. 1994, 2007 117

v In the program, define an input area for the configuration file records. If you are

going to read the configuration file using MOVE mode, you can define the area

by making the following entry in your DFHEISTG area:

 EZACICA AREA=CFG,TYPE=CSECT

If you are going to read the configuration file using LOCATE mode you can

define a DSECT for the area as follows:

 EZACICA AREA=CFG,TYPE=DSECT

In either case, the length of the area is represented by the EQUATE label

CFGLEN. The name of the area/DSECT is CFG0000.

v In the program, define a DSECT for mapping the Global Work Area (GWA). This

is done by issuing the following macro:

 EZACICA AREA=GWA,TYPE=DSECT

The name of the DSECT is GWA0000.

v In the program, define a DSECT for mapping the Task Interface Element (TIE).

This is done by issuing the following macro:

 EZACICA AREA=TIE,TYPE=DSECT

The name of the DSECT is TIE0000.

v In the program define a DSECT for mapping the listener Control Area (LCA).

This is done by issuing the following macro:

 EZACICA AREA=LCA,TYPE=DSECT

The name of the DSECT is LCA0000.

v Obtain address of the GWA. This can be done using the following CICS

command:

 EXEC CICS EXTRACT EXIT PROGRAM(EZACIC01) GASET(ptr) GALEN(len)

where ptr is a register and len is a halfword binary variable. The address of the

GWA is returned in ptr and the length of the GWA is returned in len. Use of the

Extract Exit command requires UPDATE access to the EXITPROGRAM resource.

Failure to have at least the UPDATE access to the EXITPROGRAM resource

causes the IP CICS socket interface and listener to either not start when starting

or not stop when stopping.

Guideline: As of CICS/TS 2.3, the EXEC CICS EXTRACT command is not

threadsafe. If the interface is using the CICS Open Transaction Environment, you

should issue this command with other non-threadsafe commands to prevent

excessive TCB switching.

v Read the configuration file during initialization of the listener. The configuration

file is identified as EZACONFG in the CICS Configuration file. The record key

for the user-written listener is as follows:

– APPLID

An 8-byte character field set to the APPLID value for this CICS. This value

can be obtained from the field GWACAPPL in the GWA or by using the

following CICS command:

 EXEC CICS ASSIGN APPLID(applid)

where applid is an 8-byte character field.

– Record Type

A 1-byte character field set to the record type. It must have the value L.

118 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

– Reserved Field

A 3-byte hex field set to binary zeros.

– Transaction

A 4-byte character field containing the transaction name for this listener. It

can be obtained from the EIBTRNID field in the Execute Interface Block.

The configuration record provides the information entered by either the

EZACICD configuration macro or the EZAC Configuration transaction. The

user-written listener can use this information selectively, but it is highly

recommended as it contains the values specified for PORT, BACKLOG, and

NUMSOCK. See Chapter 2, “Setting up and configuring CICS TCP/IP,” on page

23 for more information about the configuration data set with EZACICD TYPE

parameter subsection.

For shared files: If the user-written listener reads the configuration file, it must

first issue an EXEC CICS SET command to enable and open

the file. When the file operation is complete, the user-written

listener must issue an EXEC CICS SET command to disable

and close the file. Failure to do so results in file errors in

certain shared-file situations.

Requirement: Use of the EXEC CICS ENABLE command requires UPDATE

access to EXITPROGRAM resources. Failure to have at least the UPDATE access

to the EXITPROGRAM resource causes the IP CICS socket interface and listener

to either not start when starting or not stop when stopping.

v The user-written listener should locate its listener Control Area (LCA). The LCAs

are located contiguously in storage with the first one pointed to by the

GWALCAAD field in the GWA. The correct LCA has the transaction name of the

listener in the field LCATRAN.

v The user-written listener should set the LCASTAT field to a value specified by

LCASTATP so that the IP CICS socket interface is aware that the listener is

active. Otherwise, the IP CICS sockets listener termination logic bypasses the

posting of the listeners termination ECB.

v The user-written listener should monitor either the LCASTAT field in the LCA or

the GWATSTAT field in the GWA for shutdown status. If either field shows an

immediate shutdown in progress, the user-written listener should terminate by

issuing the EXEC CICS RETURN command and allow the interface to clean up

any socket connections. If either field shows a deferred termination in progress,

the user-written listener should do the following:

1. Accept any pending connections, and close the passive (listen) socket.

2. Complete the processing of any sockets involved in transaction initiation

(that is, processing the GIVESOCKET command). When processing is

complete, close these sockets.

3. When all sockets are closed, issue the EXEC CICS RETURN command.
v The user-written listener should avoid socket calls which imply blocks

dependent on external events such as ACCEPT or READ. These calls should be

preceded by a single SELECTEX call that waits on the ECB LCATECB in the

LCA. This ECB is posted when an immediate termination is detected, and its

posting causes the SELECTEX to complete with a RETCODE of 0 and an

ERRNO of 0. The program should check the ECB when the SELECTEX

completes in this way as this is identical to the way SELECTEX completes when

a timeout happens. The ECB can be checked by looking for a X’40’ in the first

byte (post bit).

Chapter 5. Writing your own listener 119

This SELECTEX should also specify a timeout value. This provides the listener

with a way to periodically check for a deferred termination request. Without

this, CICS sockets Deferred Termination or CICS Deferred Termination cannot

complete.

v The user-written listener should use a non-reusable subtask. Issue the INITAPI

command or an INITAPIX command with the letter L in the last byte of the

subtask name. The user-written listener implements the termination and detach

logic in the same way that the IBM-supplied listener does.

v The user-written listener should update LCASTAT with one of the following:

LCASTAT DS X Status of this listener

LCASTAT0 EQU B’00000000’ Listener not in operation

LCASTATI EQU B’00000001’ Listener in initialization

LCASTATS EQU B’00000010’ Listener in SELECT

LCASTATP EQU B’00000100’ Listener processing

LCASTATE EQU B’00001000’ Listener had initialization error

LCASTATC EQU B’00010000’ Immediate termination in progress

LCASTATD EQU B’00100000’ Deferred termination in progress

LCASTATA EQU B’01000000’ Listener is active

LCASTATR EQU B’10000000’ Listener is CICS delayed retry

Rule: If IP CICS sockets is configured to use CICS’s Open Transaction

Environment, then ensure that you serially update the LCASTAT vaue. The

Listener Control Area (LCA) is part of the global work area (GWA), and is

considered to be a shared resource. An appropriate value to move into

LCASTAT would be LCASTATP (B’00000100’) when the user-written listener

starts. This value enables the CICS socket logic to correctly post the LCATECB

during both deferred and immediate termination.

v User-written listener programs can use the LCASTAT2A status flag to determine

whether this listener should register application data. The user-written listener

should update LCASTAT2 with one of the following:

LCASTAT2 DS X Listener status byte 2

LCASTAT2C EQU B’00000001’ Listener can now connect to TCP

LCASTAT2A EQU B’00000010’ Register Application Data

LCASTAT2H EQU B’00000100’ LAPPLD inherits APPLDAT

LCASTAT2S EQU B’00100000’ This is a STANDARD listener

LCASTAT2E EQU B’01000000’ This is an ENHANCED listener

LCASTAT26 EQU B’10000000’ Listeners AF is AF_INET6

WLM registration and unregistration for sysplex connection

optimization

If you are writing your own listeners, an interface to the WLM registration and

unregistration module, EZACIC12 is available and can be used for registration and

unregistration. The registration and unregistration should be done at the same

times the IBM listener does it. It is important to deregister for any termination

situation because the Workload Manager does not detect the termination of a

listener (it does detect CICS termination) and the Domain Name Server could

continue to respond to gethostbyname () requests within the address of this

listener.

The interface to EZACIC12 is through the EXEC CICS LINK command. The linking

program (listener) builds a COMMAREA for EZACIC12. COMMAREA is described

below and, for assembler use, issuing the macro EZACICA

TYPE={CSECT|DSECT},AREA=P12 provides a storage definition or DSECT for the

area.

The format of the COMMAREA for EZACIC12 is as follows:

120 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

Field name

Description

P12CONFG

A 4-byte field containing the address of the Configuration Record for this

listener.

P12REGST

A one byte field output from WLM Registration. A one byte field input for

WLM unregistration.

 The same value output from Registrations should be input for the

associated unregistration. The byte represents the registration status of up

to three WLM groups. Each bit within the byte represents a WLM group

registration.

B’00000000’

No WLM groups registered.

B’00000001’

WLM group 1 registered.

B’00000010’

WLM group 2 registered.

B’00000100’

WLM group 3 registered.

P12TYPE

A 1-byte character field containing the request code for EZACIC12.

C’R’ Registration.

C’D’ Deregistration.

P12HOST

A 24-character field containing the host name for EZACIC12. It is the

Domain Name of the host that the listener is executing on as obtained by

the gethostname() socket call. EZACIC12 pads it to the right with blanks to

meet the WLM requirement.

 Guideline: The EZACIC12 program is defined to CICS as threadsafe

indicating that programs linking to it can take advantage of staying on an

open API TCB.

Tip: The automated domain name registration application (ADNR) cannot provide

WLM-based load balancing; however, it can be configured to provide round robin

connection balancing as supported by the BIND 9 domain name server (DNS). See

z/OS Communications Server: IP Configuration Guide for more information about load

balancing using an external load balancer and one or more load balancing agents.

See the information in z/OS Communications Server: IP Configuration Guide for more

about load balancing using an external load balancer and one or more load

balancing agents. See automated domain name registration information in z/OS

Communications Server: IP Configuration Guide for more details about dynamically

updating name servers with information about sysplex resources in near real time.

Chapter 5. Writing your own listener 121

|

|
|
|
|
|
|
|
|
|
|

122 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Chapter 6. Application programming guide

This topic describes how to write applications that use the IP CICS sockets API. It

describes typical sequences of calls for client, concurrent server (with associated

child server processes), and iterative server programs. The contents of the topic

are:

v The following setups for writing CICS TCP/IP applications are available:

– Concurrent server (the supplied listener transaction) and child server

processes run under CICS TCP/IP.

– The same as 1 but with a user-written concurrent server.

– An iterative server running under CICS TCP/IP.

– A client application running under CICS TCP/IP.
v Socket addresses

v MVS address spaces

v GETCLIENTID, GIVESOCKET, and TAKESOCKET commands

v The listener program

v CICS Open Transaction Environment considerations

v Application Transparent Transport Layer Security (AT-TLS)

Chapter 7, “C language application programming,” on page 157 describes the C

language calls that can be used with CICS.

Chapter 8, “Sockets extended API,” on page 223 provides reference information on

the Sockets Extended API for COBOL, PL/I, and Assembler language. The Sockets

Extended API is the recommended interface for new application development.

Note: Appendix A, “Original COBOL application programming interface

(EZACICAL),” on page 367 provides reference information on the

EZACICAL API for COBOL and assembler language. This interface was

made available in a prior release of TCP/IP Services and is being retained in

the current release for compatibility. For the best results, however, use the

Sockets Extended API whenever possible. It is described in Chapter 8,

“Sockets extended API,” on page 223.

Writing CICS TCP/IP applications

Chapter 1, “Introduction to CICS TCP/IP,” on page 1 describes the basics of

TCP/IP client/server systems and the two types of server: iterative and concurrent.

This topic considers in detail four TCP/IP setups in which CICS TCP/IP

applications are used in various parts of the client/server system.

The setups are:

v The client-listener-child server application set. The concurrent server and child

server processes run under CICS TCP/IP. The concurrent server is the supplied

listener transaction. The client might be running TCP/IP under one of the

various UNIX operating systems such as AIX.

© Copyright IBM Corp. 1994, 2007 123

v Writing your own concurrent server. This is the same setup as the first except

that a user-written concurrent server is being used instead of the IBM listener.

v The iterative server CICS TCP/IP application. This setup is designed to process

one socket at a time.

v The client CICS TCP/IP application. In this setup, the CICS application is the

client and the server is the remote TCP/IP process.

CICS Sockets
z/OS/AIX/Linux

Client

Concurrent
or

Iterative
Server

For details of how the CICS TCP/IP calls should be specified, see Chapter 7, “C

language application programming,” on page 157, Chapter 8, “Sockets extended

API,” on page 223, and Appendix A, “Original COBOL application programming

interface (EZACICAL),” on page 367.

1. The client-listener-child-server application set

Figure 102 on page 125 shows the sequence of CICS commands and socket calls

involved in this setup. CICS commands are prefixed by EXEC CICS; all other

numbered items in the figure are CICS TCP/IP calls.

124 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Client call sequence

Table 8 explains the functions of each of the calls listed in Figure 102.

 Table 8. Calls for the client application

(1) INITAPI Connect the CICS application to the TCP/IP interface. (This call is

only used by applications written in Sockets Extended or the

EZACICAL interface). Use the MAXSOC parameter on the Sockets

Extended INITAPI or the MAX-SOCK parameter on the EZACICAL

interface to specify the maximum number of sockets to be used by

the application.

(1) INITAPI
(2) SOCKET
(3) CONNECT

(11) INITAPI
(12) SOCKET
(13) BIND
(14) LISTEN
(15) GETCLEINTID
(16) SELECTEX

(7) EXEC CICS RETRIEVE
(8) TAKESOCKET

(9) READ/WRITE

(10) CLOSE

(18) RECV
(19) EXEC CICS INQ
(20) GIVESOCKET
(21) EXEC CICS START

'SERV'

'SERV'

(17) ACCEPT

(22) SELECT
(23) CLOSE

(4) WRITE/SEND 'SERV’

S
O
C
K
E
T
S

S
O
C
K
E
T
S

S
O
C
K
E
T
S

(5) READ/WRITE

(6) CLOSE

Program CLIENT

Transaction SERV
calling

program SERVER

IBM-supplied transaction
CSKL calling program

LISTENER
EZACIC02

Client:

Concurrent server:

Child server:

Figure 102. The sequence of sockets calls

Chapter 6. Application programming guide 125

Table 8. Calls for the client application (continued)

(2) SOCKET This obtains a socket. You define a socket with three parameters:

v The domain, or addressing family

v The type of socket

v The protocol

For CICS TCP/IP, the domain can only be one of the TCP/IP

Internet domains, either AF_INET (2) for IPv4 or AF_INET6 (19) for

IPv6. The type can be SOCK_STREAM (1) for stream sockets (TCP)

or SOCK_DGRAM (2) for datagram sockets (UDP). The protocol can

be either TCP or UDP. Passing 0 for the protocol selects the default

protocol.

If successful, the SOCKET call returns a socket descriptor, S, which

is always a small integer. Notice that the socket obtained is not yet

attached to any local or destination address.

(3) CONNECT Client applications use this to establish a connection with a remote

server. You must define the local socket S to be used in this

connection and the address and port number of the remote socket.

The system supplies the local address, so on successful return from

CONNECT, the socket is completely defined, and is associated with

a TCP connection (if stream) or UDP connection (if datagram).

(4) WRITE This sends the first message to the listener. The message contains

the CICS transaction code as its first 4 bytes of data. You must also

specify the buffer address and length of the data to be sent.

(5) READ/WRITE These calls continue the conversation with the server until it is

complete.

(6) CLOSE This closes a specified socket and so ends the connection. The

socket resources are released for other applications.

Listener call sequence

The listener transaction CSKL is provided as part of CICS TCP/IP. These are the

calls issued by the CICS listener. Your client and server call sequences must be

prepared to work with this sequence. These calls are documented in “2. Writing

your own concurrent server” on page 127, where the listener calls in Figure 102 are

explained.

Child server call sequence

Table 9 explains the functions of each of the calls listed in Figure 102 on page 125.

 Table 9. Calls for the server application

(7) EXEC CICS

RETRIEVE

This retrieves the data passed by the EXEC CICS START command

in the concurrent server program. This data includes the socket

descriptor and the concurrent server client ID as well as optional

additional data from the client.

(8) TAKESOCKET This acquires the newly created socket from the concurrent server.

The TAKESOCKET parameters must specify the socket descriptor to

be acquired and the client ID of the concurrent server. This

information was obtained by the EXEC CICS RETRIEVE command.

Note: If TAKESOCKET is the first call, it issues an implicit INITAPI

with default values.

(9) READ/WRITE The conversation with the client continues until complete.

(10) CLOSE Terminates the connection and releases the socket resources when

finished.

126 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

2. Writing your own concurrent server

The overall setup is the same as the first scenario, but your concurrent server

application performs many of the functions performed by the listener. Obviously,

the client and child server applications have the same functions.

Concurrent server call sequence

Table 10 explains the functions of each of the steps listed in Figure 102 on page 125.

 Table 10. Calls for the concurrent server application

(11) INITAPI Connects the application to TCP/IP, as in Table 8.

(12) SOCKET This obtains a socket, as in Table 8.

(13) BIND After a socket has been obtained, a concurrent server uses this call

to attach itself to a specific port at a specific address so that the

clients can connect to it. The socket descriptor and a local address

and port number are passed as arguments.

On successful return of the BIND call, the socket is bound to a port

at the local address, but not (yet) to any remote address.

(14) LISTEN After binding an address to a socket, a concurrent server uses the

LISTEN call to indicate its readiness to accept connections from

clients. LISTEN tells TCP/IP that all incoming connection requests

should be held in a queue until the concurrent server can deal with

them. The BACKLOG parameter in this call sets the maximum

queue size.

(15) GETCLIENTID This command returns the identifiers (MVS address space name and

subtask name) by which the concurrent server is known by TCP/IP.

This information is needed by the EXEC CICS START call.

(16) SELECTEX The SELECTEX call monitors activity on a set of sockets. In this

case, it is used to interrogate the queue (created by the LISTEN call)

for connections. It returns when an incoming CONNECT call is

received or when LCATECB was posted because immediate

termination was detected, or else times out after an interval

specified by one of the SELECTEX parameters.

(17) ACCEPT The concurrent server uses this call to accept the first incoming

connection request in the queue. ACCEPT obtains a new socket

descriptor with the same properties as the original. The original

socket remains available to accept more connection requests. The

new socket is associated with the client that initiated the connection.

(18) RECV A RECV is not issued if the FORMAT parameter is ENHANCED

and MSGLENTH is 0. If FORMAT is ENHANCED, MSGLENTH is

not 0, and PEEKDATA is YES, the listener peeks the number of

bytes specified by MSGLENTH. If FORMAT is STANDARD, the

listener processes the client data as in earlier releases.

(19) CICS INQ This checks that the SERV transaction is defined to CICS (else the

TRANSIDERR exceptional condition is raised), and, if so, that its

status is ENABLED. If either check fails, the listener does not

attempt to start the SERV transaction.

(20) GIVESOCKET This makes the socket obtained by the ACCEPT call available to a

child server program.

(21) CICS START This initiates the CICS transaction for the child server application

and passes the ID of the concurrent server, obtained with

GETCLIENTID, to the server. For example, in “Listener output

format” on page 136, the parameters LSTN-NAME and LSTN-SUBNAME

define the listener.

Chapter 6. Application programming guide 127

Table 10. Calls for the concurrent server application (continued)

(22) SELECTEX

8 Again, the SELECTEX call is used to monitor TCP/IP activity. This

time, SELECTEX returns when the child server issues a

TAKESOCKET call.

(23) CLOSE This releases the new socket to avoid conflicts with the child server.

Passing sockets

In CICS, a socket belongs to a CICS task. Therefore, sockets can be passed between

programs within the same task by passing the descriptor number. However,

passing a socket between CICS tasks does require a GIVESOCKET/TAKESOCKET

sequence of calls.

3. The iterative server CICS TCP/IP application

Figure 103 shows the sequence of socket calls involved in a simple client-iterative

server setup.

 The setup with an iterative server is much simpler than the previous cases with

concurrent servers.

Iterative server use of sockets

The iterative server need only obtain 2 socket descriptors. The iterative server

makes the following calls:

1. As with the concurrent servers, SOCKET, BIND, and LISTEN calls are made to

inform TCP/IP that the server is ready for incoming requests, and is listening

on socket 0.

2. The SELECT call then returns when a connection request is received. This

prompts the issuing of an ACCEPT call.

8. This SELECTEX is the same as the SELECTEX call in Step 16. They are shown as two calls to clarify the functions being

performed.

Figure 103. Sequence of socket calls with an iterative server

128 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

3. The ACCEPT call obtains a new socket (1). Socket 1 is used to handle the

transaction. After this completed, socket 1 closes.

4. Control returns to the SELECT call, which then waits for the next connection

request.

The disadvantage of an iterative server is that it remains blocked for the duration

of a transaction, as described in Chapter 1, “Introduction to CICS TCP/IP,” on

page 1.

4. The client CICS TCP/IP application

Figure 104 shows the sequence of calls in a CICS client-remote server setup. The

calls are similar to the previous examples.

 Figure 104 shows that the server can be on any processor and can run under any

operating system, provided that the combined software-hardware configuration

supports a TCP/IP server.

For simplicity, the figure shows an iterative server. A concurrent server would need

a child server in the remote processor and an adjustment to the calls according to

the model in Figure 102 on page 125.

A CICS server issues a READ call to read the client’s first message, which contains

the CICS transaction name of the required child server. When the server is in a

non-CICS system, application design must specify how the first message from the

CICS client indicates the service required (in Figure 104, the first message is sent

by a WRITE call).

Remote Server

Another operating system z/OS

TCP/IP
implementation
with socket
interface

TCP/IP
for

z/OS

CICS address space

Sockets
for CICS

Client

Iterative server

INITAPI

SOCKET INITAPI

BIND SOCKET

LISTEN CONNECT

ACCEPT

READ/WRITE

READ/WRITE

CLOSE CLOSE

CICS Client

Figure 104. Sequence of socket calls between a CICS client and a remote iterative server

Chapter 6. Application programming guide 129

If the server is a concurrent server, this indication is typically the name of the child

server. If the server is iterative, as in Figure 104, and all client calls require the

same service, this indication might not be necessary.

Socket addresses

Socket addresses are defined by specifying the address family and the address of

the socket in the Internet. In CICS TCP/IP, the address is specified by the IP

address and port number of the socket.

Address family (domain)

CICS TCP/IP supports the AF_INET and AF_INET6 TCP/IP addressing family (or

domain, as it is called in the UNIX system). This is the Internet domain, denoted

by AF_INET or AF_INET6 in C. Many of the socket calls require you to define the

domain as one of their parameters.

A socket address is defined by the IP address of the socket and the port number

allocated to the socket.

IP addresses

IP addresses are allocated to each TCP/IP services address on a TCP/IP Internet.

Each address is a unique 32-bit (an IPv4 Internet Address) or a unique 128-bit (an

IPv6 Internet Address) quantity defining the host’s network and the particular

host. A host can have more than one IP address if it is connected to more than one

network (a so-called multihomed host).

Ports

A host can maintain several TCP/IP connections at one time. One or more

applications using TCP/IP on the same host are identified by a port number. The

port number is an additional qualifier used by the system software to get data to

the correct application. Port numbers are 16-bit integers; some numbers are

reserved for particular applications and are called well-known ports (for example,

23 is for TELNET).

Address structures

The address structure depends on the IP addressing family. An IPv4 socket address

in an IP addressing family is comprised of the following four fields:

Address family

Set to AF_INET in C, or to a decimal 2 in other languages.

Port Port used by the application, in network byte order (which is explained in

“Network byte order” on page 132).

IPv4 address

The IPv4 address of the network interface used by the application. It is

also in network byte order.

Character array

Should always be set to all zeros.

An IPv6 socket address in an IP addressing family is comprised of the following

five fields:

Address family

Set to AF_INET6 in C or to a decimal 19 in other languages.

130 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Port Port used by the application, in network byte order (which is explained in

“Network byte order” on page 132).

Flow Information

Four bytes in binary format indicating traffic class and flow label. This

field is currently not implemented.

IPv6 address

The IPv6 address of the network interface used by the application. It is in

network byte order.

Scope ID

Used to specify link scope for an IPv6 address as a interface index. If

specified, and the destination is not link local, the socket call fails.

For COBOL, PL/I, and assembler language programs

The address structure of an IPv4 Internet socket address should be defined as

follows:

 Parameter Assembler COBOL PL/I

IPv4 NAME

STRUCTURE:

FAMILY H PIC 9(4) BINARY FIXED BIN(15)

PORT H PIC 9(4) BINARY FIXED BIN(15)

ADDRESS F PIC 9(8) BINARY FIXED BIN(31)

ZEROS XL8 PIC X(8) CHAR(8)

The address structure of an IPv6 Internet socket address should be defined as

follows:

 Parameter Assembler COBOL PL/I

IPv6 NAME

STRUCTURE:

FAMILY H PIC 9(4) BINARY FIXED BIN(15)

PORT H PIC 9(4) BINARY FIXED BIN(15)

FLOWINFO F PIC 9(8) BINARY FIXED BIN(31)

ADDRESS XL16 two PIC 9(16) BINARY CHAR(16)

SCOPE ID F PIC 9(8) BINARY FIXED BIN(31)

For C programs

The structure of an IPv4 Internet socket address is defined by the sockaddr_in

structure, which is found in the IN.H header file. The structure of an IPv6 Internet

socket address structure is defined by the sockaddr_in6 structure, which is found in

the IN.H header file. The format of these structures is shown in Table 19 on page

160.

MVS address spaces

Figure 105 on page 132 shows the relationship between TCP/IP and CICS in terms

of MVS address spaces.

Chapter 6. Application programming guide 131

Within each CICS region, server and client processes are allocated subtask

numbers. TCP/IP treats each CICS region together with its application programs as

a client application. Because of this, the address space and subtask of each CICS

TCP/IP application is called its CLIENTID. This applies to CICS TCP/IP servers as

well as to clients.

A single task can support up to 65535 sockets. However, the maximum number of

sockets that the TCP/IP address space is capable of supporting is determined by

the value of MAXSOCKETS. Therefore, using multiple tasks, a single CICS region

can support a number of sockets up to the setting of MAXSOCKETS, which has a

maximum possible value of 16 777 215.

MAXFILEPROC limits the number of sockets per process. Because CICS is

considered a process, MAXFILEPROC can limit the number of files allocated for

the CICS region. Ensure that MAXFILEPROC is set to accommodate the total

number of sockets used by all tasks running in the region.

The structure of CLIENTID is shown in Table 11. With CICS TCP/IP, the domain is

always AF_INET, so the name (that is, address space) and subtask are the items of

interest.

 Table 11. CLIENTID structures

C structure COBOL structure

struct clientid {

 int domain;

 char name[8];

 char subtaskname[8];

 char reserved[20];

};

CLIENTID STRUCTURE:

 01 CLIENTID.

 02 DOMAIN PIC 9(8) BINARY.

 02 NAME PIC X(8).

 02 TASK PIC X(8).

 02 RESERVED PIC X(20).

Network byte order

Ports and addresses are specified using the TCP/IP network byte ordering

convention, which is known as big endian.

In a big endian system, the most significant byte comes first. By contrast, in a little

endian system, the least significant byte comes first. MVS uses the big endian

convention; because this is the same as the network convention, CICS TCP/IP

applications do not need to use any conversion routines, such as htonl, htons,

ntohl, and ntohs.

Figure 105. MVS address spaces

132 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Note: The socket interface does not handle differences in data byte ordering within

application data. Sockets application writers must handle these differences

themselves.

GETCLIENTID, GIVESOCKET, and TAKESOCKET

The socket calls GETCLIENTID, GIVESOCKET, and TAKESOCKET are unique to

the IBM implementation of the socket interface. In CICS TCP/IP, they are used

with the EXEC CICS START and EXEC CICS RETRIEVE commands to make a

socket available to a new process. This is shown in Figure 106.

 Figure 106 shows the calls used to make a listener socket available to a child server

process. It shows the following steps:

1. The listener calls GETCLIENTID. This returns the listener’s own CLIENTID

(CLIENTID-L), which comprises the MVS address space name and subtask

identifier of the listener. The listener transaction needs access to its own

CLIENTID for step 3.

2. The listener calls GIVESOCKET, specifying a socket descriptor and the

CLIENTID of the child server.

If the listener and child server processes are in the same CICS region (and so in

the same address space), the MVS address space identifier in CLIENTID can be

set to blanks. This means that the listener’s address space is also the child’s

address space.

If the listener and child server processes are in different CICS regions, enter the

new address space and subtask.

In the CLIENTID structure, the supplied listener sets the address space name and

subtask identifier to blanks. This makes the socket available to a TAKESOCKET

command from any task in the same MVS image, but only the child server

receives the socket descriptor number, so the exposure is minimal. For total

integrity, the subtask identifier of the child server should be entered.

Listener
(with clientid CLIENTID-L)

Child server
(with clientid CLIENTID-CS)

1. Call GETCLIENTID
-returns CLIENTID-L

2. Call GIVESOCKET
-specifies CLIENTID-CS

3. Call EXEC CICS START
-specifies CLIENTID-L

4. Call EXEC CICS RETRIEVE
returns CLIENTID-L in the
INTO parameter

5. Call TAKESOCKET
specifies CLIENTID-L

Figure 106. Transfer of CLIENTID information

Chapter 6. Application programming guide 133

3. The listener performs an EXEC CICS START. In the FROM parameter, the

CLIENTID-L, obtained by the previous GETCLIENTID, is specified. The listener

is telling the new child server where to retrieve its socket from in step 5.

4. The child server performs an EXEC CICS RETRIEVE. In the INTO parameter,

CLIENTID-L is retrieved.

5. The child server calls TAKESOCKET, specifying CLIENTID-L as the process from

which it wants to take a socket.

The IBM listener

In a CICS system based on SNA terminals, the CICS terminal management

modules perform the functions of a concurrent server. Because the TCP/IP

interface does not use CICS terminal management, CICS TCP/IP provides these

functions in the form of a CICS application transaction, the listener. The CICS

transaction ID of the IBM distributed listener is CSKL. This transaction is defined

at installation to execute the EZACIC02 program and is to be further referenced as

the listener. This transaction ID can be configured to a transaction ID suitable for

the user’s requirements through the use of the EZACICD macro or the EZAC CICS

transaction and the accompanying RDO transaction definition.

The listener performs the following functions:

v It issues appropriate TCP/IP calls to listen on the port specified in the

configuration file and waits for incoming connection requests issued by clients.

The port number must be reserved in the hlq.TCPIP.PROFILE to the CICS region

using the TCP/IP CICS sockets interface.

v It registers and deregisters with WLM for load balancing in a sysplex

environment.

– WLM registration is performed immediately after the listener socket is

activated. It is performed by invoking EZACIC12, which checks the

Configuration File record for the presence of WLM Group Names and

performs registration for those groups specified.

– WLM deregistration is performed for any of the following conditions:

- Request of a listener Quiesce, by either an EZAO STOP or a CEMT

PERFORM SHUTDOWN command. In this case, deregistration is done

when the listening socket is closed.

- Request for an Immediate Shutdown using an EZAO STOP. In this case,

deregistration is done when the listener detects the request.

- Abnormal termination of the listener:

v Fatal error related to the listening socket.

v Abend of the subtask.

v CICS immediate termination.

v CICS Abend.

In these cases, deregistration is done when the listener detects the error.
v When an incoming connection request arrives, the listener accepts it and obtains

a new socket to pass to the CICS child server application program.

v The standard listener starts the CICS child server transaction based on

information in the first message on the new connection. The format of this

information is given in “Listener input format” on page 135. For the enhanced

listener, it starts the CICS child server transaction based on information in the

TCP/IP CICS configuration file, EZACONFG.

134 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

v It waits for the child server transaction to take the new socket and then issues

the close call. When this occurs, the receiving application assumes ownership of

the socket and the listener has no more interest in it.

The listener program is written so that some of this activity goes on in parallel. For

example, while the program is waiting for a new server to accept a new socket, it

listens for more incoming connections. The program can be in the process of

starting 49 child servers simultaneously. The starting process begins when the

listener accepts the connection and ends when the listener closes the socket it has

given to the child server.

Listener input format

The standard listener requires the following input format from the client in its first

transmission. The client should then wait for a response before sending any

subsequent transmissions. Input can be in uppercase or lowercase. The commas are

required.

Note: Because the listener cannot distinguish between a comma used as a

delimiter in the listener's initial message and a comma that is part of the

client-in-data format, the client-in-data format should not contain a comma.

In text such as x'2C' in ASCII data or such as '6B' in EBCDIC data, the single

quote can be interpreted as a comma.

��
 kc

tran

,

,

client-in-data

ic

,

hhmmss

td

��

tran

The CICS transaction ID (in uppercase) that the listener is going to start. This

field can be one to four characters.

client-in-data

Optional. Application data, used by the optional security exit

9 or the server

transaction. The maximum length of this field is a 40-byte character (35 bytes,

plus one byte filler and 4 bytes for startup type).

/ic/td/kc

Optional. The startup type that can be either KC for CICS task control, IC for

CICS interval control or TD for CICS transient data. These can also be entered

in lowercase (kc,ic, or td). If this field is left blank, startup is immediate

using CICS task control (KC). KC or kc can be specified to indicate that the child

server task is started using EXEC CICS START with no delay interval. This is

the same as specifying IC,000000.

hhmmss

Optional. Hours, minutes, and seconds for interval time if the transaction is

started using interval control. All six digits must be given.

Note: TD ignores the timefield.

9. See “Writing your own security/transaction link module for the listener” on page 143

Chapter 6. Application programming guide 135

|

|
|
|
|
|

|
|
|
|
|
|
|

Examples

The following are examples of client input and the listener processing that results

from them. The data fields referenced can be found in “Listener output format.”

Note: Parameters are separated by commas.

 Example Listener response

TRN1,userdataishere It starts the CICS transaction TRN1 using task control, and

passes to it the data userdataishere in the field

CLIENT-IN-DATA.

TRN2,,IC,000003 It starts the CICS transaction TRN2 using interval control,

without user data. There is a 3-second delay between the

initiation request from the listener and the transaction

startup in CICS.

TRN3,userdataishere,TD It writes a message to the transient data queue named TRN3

in the format described by the structure

TCPSOCKET-PARM, described in “Listener output format.”

The data contained in userdataishere is passed to the field

CLIENT-IN-DATA. This queue must be an intrapartition

queue with trigger-level set to 1. It causes the initiation of

transaction TRN3 if it is not already active. This transaction

should be written to read the transient data queue and

process requests until the queue is empty.

This mechanism is provided for those server transactions

that are used very frequently and for which the overhead of

initiating a separate CICS transaction for each server request

could be a performance concern.

TRN3,,TD It causes data to be placed on transient data queue TRN3,

which in turn causes the start or continued processing of the

CICS transaction TRN3, as described in the TRN3 previous

example. There is no user data passed.

TRN4 It starts the CICS transaction TRN4 using task control. There

is no user data passed to the new transaction.

Listener output format

There are two different formats for the listener output; one for child server tasks

started through a standard listener and one for child server tasks started through

the enhanced listener.

Recommendations: The listener output format now supports an IPv6 socket

address structure for both the standard and the enhanced listener. The size of the

standard listener output format has increased. Child server programs should

consider the following:

v A child server transaction program, using the EXEC CICS RETRIEVE function to

get the data passed to it by the listener, should expand the storage it has

allocated to contain the IPv6 socket address structure. The LENGTH specified on

the EXEC CICS RETRIEVE function should reflect the amount of storage

allocated to contain the listener output format. The LENGERR flag is raised if

the LENGTH is smaller than the amount of data sent. Coding a HANDLE

condition allows you to contain this.

v A child server transaction program, using the EXEC CICS READQ TD function

to get the data placed on a CICS Transient Data Queue by the listener, should

expand the storage it has allocated to contain the IPv6 socket address structure.

136 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

The LENGTH specified on the EXEC CICS READQ TD function should reflect

the amount of storage allocated to contain the listener output format.

Table 12 shows the format of the listener output data area passed to the child

server through a standard listener.

 Table 12. Listener output format - Standard listener

Description Offset Format Value

Socket descriptor

being given to

the child subtask

0 Fullword binary Socket number to be specified on

the TAKESOCKET command by

the child subtask

MVS address

space identifier

+4 8-byte character Name of the listener’s address

space

TCP/IP task

identifier

+12 8-byte character The listener’s task identifier

Data area +20 35-byte character Either the CLIENT-IN-DATA from

the listener (if FORMAT is

STANDARD) or the first 35 bytes

data that was read by the listener

(if FORMAT is ENHANCED)

OTE +55 1-byte character Indicates that the IP CICS socket

interface is using CICS Open

Transaction Environment.

1 Using OTE

0 Using MVS subtasks

Filler +55 1-byte character Unused byte for fullword

alignment

Socket address

structure

+56 28 bytes

Addressing

family

+56 Halfword binary Is 2 to indicate AF_INET or 19 to

indicate AF_INET6

IPv4 portion of

the socket

address structure

+58 26 bytes See the next three fields

Port number +58 Halfword binary The client’s port number

32-bit IPv4

address

+60 Fullword binary The IPv4 address of the client’s

host

Unused portion +64 8 bytes Reserved

+72 12 bytes For alignment with the IPv6 socket

address structure

IPv6 portion of

the socket

address structure

+58 26 bytes See the next four fields

Port number +58 Halfword binary The client’s port number

Flow Information +60 Fullword binary Indicates traffic class and flow

label

128-bit IPv6

address

+64 16 bytes The IPv6 address of the client’s

host

Scope ID +80 Fullword binary Indicates link scope

Reserved +84 17 fullwords Reserved for future use

Chapter 6. Application programming guide 137

For a standard listener, the following COBOL definition is used:

01 TCPSOCKET-PARM.

 05 GIVE-TAKE-SOCKET PIC 9(8) COMP.

 05 LSTN-NAME PIC X(8).

 05 LSTN-SUBNAME PIC X(8).

 05 CLIENT-IN-DATA PIC X(35).

 05 OTE PIC X(1).

 05 SOCKADDR-IN-PARM.

 10 SOCK-FAMILY PIC 9(4) BINARY.

 10 SOCK-DATA PIC X(26).

 10 SOCK-SIN REDEFINES SOCK-DATA.

 15 SOCK-SIN-PORT PIC 9(4) BINARY.

 15 SOCK-SIN-ADDR PIC 9(8) BINARY.

 15 FILLER PIC X(8).

 15 FILLER PIC X(12).

 10 SOCK-SIN6 REDEFINES SOCK-DATA.

 15 SOCK-SIN6-PORT PIC 9(4) BINARY.

 15 SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.

 15 SOCK-SIN6-ADDR.

 20 FILLER PIC 9(16) BINARY.

 20 FILLER PIC 9(16) BINARY.

 15 SOCK-SIN6-SCOPEID PIC 9(8) BINARY.

 05 FILLER PIC X(68).

Figure 107. Example of COBOL layout of the listener output format - Standard listener

DCL 1 TCPSOCKET_PARM,

 2 GIVE_TAKE_SOCKET FIXED BIN(31),

 2 LSTN_NAME CHAR(8),

 2 LSTN_SUBNAME CHAR(8),

 2 CLIENT_IN_DATA CHAR(35),

 2 OTE CHAR(1),

 2 FILLER_1 CHAR(1),

 2 SOCK_FAMILY FIXED BIN(15),

 2 SOCK_SIN_PORT FIXED BIN(15),

 2 SOCK_SIN_ADDR FIXED BIN(31),

 2 SOCK_SIN_RESERVED CHAR(8),

 2 SOCK_SIN_FILLER CHAR(12),

 2 FILLER_68 CHAR(68);

Figure 108. Example of PL/I layout of the listener output format - Standard listener with an

IPv4 socket address structure

DCL 1 TCPSOCKET_PARM,

 2 GIVE_TAKE_SOCKET FIXED BIN(31),

 2 LSTN_NAME CHAR(8),

 2 LSTN_SUBNAME CHAR(8),

 2 CLIENT_IN_DATA CHAR(35),

 2 OTE CHAR(1),

 2 SOCK_FAMILY FIXED BIN(15),

 2 SOCK_SIN6_PORT FIXED BIN(15),

 2 SOCK_SIN6_FLOWINFO FIXED BIN(31),

 2 SOCK_SIN6_ADDR CHAR(16),

 2 SOCK_SIN6_SCOPEID FIXED BIN(31),

 2 FILLER_68 CHAR(68);

Figure 109. Example of PL/I layout of the listener output format - Standard listener with an

IPv6 socket address structure

138 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 13 on page 140 shows the format of the listener output data area passed to

the child server through the enhanced listener.

Note: With the enhanced listener, no CLIENT-IN-DATA is extracted from the initial

client data. The child server program must either read the initial client data

itself (if PEEKDATA is YES) or obtain it from DATA-AREA-2 (if PEEKDATA

is NO). If a listener is converted from a standard listener to an enhanced

listener, its corresponding child server applications must be changed to

handle the larger transaction initial message (TIM) by specifying a large

enough length on the EXEC CICS RETRIEVE command or on the EXEC

CICS READQ TD command. Otherwise, the command fails with a

LENGERR response and the child server task could abend.

 TCPSOCKET_PARM DS 0C

 GIVE_TAKE_SOCKET DS F

 LSTN_NAME DS CL8

 LSTN_SUBNAME DS CL8

 CLIENT_IN_DATA DS CL35

 OTE DS CL1

 SOCKADDR DS 0F

 SOCK_FAMILY DS H

 SOCK_DATA DS 0C

 SOCK#LEN EQU *-SOCKADDR

 ORG SOCK_DATA

 SOCK_SIN DS 0C

 SOCK_SIN_PORT DS H

 SOCK_SIN_ADDR DS CL4

 DS CL8

 DS 20F

 SOCK_SIN#LEN EQU *-SOCK_SIN

 ORG SOCK_DATA

 SOCK_SIN6 DS 0C

 SOCK_SIN6_PORT DS H

 SOCK_SIN6_FLOWINFO DS CL4

 SOCK_SIN6_ADDR DS CL16

 SOCK_SIN6_SCOPE_ID DS CL4

 SOCK_SIN6#LEN EQU *-SOCK_SIN6

 ORG

 DS CL68

Figure 110. Example of Assembler layout of the listener output format - Standard listener

supporting both an IPv4 and an IPv6 socket address structure

struct sock_tim {

 unsigned long give_take_socket;

 char listen_name[8];

 char listen_taskid[8];

 char client_in_data[35];

 char ote[1];

 union {

 struct sockaddr_in sin;

 struct sockaddr_in6 sin6;

 } sockaddr_in_parm;

 char reserved2[68];

}

Figure 111. Example of C structure of the listener output format - Standard listener supporting

both an IPv4 and an IPv6 socket address structure

Chapter 6. Application programming guide 139

Table 13. Listener output format - Enhanced listener

Description Offset Format Value

Socket descriptor

being given to

the child subtask

0 Fullword binary Socket number to be specified on

the TAKESOCKET command by

the child subtask

MVS address

space identifier

+4 8-byte character Name of the listener’s address

space

TCP/IP task

identifier

+12 8-byte character The listener’s task identifier

Data area +20 35-byte character Either the CLIENT-IN-DATA from

listener (if FORMAT is

STANDARD) or the first 35 bytes

of data read by the listener (if

FORMAT is ENHANCED)

OTE +55 1-byte character Indicates that the IP CICS socket

interface is using CICS’s Open

Transaction Environment.

1 Using OTE

0 Using MVS subtasks

Socket address

structure

+56 28 bytes

Addressing

family

+56 Halfword binary Is 2 to indicate AF_INET or 19 to

indicate AF_INET6

IPv4 portion of

the socket

address structure

+58 26 bytes See the next three fields

Port number +58 Halfword binary The client’s port number

32-bit IPv4

address

+60 Fullword binary The IPv4 address of the client’s

host

Unused portion +64 8 bytes Reserved

+72 12 bytes For alignment with the IPv6 socket

address structure

IPv6 portion of

the socket

address structure

+58 26 bytes See the next four fields

Port number +58 Halfword binary The client’s port number

Flow Information +60 Fullword binary Indicates traffic class and flow

label

128-bit IPv6

address

+64 16 bytes The IPv6 address of the client’s

host

Scope ID +80 Fullword binary Indicates link scope

Reserved +84 17 fullwords Reserved for future use

Data length +152 Halfword binary The length of the data received

from the client. If the PEEKDATA

option was configured, Data length

is zero with no data in Data area-2.

Data area - 2 +154 Length

determined by

the previous field

The data received from the client

starting at position 1

140 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

For the enhanced listener, the following COBOL definition is used:

The value of xxx is at least equal to the largest MSGLENgth parameter for the

listeners that can start this application.

The value of xxx is at least equal to the largest MSGLENgth parameter for the

listeners that can start this application.

01 TCPSOCKET-PARM.

 05 GIVE-TAKE-SOCKET PIC 9(8) COMP.

 05 LSTN-NAME PIC X(8).

 05 LSTN-SUBNAME PIC X(8).

 05 CLIENT-IN-DATA PIC X(35).

 05 OTE PIC X(1).

 05 SOCKADDR-IN-PARM.

 10 SOCK-SIN REDEFINES SOCK-DATA.

 15 SOCK-SIN-PORT PIC 9(4) BINARY.

 15 SOCK-SIN-ADDR PIC 9(8) BINARY.

 15 FILLER PIC X(8).

 15 FILLER PIC X(12).

 10 SOCK-SIN6 REDEFINES SOCK-DATA.

 15 SOCK-SIN6-PORT PIC 9(4) BINARY.

 15 SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.

 15 SOCK-SIN6-ADDR.

 20 FILLER PIC 9(16) BINARY.

 20 FILLER PIC 9(16) BINARY.

 15 SOCK-SIN6-SCOPEID PIC 9(8) BINARY.

 05 FILLER PIC X(68).

 05 CLIENT-IN-DATA-LENGTH PIC 9(4) BINARY.

 05 CLIENT-IN-DATA-2 PIC X(xxx).

Figure 112. Example of COBOL layout of the listener output format - Enhanced listener

DCL 1 TCPSOCKET_PARM,

 2 GIVE_TAKE_SOCKET FIXED BIN(31),

 2 LSTN_NAME CHAR(8),

 2 LSTN_SUBNAME CHAR(8),

 2 CLIENT_IN_DATA CHAR(35),

 2 OTE CHAR(1),

 2 SOCK_FAMILY FIXED BIN(15),

 2 SOCK_SIN_PORT FIXED BIN(15),

 2 SOCK_SIN_ADDR FIXED BIN(31),

 2 SOCK_SIN_RESERVED CHAR(8),

 2 SOCK_SIN_FILLER CHAR(12),

 2 FILLER_68 CHAR(68),

 2 CLIENT_IN_DATA_LENGTH FIXED BIN(15),

 2 CLIENT_IN_DATA_2 CHAR(xxx);

Figure 113. Example of PL/I layout of the listener output format - Enhanced listener with an

IPv4 socket address structure

Chapter 6. Application programming guide 141

The value of xxx is at least equal to the largest MSGLENgth parameter for the

listeners that can start this application.

 DCL 1 TCPSOCKET_PARM,

 2 GIVE_TAKE_SOCKET FIXED BIN(31),

 2 LSTN_NAME CHAR(8),

 2 LSTN_SUBNAME CHAR(8),

 2 CLIENT_IN_DATA CHAR(35),

 2 OTE CHAR(1),

 2 SOCK_FAMILY FIXED BIN(15),

 2 SOCK_SIN6_PORT FIXED BIN(15),

 2 SOCK_SIN6_FLOWINFO FIXED BIN(31),

 2 SOCK_SIN6_ADDR CHAR(16),

 2 SOCK_SIN6_SCOPEID FIXED BIN(31),

 2 FILLER_68 CHAR(68),

 2 CLIENT_IN_DATA_LENGTH FIXED BIN(15),

 2 CLIENT_IN_DATA_2 CHAR(xxx);

Figure 114. Example of PL/I layout of the listener output format - Enhanced listener with an

IPv6 socket address structure

TCPSOCKET_PARM DS 0C

GIVE_TAKE_SOCKET DS F

LSTN_NAME DS CL8

LSTN_SUBNAME DS CL8

CLIENT_IN_DATA DS CL35

OTE DS CL1

SOCKADDR DS 0F

SOCK_FAMILY DS H

SOCK_DATA DS 0C

SOCK#LEN EQU *-SOCKADDR

 ORG SOCK_DATA

SOCK_SIN DS 0C

SOCK_SIN_PORT DS H

SOCK_SIN_ADDR DS CL4

 DS CL8

 DS 20F

SOCK_SIN#LEN EQU *-SOCK_SIN

 ORG SOCK_DATA

SOCK_SIN6 DS 0C

SOCK_SIN6_PORT DS H

SOCK_SIN6_FLOWINFO DS CL4

SOCK_SIN6_ADDR DS CL16

SOCK_SIN6_SCOPE_ID DS CL4

SOCK_SIN6#LEN EQU *-SOCK_SIN6

 ORG

 DS CL68

CLIENT_IN_DATA_LENGTH DS H

CLIENT_IN_DATA_2 DS 0CL

Figure 115. Example of assembler layout of the listener output format - Enhanced listener

supporting both an IPv4 and an IPv6 socket address structure

142 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

The value of xxx is at least equal to the largest MSGLENgth parameter for the

listeners that can start this application.

Writing your own security/transaction link module for the

listener

The listener process provides an exit point for those users who want to write and

include a module that performs the following:

v Check to indicate whether the expanded security/transaction input format is

used

v Security check before a CICS transaction is initiated

The exit point is implemented so that if a module is not provided, all valid

transactions are initiated.

If you write a security/transaction module, you can name it anything you want, as

long as you define it in the configuration data set. (In previous releases, you

needed to name the module EZACICSE; you can still use that module name. You

can write this program in COBOL, PL/I, or assembler language and must provide

an appropriate CICS program definition.

Note: Specify the name of the security/transaction module in the SECEXIT field in

Alter or Define. If you do not name the module, CICS assumes you do not

have one. See Figure 63 on page 82 for more information.

Just before the child server task creation process, the listener invokes the

security/transaction module by a conditional CICS LINK passing a COMMAREA.

The listener passes a data area to the module that contains information for the

module to use for security checking and a 1-byte switch. Your security/transaction

module should perform a security check and set the switch accordingly. Included

in this data is the OTE indicator which indicates when the IP CICS socket interface

is using CICS’s open transaction environment. The security exit should follow

threadsafe programming practices to ensure that CICS continues to execute the

listener on an open API TCB.

When the security/transaction module returns, the listener checks the state of the

switch and initiates the transaction if the switch indicates security clearance. The

module can perform any function that is valid in the CICS environment. Excessive

processing, however, could cause performance degradation.

struct sock_tim {

 unsigned long give_take_socket;

 char listen_name[8];

 char listen_taskid[8];

 char client_in_data[35];

 char ote[1];

 union {

 struct sockaddr_in sin;

 struct sockaddr_in6 sin6;

 } sockaddr_in_parm;

 char reserved2[68];

 short client_in_data_length;

 char client_in_data_2[xxx];

}

Figure 116. Example of C structure of the listener output format - Enhanced listener

supporting both an IPv4 and an IPv6 socket address structure

Chapter 6. Application programming guide 143

A field is supplied to indicate if the expanded security/transaction input format is

used. If used, fields also exist for the listener’s IP address and port number, a data

length field, and a second data area (up to MSGLENTH in length). Table 14 shows

the data area used by the security/transaction module.

 Table 14. Security/transaction exit data

Description Offset Format Value

CICS transaction

identifier

0 4-byte character CICS transaction requested by

the client or supplied by the

CSTRANID parameter.

Data area +4 35-byte character If the FORMAT parameter value

is STANDARD, then this

contains the 35-byte application

data that was extracted from the

client’s initial data. Otherwise, it

contains up to the first 35 bytes

of data sent by the client (The

MSGLENTH value determines

the limit).

Security/transaction

exit data level

+39 1-byte character Indicates whether or not this

data area is in the expanded

format:

1 Expanded format (the

area in green is

included)

0 Not expanded (the area

in green is not

included)

OTE indicator +40 1-byte character Indicates whether the IP CICS

socket interface is using CICS’s

open transaction environment.

1 Using OTE

0 Using MVS subtasks

TTLS indicator +41 1-byte character Indicates whether this

connection is secured using

AT-TLS.

1 This connection is

secured using AT-TLS

0 This connection is not

secured using AT-TLS

Register Application

Data

+42 1-byte character Indicates that application data is

registered against the accepted

connection to be given. This flag

has the value 1 when either the

LAPPLD value is yes or the

LAPPLD parameter inherited the

APPLDAT=YES specification.

1 Application data is

registered

0 Application data is not

registered

Reserved +43 1-byte character Reserved for IBM use.

144 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||

||||

|
|
|||
|
|

||||
|
|
|
|
|
|
|
|

|
|
|||
|
|

||
|
|

||
|
|

||||
|
|

||

||

||||
|
|

||
|

||
|

|
|
|||
|
|
|
|
|
|

||
|

||
|

||||

Table 14. Security/transaction exit data (continued)

Description Offset Format Value

Action +44 2-byte character Method of starting the task:

IC Interval control

KC Task control

TD Transient data

Interval control time +46 6-byte character Interval requested for IC start.

Has the form hhmmss.

Address family +52 Halfword binary Network address family. The

value contains a 2 to indicate

AF_INET and a 19 to indicate

AF_INET6.

Client’s port +54 Halfword binary The number of the requestor’s

port.

Client’s IPv4 address +56 Fullword binary The IPv4 address of the

requestor’s host.

Switch +60 1-byte character

1 Permit the transaction

Not 1 Prohibit the transaction

Switch-2 +61 1-byte character

1 Listener sends message

to the client

Not 1 Security/transaction

exit sends message to

client

Terminal

identification

+62 4-byte character Return binary zeroes if no

terminal is to be associated with

the new task. Otherwise, return

the CICS terminal ID to be

associated with the new task.

Socket descriptor +66 Halfword binary Current socket descriptor.

Chapter 6. Application programming guide 145

|

||||

||||

||

||

||

||||
|

||||
|
|
|

||||
|

||||
|

|||
||

||

|||
||
|

||
|
|

|
|
|||
|
|
|
|

||||

Table 14. Security/transaction exit data (continued)

Description Offset Format Value

User ID +68 8-byte character A user ID can be returned so

that it is associated with the new

task. This is mutually exclusive

from terminal ID.

v If the GETTID value is YES in

the listener definition and the

listener is able to obtain the

user ID that is associated with

the connection client’s

certificate, then this field is

initialized using that user ID.

Otherwise, it is initialized as

binary zeroes. The security

exit can use that user ID to

identify the client.

v If the security exit permits

the transaction and does not

overwrite this field, then the

child server task inherits this

user ID (unless the start type

is TD).

v If the security exit overwrites

this field with nulls or blanks,

then the child server inherits

the listener task’s user ID

(unless the start type is TD).

v If the security exit overwrites

this field with another user

ID, then the child server task

inherits that user ID (unless

the start type is TD). The user

ID under which the listener

executes must have RACF

surrogate authority to use any

user ID that can be specified

by this field.

See the CICS RACF Security

Guide for details.

Listener’s IPv4

address

+76 Fullword binary The local IPv4 address

associated with this new TCP/IP

connection.

Listener’s port +80 Halfword binary The listener’s port number.

Listener’s IPv6

address

+82 16 bytes binary The local IPv6 address

associated with this new TCP/IP

connection.

Listener’s scope ID +98 Fullword binary The scope ID of the listener’s

IPv6 address.

Client’s IPv6 address +102 16 bytes binary The IPv6 address of the

requestor’s host.

Client’s scope ID +118 Fullword binary The scope ID of the listener’s

IPv6 address.

Client’s certificate

length

+122 Halfword binary Indicates whether the client’s

certificate exists.

146 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

||||

||||
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|||
|
|

||||

|
|
|||
|
|

||||
|

||||
|

||||
|

|
|
|||
|

Table 14. Security/transaction exit data (continued)

Description Offset Format Value

Client’s certificate

address

+124 Fullword binary The address of the client’s

certificate.

Reserved +128 34 bytes Reserved for future use.

Data length +162 Halfword binary The length of the data received

from the client.

Data area - 2 +164 Length determined

by the previous field

The data received from the client

starting at position 1. If this is

the enhanced listener, the first 35

bytes are the same as Data

Area-1.

Notes:

1. The security/user exit can change the value of the following fields:

v CICS transaction identifier

v Data area

v Action

v Register Application Data

v Interval control time

v Address family

v Client’s port

v Client’s IPv4 address

v Switch

v Terminal identification (output only)

v User ID

v Client’s IPv6 address

v Client’s Scope ID

v Data length

v Data area -2

2. Although the security exit can alter the contents of the Data area, Data length, and Data

area -2 fields when PEEK=YES, the changed values are not reflected to the child server

in the listener input data. The child server must read the data itself if the listener is

configured with PEEK=YES.

Use the EZACICSX assembler macro contained in the hlq.SEZACMAC dataset to

format the security/user exit COMMAREA pass by the listener.

 Table 15 illustrates the listener configuration in contrast with the connected clients

address family and indicates the contents of the IPv4 and IPv6 IP address fields

presented to the security/transaction exit.

 Table 15. Listener configuration presented to security/transaction exit

Listeners AF

configuration

Connected

client’s AF

Exits

address

family

Exits

client’s

IPv4

address

Exits

client’s

IPv6

address

Exits

listener’s

IPv4

address

Exits

listener’s

IPv6

address

not specified AF_INET AF_INET IPv4 addr zeros IPv4 addr zeros

AF_INET AF_INET AF_INET IPv4 addr zeros IPv4 addr zeros

Chapter 6. Application programming guide 147

|

||||

|
|
|||
|

||||

||||
|

|||
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|

Table 15. Listener configuration presented to security/transaction exit (continued)

Listeners AF

configuration

Connected

client’s AF

Exits

address

family

Exits

client’s

IPv4

address

Exits

client’s

IPv6

address

Exits

listener’s

IPv4

address

Exits

listener’s

IPv6

address

AF_INET6 AF_INET AF_INET6 zeros

IPv4

mapped

IPv6 addr zeros

IPv4

mapped

IPv6 addr

AF_INET6 AF_INET6 AF_INET6 zeros IPv6 addr zeros IPv6 addr

Threadsafe considerations for IP CICS sockets applications

This topic describes how to enable IP CICS sockets applications to exploit the

Open Transaction Environment (OTE) through threadsafe programming.

The IP CICS socket interface includes the IP CICS sockets task-related user exit,

EZACIC01, which is invoked when an application program makes an EZASOKET

request. This includes the following programs:

v EZASOKET

v EZACICSO

v EZACICAL

v using any of the IP CICS C sockets functions that are provided through

EZACIC17 (Programs using IP CICS sockets functions that are provided though

EZACIC07 are not considered threadsafe due to not being re-entrant.)

The IP CICS socket interface manages the process of transferring to TCP/IP and

returning control to the application program when EZASOKET processing is

complete.

When the IP CICS sockets configuration option is specified as OTE=NO, then the

IP CICS sockets task-related user exit operates as a quasi-reentrant task-related

user exit program. It runs on the CICS main TCB (the QR TCB) and uses its own

MVS subtask TCB to process the EZASOKET request. However, when the IP CICS

sockets configuration option is specified as OTE=YES, then the IP CICS socket

interface exploits the Open Transaction Environment (OTE) to enable the IP CICS

sockets task-related user exit to invoke and return from TCP/IP without switching

TCBs. In the OTE, the IP CICS sockets task-related user exit operates as a

threadsafe and open API task-related user exit program; it is automatically enabled

using the OPENAPI option on the ENABLE PROGRAM command during

connection processing. This enables it to receive control on an open L8 mode TCB.

In the OTE, if the user application program that invoked the task-related user exit

conforms to threadsafe coding conventions and is defined to CICS as threadsafe, it

can also run on the L8 TCB. Before its first EZASOKET request, the application

program runs on the CICS main TCB, the QR TCB. When it makes an EZASOKET

request and invokes the task-related user exit, control passes to the L8 TCB, and IP

CICS sockets processing is carried out. On return from TCP/IP, if the application

program is threadsafe, it continues to run on the L8 TCB.

When the correct conditions are met, the use of open TCBs for IP CICS sockets

applications decreases usage of the QR TCB, and avoids TCB switching. An ideal

IP CICS sockets application program for the open transaction environment is a

threadsafe program, containing only threadsafe EXEC CICS commands, and using

148 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

only threadsafe user exit programs. An application like this moves to an L8 TCB

when it makes its first EZASOKET request, and then continues to run on an L8

TCB through any amount of IP CICS sockets requests and application code,

requiring no TCB switching. This situation produces a significant performance

improvement where an application program issues multiple EZASOKET calls. The

gains are also significant when making a DB2 request because the DB2 task-related

user exit also operates as threadsafe and exploits the open transaction

environment. If the application program does not issue many EZASOKET calls, the

performance benefits might not be as significant.

If the execution of a user application involves any actions that are not threadsafe,

CICS switches back to the QR TCB. Such actions are non-threadsafe CICS requests

issued by the program, the use of non-threadsafe task-related user exits, and the

involvement of non-threadsafe global user exits. Switching back and forth between

the open TCB and the QR TCB is detrimental to the application’s performance.

Requirements: In order to gain the performance benefits of the OTE for IP CICS

sockets applications, you must meet the following conditions:

v IP CICS sockets must be configured to use the Open Transaction Environment

with the OTE=YES configuration option.

v The system initialization parameter FORCEQR must be set to NO. FORCEQR

forces programs defined as threadsafe to run on the QR TCB; it can be set to

YES as a temporary measure while problems connected with threadsafe-defined

programs are investigated and resolved. FORCEQR applies to all programs

defined as threadsafe that are not invoked as task-related user exits, global user

exits, or user-replaceable modules.

v The IP CICS sockets application must have threadsafe application logic (that is,

the native language code in between the EXEC CICS commands must be

threadsafe), use only threadsafe EXEC CICS commands, and be defined to CICS

as threadsafe. Only code that has been identified as threadsafe is permitted to

execute on open TCBs. If your IP CICS sockets application is not defined as

threadsafe, or if it uses EXEC CICS commands that are not threadsafe, TCB

switching occurs and some or all of the performance benefits of OTE

exploitation are lost. If your IP CICS sockets application is defined as threadsafe

and it contains non-threadsafe code between the EXEC CICS commands,

unpredictable results can occur.

v Any global user exits on the execution path used by the application must be

coded to threadsafe standards and defined to CICS as threadsafe.

v Any other task-related user exits used by the application must be defined to

CICS as threadsafe or enabled as OPENAPI.

See the CICS Application Programming Guide for information about how to make

application programs and user exit programs threadsafe. By defining a program to

CICS as threadsafe, you are specifying that only the application logic is threadsafe,

not that all the EXEC CICS commands included in the program are threadsafe.

CICS can ensure that EXEC CICS commands are processed safely by switching to

the QR TCB for those commands not yet converted that must be quasi-reentrant.

To permit your program to run on an open TCB, CICS requires you to verify that

your application logic is threadsafe.

The EXEC CICS commands that are threadsafe, and do not involve TCB switching,

are indicated in the command syntax diagrams in the appendices of CICS System

Programming Reference.

Chapter 6. Application programming guide 149

If a user application program in the open transaction environment is not

threadsafe, the IP CICS sockets task-related user exit still runs on an L8 TCB, but

the application program runs on the QR TCB throughout the task. Every time the

program makes an EZASOKET request, CICS switches from the QR TCB to the L8

TCB and back again, so the performance benefits of the open transaction

environment are negated.

Table 16 shows what happens when application programs with different

concurrency attributes invoke the IP CICS sockets task-related user exit.

 Table 16. Different concurrency attributes for IP CICS sockets task-related user exits

Program’s concurrency

attribute

IP CICS sockets task-related

user exit’s operation Effect

QUASIRENT or

THREADSAFE

Quasi-reentrant when

OTE=NO

Application program and

task-related user exit run

under the CICS QR TCB. The

task-related user exit

manages its own TCBs,

switching to and from them

for each EZASOKET request.

QUASIRENT Threadsafe and open API

(when OTE=YES)

Application program runs

under the CICS QR TCB.

Task-related user exit runs

under an L8 TCB, and

EZASOKET calls are

executed under the L8 TCB.

CICS switches to and from

the CICS QR and the L8 TCB

for each EZASOKET call.

THREADSAFE Threadsafe and open API

(when OTE=YES)

OTE exploitation.

Task-related user exit runs

under an open API, L8 TCB,

and EZASOKET calls are

executed under the open

API, L8, TCB. The

application program also

runs on the open API, L8,

TCB when control is

returned to it. No TCB

switches are needed until the

task terminates, or the

program issues a

non-threadsafe CICS

command, which forces a

switch back to the QR TCB

for CICS to ensure resource

integrity.

If you define a program with CONCURRENCY(THREADSAFE), then all routines

that are statically or dynamically called from that program (for example, COBOL

routines) must also be coded to threadsafe standards.

When an EXEC CICS LINK command is used to link from one program to another,

the program link stack level is incremented. However, a routine that is statically

called, or dynamically called, does not involve passing through the CICS command

level interface, and does not cause the program link stack level to be incremented.

With COBOL routines, for a static call, a simple branch and link is used when an

150 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

address is resolved by the Linkage Editor. For a dynamic call, although there is a

program definition involved, this is required only so Language Environment can

load the program. After the load, a simple branch and link is executed. When a

routine is called by either of these methods, CICS does not regard this as a change

of program. The program that called the routine is still considered to be executing,

and the program definition for that program is still considered to be the current

one.

If the program definition for the calling program states

CONCURRENCY(THREADSAFE), then the called routine must also comply with

this specification. Programs with the CONCURRENCY(THREADSAFE) attribute

remain on an open API TCB until they return from a EZASOKET call, and this is

not appropriate for a program that is not threadsafe. For example, consider the

situation where the initial program of a transaction, program A, issues a dynamic

call to program B, which is a COBOL routine. Because the CICS command level

interface was not involved, CICS is unaware of the call to program B, and

considers the current program to be program A. Program B further issues a

EZASOKET call. On return from the EZASOKET call, CICS needs to determine

whether the program can remain on the open API TCB, or whether the program

must switch back to the QR TCB to ensure threadsafe processing. To do this, CICS

examines the CONCURRENCY attribute of what it considers to be the current

program, which is program A. If program A is defined as

CONCURRENCY(THREADSAFE), then CICS allows processing to continue on the

open API TCB. In fact program B is executing, so if processing is to continue safely,

program B must be coded to threadsafe standards.

In summary, to gain the performance benefits of the open transaction environment:

1. IP CICS sockets must be configured to use the open transaction environment by

the use of the OTE=YES configuration option.

2. FORCEQR must be set to NO.

3. The IP CICS sockets application must have threadsafe application logic (that is,

the native language code in between the EXEC CICS commands must be

threadsafe), use only threadsafe EXEC CICS commands, and be defined to CICS

as threadsafe. If the application program is not defined as threadsafe, and so

must operate on the CICS QR TCB, TCB switching occurs for every EZASOKET

request, even if the task-related user exit is running on an open TCB. If the

application program is defined as threadsafe but uses non-threadsafe EXEC

CICS commands, TCB switching occurs for every non-threadsafe EXEC CICS

commands.

4. The IP CICS sockets application must use only threadsafe task-related user exits

and global user exits. If any non-threadsafe exits are used, this forces a switch

back to the QR TCB. If application programs are defined to CICS as

CONCURRENCY(THREADSAFE) and they contain non-threadsafe code,

unpredictable results can occur.

How CICS selects an L8 mode TCB

The CICS dispatcher manages the pool of L8 mode TCBs up to the limit set by the

MAXOPENTCBS system initialization parameter. At any one time, the pool can

consist of some TCBs that are allocated to tasks, and others that are free. For

example, if the maximum number of L8 mode TCBs is set to 10, at a particular

time the pool can consist of 5 TCBs, not all of which are allocated to running tasks.

The CICS dispatcher attaches a new TCB when it cannot find a free TCB that is

suitable. The process of allocating an L8 mode TCB is summarized in the following

steps:

Chapter 6. Application programming guide 151

1. If the transaction already has an L8 mode TCB allocated, it is used.

2. If there is a free L8 mode TCB for the current subspace, it is allocated and used.

3. If the number of open TCBs is less than the MAXOPENTCBS limit, a new L8

mode TCB is created, and associated with the task’s subspace.

4. If the number of open TCBs is at the MAXOPENTCBS limit, but there is a free

L8 mode TCB with the wrong subspace, then the CICS dispatcher destroys it

and creates a new one for the required subspace. This technique avoids

suspending the task until the number of TCBs is less than the pool limit, and is

called stealing. This action is recorded in the CICS dispatcher TCB mode

statistics under the count of TCB steals.

5. If the number of open TCBs is at the MAXOPENTCBS limit and there is no free

open TCB to steal, the task is suspended (with an OPENPOOL wait) until one

becomes free, or the MAXOPENTCBS limit is increased.

The various events that can occur during the TCB allocation process are recorded

in the dispatcher TCB pool statistics, and these are reported by the DFH0STAT

statistics program.

Data conversion routines

CICS uses the EBCDIC data format, whereas TCP/IP networks use ASCII. When

moving data between CICS and the TCP/IP network, your application programs

must initiate the necessary data conversion. Sockets for CICS programs can use

routines provided by TCP/IP Services for:

v Converting data from EBCDIC to ASCII and back (when sending and receiving

data to and from the TCP/IP network) with the SEND, SENDMSG, SENDTO,

READ, READV, RECV, RECVFROM, RECVMSG, WRITE, and WRITEV calls.

v Converting between bit arrays and character strings when using the SELECT or

SELECTEX call.

For details of these routines, see EZACIC04, EZACIC05, and EZACIC06,

EZACIC14, and EZACIC15 in Chapter 8, “Sockets extended API,” on page 223.

Application Transparent Transport Layer Security

Before reading this topic, first read the Application Transparent Transport Layer

Security (AT-TLS) topic of the z/OS Communications Server: IP Configuration Guide.

The z/OS Communications Server TCP/IP stack provides Application Transparent

Transport Layer Security (AT-TLS). This allows socket applications that use the

TCP protocol to transparently use the Secure Socket Layer protocol (TLS/SSL) to

communicate with partners in the network. IP CICS sockets enabled applications

can take advantage of this support. This requires the following:

v The TCP/IP stack must support AT-TLS. This can be determined by the TTLS

parameter on the TCPCONFIG statement.

v An AT-TLS Policy configuration that matches identifiers of the CICS applications

that use it. Examples of identifiers that can be used are whether the application

is a listener or client, the IP addresses, and the ports that are used for

communication. Note that for CICS applications, the AT-TLS identity associated

with the AT-TLS environment is always the user ID of the CICS region. This is

the case even if individual CICS transactions are running under their own

identity.

v SSL key rings and certificates must be created for these applications. For CICS

applications using SSL, the user ID that is associated with the keyring is that of

152 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

the CICS region. See the z/OS Communications Server: IP Configuration Guide for

the RACF commands necessary for creating SSL keyrings and certificates. See

the z/OS Security Server RACF Security Administrator’s Guide for more information

on setting up and managing digital certificates.

v For policy level or application level (such as GETTID) support that requires

mapping SSL Certificates to RACF user IDs see the z/OS Communications Server:

IP Configuration Guide for more information.

Careful consideration must be given for IP CICS sockets-enabled applications that

act as clients connecting outbound because the AT-TLS policy might not be specific

enough to restrict individual CICS users from logging on to and invoking these

clients. Additional CICS security controls such as transaction security and resource

security can be considered in order to limit users’ access to remote hosts. See

“Example of outbound AT-TLS support” on page 154 for more information.

If a CICS listener is AT-TLS enabled but the client does not use SSL, there is a

mismatch; AT-TLS receives unencrypted data when it is expecting encrypted data.

In this case, AT-TLS resets the connection. See the Application Transparent

Transport Layer Security (AT-TLS) topic in the z/OS Communications Server: IP

Configuration Guide for information regarding defining keyrings, client certificates,

mapping them to user IDs, permitting users access to keyrings, and other AT-TLS

details.

When taking advantage of AT-TLS support, CICS application programmers and

TCP/IP administrators must work together to provide the required support. This

can also require communication with RACF administrators.

Example of inbound AT-TLS support

No inbound AT-TLS support is needed for listener port 3010, inbound AT-TLS

support needed for listener port 3011.

Chapter 6. Application programming guide 153

Table 17. Inbound AT-TLS support

AT-TLS Definitions CICS listener Parameters

TTLSRule CSKLrule

 {

LocalPortRange 3010

Direction Inbound

TTLSGroupActionRef NOTTLSGR

}

TTLSGroupAction NOTTLSGR

{

TTLSEnabled OFF

}

TTLSRule CSKMrule

{

LocalPortRange 3011

Direction Inbound

TTLSGroupActionRef TTLSGRP1

TTLSEnvironmentActionRef TTLSENV1

}

TTLSEnvironmentAction TTLSENV1

{

HandshakeRole ServerWithClientAuth

EnvironmentUserInstance 1

TTLSEnvironmentAdvancedParmsRef TTLSADV1

}

TTLSEnvironmentAdvancedParms TTLSADV1

{

ClientAuthType SAFcheck

}

TTLSGroupAction TTLSGRP1

{

TTLSEnabled ON

}

TRANID ===> CSKL

PORT ===> 03010

GETTID ===> NO

TRANID ===> CSKM

PORT ===> 03011

GETTID ===> YES

Example of outbound AT-TLS support

No outbound AT-TLS support is needed for remote port 3010, outbound AT-TLS

support needed for remote port 3011

154 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 18. Outbound AT-TLS support

AT-TLS Definitions

TTLSRule ClientRule1

 {

RemotePortRange 3010

Userid CICS1

Direction Outbound

TTLSGroupActionRef NOTTLSGR

}

TTLSGroupAction NOTTLSGR

{

TTLSEnabled OFF

}

TTLSRule ClientRule2

{

RemotePortRange 3011

Direction Outbound

TTLSGroupActionRef TTLSGRP2

TTLSEnvironmentActionRef TTLSENV2

}

TTLSEnvironmentAction TTLSENV2

{

HandshakeRole Client

EnvironmentUserInstance 1

}

TTLSGroupAction TTLSGRP2

{

TTLSEnabled ON

}

Chapter 6. Application programming guide 155

156 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Chapter 7. C language application programming

This topic describes the C language API provided by CICS TCP/IP and contain the

following topics:

v “C socket library” lists the required header files and explains how to make them

available to your programs.

v “C socket compilation” on page 158 shows how to compile a C socket program

that contains calls to sockets for CICS.

v “Structures used in socket calls” on page 160 lists data structures used in C

language socket calls.

v “The ERRNO variable” on page 163 describes the use of a global variable used

by the socket system to report errors.

v “C socket calls” on page 163 describes the syntax and semantics of the socket

calls and explains what they do and how they work together in the context of an

application.

C socket library

To use the socket routines described in this topic, you must include these header

files:

 fnctl.h manifest.h (non-reentrant programs only)

 if.h cmanifes.h (reentrant programs only)

 in.h ezacichd.h (non-reentrant programs only)

 inet.h errno.h (reentrant programs only)

 ioctl.h netdb.h

 bsdtypes.h socket.h

 rtrouteh.h uio.h

 ezbztlsc.h (if using IOCTL calls related to AT-TLS)

The files are in the SEZACMAC data set, which must be concatenated to the

SYSLIB DD in the compilation JCL (as described in Step �2� of “C socket

compilation” on page 158). These files carry a .h extension in this text to

distinguish them as header files.

In the IBM implementation, you must include either manifest.h (if the program is

non-reentrant) or cmanifes.h (if the program is reentrant) to remap function long

names to eight-character names. To reference manifest.h or cmanifes.h, you need to

include one of the following statements as the first #include at the beginning of

each program:

 Include the following definition to expose the required IPv6 structures, macros and

definitions in the header files above:

Include the following definition to expose structures, macros and definitions in the

TCP C header files previously listed:

Non-reentrant programs:

#include <manifest.h>

Reentrant programs:

#include <cmanifes.h>

#define __CICS_IPV6

© Copyright IBM Corp. 1994, 2007 157

|
|
|

C socket compilation

To compile a C socket program that contains calls to CICS TCP/IP, you must

change the standard procedure for C socket compilation provided with CICS. The

CICS sample compile procedures can be found in SDFHSAMP. You should also

tailor them to the version CICS and C Compiler you have installed on your

system. Figure 117 on page 159 shows a sample job for the compilation of a C

socket program that contains calls to CICS TCP/IP. It includes the following

modifications:

v �1�The prototyping statement is required for CICS.

v �2� In the C step (running the C socket compiler) you must concatenate the

SEZACMAC data set to the SYSLIB DD.

v �3� In the PLKED step you must concatenate the hlq.SEZARNT1 data set to the

SYSLIB DD if and only if the program is to be compiled as reentrant (that is,

with the RENT option).

Requirement: Ensure that the system administrator has performed the actions

listed for Program Reentrancy in the Restrictions for Using MVS TCP/IP API with

z/OS Unix topic in the z/OS XL C/C++ Programming Guide.

v �4� In the LKED step you must concatenate the SEZATCP and SEZACMTX data

sets to the SYSLIB DD.

v �5� Also in the LKED step, you must add an INCLUDE for either module

EZACIC07 (if the program is non-reentrant) or module EZACIC17 (if the

program is reentrant).

Notes:

1. Furthermore, regarding Step 5 above, sockets for CICS application programs

must include either EZACIC07 (if the program is non-reentrant) or EZACIC17

(if the program is reentrant) instead of CMIUCSOC, which is included in most

C programs.

2. You must specify the compiler option of NORENT (non-reentrant) when

including the module EZACIC07 and <ezacichd.h>.

3. You must specify the compiler option of RENT (reentrant) when including the

module EZACIC17 and <errno.h>.

4. For more information about compiling and linking, see z/OS XL C/C++ User’s

Guide and z/OS Communications Server: IP Sockets Application Programming

Interface Guide and Reference.

5. The IP CICS C sockets API does not support C++ programs.

#define __CICS_SOCKETS

158 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|
|
|

//CICSRS1C JOB (999,POK),’CICSRS1’,NOTIFY=CICSRS1,

// CLASS=A,MSGCLASS=T,TIME=1439,

// REGION=5000K,MSGLEVEL=(1,1)

//DFHEITDL PROC SUFFIX=1$,

// INDEX=’CICS410’,

// INDEX2=’CICS410’,

//CPARM=’DEFINE(MVS)’, �1�

//TRN EXEC PGM=DFHEDP&SUFFIX,

// REGION=®

//*

//C EXEC PGM=EDCCOMP,REGION=®,

// COND=(7,LT,TRN),

// PARM=(,’&CPARM’)

//STEPLIB DD DSN=&VSCCHD..&CVER..SEDCLINK,DISP=SHR

// DD DSN=&COMHD..&COMVER..SIBMLINK,DISP=SHR

// DD DSN=&VSCCHD..&CVER..SEDCCOMP,DISP=SHR

//SYSMSGS DD DSN=&VSCCHD..&CVER..SEDCMSGS(EDCMSGE),DISP=SHR

//SYSLIB DD DSN=&VSCCHD..&CVER..SEDCHDRS,DISP=SHR

// DD DSN=&INDEX..SDFHC370,DISP=SHR

// DD DSN=&INDEX..SDFHMAC,DISP=SHR

// DD DSN=hlq.SEZACMAC,DISP=SHR �2�

//SYSLIN DD DSN=&&LOAD,DISP=(,PASS),

// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80

//SYSPRINT DD SYSOUT=&OUTC

//SYSCPRT DD SYSOUT=&OUTC

//SYSTERM DD DUMMY

//SYSUT1 DD DSN=&&SYSUT1,DISP=(,PASS),

// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80

//SYSUT10 DD DUMMY

//SYSIN DD DSN=*.TRN.SYSPUNCH,DISP=(OLD,DELETE)

//*

//COPYLINK EXEC PGM=IEBGENER,COND=((7,LT,C),(7,LT,TRN))

//*

//PLKED EXEC PGM=EDCPRLK,COND=((7,LT,C),(7,LT,TRN)), �3�

// REGION=®,PARM=’&PPARM’

//SYSLIB DD DSN=hlq.SEZARNT1 (reentrant programs only)

//*

//LKED EXEC PGM=IEWL,REGION=®,

// PARM=’&LNKPARM’,

// COND=((7,LT,C),(7,LT,PLKED),(7,LT,TRN))

//SYSLIB DD DSN=&INDEX2..SDFHLOAD,DISP=SHR

// DD DSN=&VSCCHD..&CVER..SEDCBASE,DISP=SHR

// DD DSN=&COMHD..&COMVER..SIBMBASE,DISP=SHR

// DD DSN=hlq.SEZATCP,DISP=SHR �4�

// DD DSN=hlq.SEZACMTX,DISP=SHR �4�

//SYSLIN DD DSN=*.PLKED.SYSMOD,DISP=(OLD,DELETE)

// DD DSN=*.COPYLINK.SYSUT2,DISP=(OLD,DELETE)

// DD DDNAME=SYSIN

//SYSLMOD DD DSN=CICSRS2.CICS410.PGMLIB,DISP=SHR

//*RESLIB DD DSN=&IMSIND..RESLIB,DISP=SHR

//SYSUT1 DD DSN=&&SYSUT1L,DISP=(,PASS),

// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80

Figure 117. Modified JCL for C socket compilation (Part 1 of 2)

Chapter 7. C language application programming 159

Structures used in socket calls

The parameter lists for some C language socket calls include a pointer to a data

structure defined by a C structure. The structures are defined in the header files

in.h,, socket.h, and if.h. Table 19 shows the C structure calls.

 Table 19. C structures

C structure Format

clientid

struct clientid {

 int domain;

 char name[8];

 char subtaskname[8];

 char reserved[20];

};

ifconf

Used in the ioctl()

call only

struct ifconf {

 int ifc_len;

 union {

 caddr_t ifcu_buf;

 struct ifreq *ifcu_req;

 } ifc_ifcu;

};

ifreq

Used in the ioctl() call only

struct ifreq {

#define IFNAMSIZ 16

 char ifr_name[IFNAMSIZ];

 union {

 struct sockaddr ifru_addr;

 struct sockaddr ifru_dstaddr;

 struct sockaddr ifru_broadaddr;

 short ifru_flags;

 int ifru_metric;

 caddr_t ifru_data;

 } ifr_ifru;

};

NetConfHdr

Used in the ioctl() call only

struct HomeIf {

struct in6_addr HomeIfAddress;

};

struct NetConfHdr {

 char NchEyeCatcher[4];

 uint32_t NchIOCTL;

 int32_t NchBufferLength;

 union {

 struct HomeIf * __ptr32 NchIfHome;

 struct GRT6RtEntry * __ptr32

 NchGRT6RtEntry;

 } NchBufferPtr;

 int32_t NchNumEntryRet;

};

//SYSPRINT DD SYSOUT=&OUTC

// PEND

//APPLPROG EXEC DFHEITDL

//TRN.SYSIN DD DISP=SHR,DSN=CICSRS1.JCL.DATA(SICUCCLD)

//LKED.SYSIN DD *

INCLUDE SYSLIB(EZACIC07) (non-reentrant programs only) �5�

INCLUDE SYSLIB(EZACIC17) (reentrant programs only) �5�

 NAME SICUCCLD(R)

/*

Figure 117. Modified JCL for C socket compilation (Part 2 of 2)

160 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||

||

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 19. C structures (continued)

C structure Format

If_NameIndex

Used in the

if_freenameindex(),

if_indextoname(),

if_nameindex(),

and if_nametoindex() calls

struct if_nameindex {

unsigned int if_index;

char * if_name;

};

linger

Used in the

getsockopt() and setsockopt()

calls only

struct linger {

 int l_onoff;

 int l_linger;

};

ip_mreq

Used in the

setsockopt()

call only

struct ip_mreq {

 struct in_addr imr_multiaddr;

 struct in_addr imr_interface;

};

ipv6_mreq

Used in the

setsockopt() call only

struct ipv6_mreq {

 struct in6_addr ipv6mr_multiaddr;

 unsigned int ipv6mr_interface;

};

sockaddr_in

struct in_addr

{

 unsigned long s_addr;

};

struct sockaddr_in {

 short sin_family;

 ushort sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

sockaddr_in6

struct in6_addr {

 union {

 uint8_t _S6_u8[16];

 uint32_t _S6_u32[4];

 } _S6_un;

 };

 struct sockaddr_in6 {

 uint8_t sin6_len;

 sa_family_t sin6_family;

 in_port_t sin6_port;

 uint32_t sin6_flowinfo;

 struct in6_addr sin6_addr;

 uint32_t sin6_scope_id;

};

Chapter 7. C language application programming 161

|

||

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 19. C structures (continued)

C structure Format

addrinfo

Use in the getaddrinfo()

and freeaddrinfo() calls

struct addrinfo {

 int ai_flags;

 int ai_family;

 int ai_socktype;

 int ai_protocol;

 socklen_t ai_addrlen;

 char *ai_canonname;

 struct sockaddr *ai_addr;

 struct addrinfo *ai_next;

};

timeval

Used in the select()

call only

struct timeval {

 long tv_sec;

 long tv_usec;

};

ip_mreq_source

Used in the setsockopt()

call only

struct ip_mreq_source {

 struct in_addr imr_multiaddr;

 struct in_addr imr_sourceaddr;

struct in_addr imr_interface;

};

group_req

Used in the setsockopt()

call only

struct group_req {

 uint32_t gr_interface;

 uint32_t __gr_01;

 struct sockaddr_storage gr_group;

};

group_source_req

Used in the setsockopt()

call only

struct group_source_req {

 uint32_t gsr_interface;

 uint32_t __gsr_01;

 struct sockaddr_storage gsr_group;

 struct sockaddr_storage gsr_source;

};

SetApplData

Used in the

SIOCSAPPLDATA ioctl() call

#define SetAD_eye1 "SETAPPLD"

#define SETADVER 1

struct {

 char SetAD_eye1[8];

 short SetAD_ver;

 short SetAD_len;

 char SetAD_rsv[4];

#ifndef _LP64

 int SetAD_ptrHW;

#endif

 SetADcontainer *SetAD_ptr;

} SetApplData;

SetADcontainer

Used in the

SIOCSAPPLDATA ioctl() call

#define SETADEYE2 "APPLDATA"

typedef struct {

 char SetAD_eye2[8];

 char SetAD_buffer[40];

} SetADcontainer;

162 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

||

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|
|
|
|

The ERRNO variable

The global variable errno is used by the socket system calls to report errors. If a

socket call results in an error, the call returns a negative value, and an error value

is set in errno. To be able to access these values, you must add one of the following

include statements:

Non-reentrant programs:

#include <ezacichd.h>

Reentrant programs:

#include <errno.h>

Notes:

1. Do not use tcperror().

2. A copy of EZACICHD.H can be found in dataset hlq.SEZAINST.

C socket calls

This topic contains guidance for each C socket call supported by CICS TCP/IP.

For syntax, parameters, and other reference information for each C socket call, see

z/OS Communications Server: IP Programmer’s Guide and Reference.

accept()

A server issues the accept() call to accept a connection request from a client. The

call uses a socket already created with a socket() call and marked by a listen() call.

An accept() call

1. Accepts the first connection on its queue of pending connections.

2. Creates a new socket with the same properties as the socket used in the call.

3. Returns the new socket descriptor to the server.

The new socket cannot be used to accept new connections, but is used by the client

for application purposes. The server issues a givesocket() call and a CICS START

command to enable a child server to communicate with the client for application

purposes. The original socket remains available to the server to accept more

connection requests.

The accept() call optionally saves the connection requester’s address for use by the

server.

Notes:

1. If the queue has no pending connection requests, accept() blocks the socket

unless the socket is in nonblocking mode. The socket can be set to nonblocking

by calling ioctl().

2. accept() calls are the only way to screen clients. The application cannot

predetermine clients from which it accepts connections, but it can close a

connection immediately after discovering the identity of the client.

3. The select() call checks a socket for incoming connection requests.

Format

This call has the following format:

Chapter 7. C language application programming 163

Parameters

s The s parameter is a stream socket descriptor that has already been created

with the socket() call. It is usually bound to an address with the bind() call.

The listen() call marks the socket as one that accepts connections and

allocates a queue to hold pending connection requests. The listen() call

allows the caller to place an upper boundary on the size of the queue.

name The pointer to a sockaddr structure into which the address of a client

requesting a connection is placed on completion of the accept() call. If the

server application does not need the client address, set the name parameter

to the NULL pointer before making the accept() call.

 The format of the name buffer is expected to be sockaddr_in, for an IPv4

socket address, or sockaddr_in6, for an IPv6 socket address, as defined in

the header file in.h. The format of the structure is shown in Table 19 on

page 160.

 Use the following fields to define the IPv4 socket address structure for the

socket that is to be accepted:

sin_family

Field must be set to AF_INET.

sin_port

Field contains the client’s port number.

in_addr.sin_addr

Field contains the 32-bit IPv4 Internet address, in network byte

order, of the client’s host machine.

sin_zero

Field is not used and is set to all zeros.

 Use the following fields to define the IPv6 socket address structure for the

socket that is to be accepted:

sin6_family

Field must be set to AF_INET6.

sin6_port

Field contains the client’s port number.

sin6_flowinfo

Field contains the traffic class and flow label. The value of this

field is undefined.

in6_addr.sin6_addr

Field contains the 128-bit IPv6 Internet address, in network byte

order, of the client’s host machine.

sin6_scope_id

Field identifies a set of interfaces as appropriate for the scope of

the address carried in the in6_addr.sin6_addr field. For a link scope

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>

#include <in.h>

#include <socket.h>

int accept(int s, struct sockaddr *name, int *namelen)

164 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

in6_addr.sin6_addr, sin6_scope_id contains the link index for the

in6_addr.sin6_addr. For all other address scopes, sin6_scope_id is

undefined.

namelen

The size, in bytes, of the buffer pointed to by name. For an IPv4 socket

address, the namelen parameter should contain a decimal 16. For an IPv6

socket address, the namelen parameter should contain a decimal 28.

Return values

A nonnegative socket descriptor indicates success; the value −1 indicates an error.

To determine which error occurred, check the errno global variable, which is set to

a return code. Possible codes include:

EBADF

The s parameter is not a valid socket descriptor.

EFAULT

Using name and namelen results in an attempt to copy the address into a

portion of the caller’s address space into which information cannot be

written.

EINVAL

Listen() was not called for socket s.

ENOBUFS

Insufficient buffer space is available to create the new socket.

EOPNOTSUPP

The s parameter is not of type SOCK_STREAM.

EWOULDBLOCK

The socket s is in nonblocking mode, and no connections are in the queue.

bind()

The bind() call binds a unique local port to an existing socket. Note that, on

successful completion of a socket() call, the new socket descriptor does not have an

associated port.

The bind() call can specify the required port or let the system choose. A listener

application should always bind to the same well-known port, so that clients can

know which port to use.

Even if an application specifies a value of 0 for the IP address on the bind(), the

system administrator can override that value by specifying the BIND parameter on

the PORT reservation statement in the TCP/IP profile. This has an effect similar to

the application specifying an explicit IP address on the bind() function. For more

information, see z/OS Communications Server: IP Configuration Reference.

Format

This call has the following format:

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>

#include <socket.h>

#include <in.h>

int bind(int s, struct sockaddr *name, int namelen)

Chapter 7. C language application programming 165

Parameters

s The socket descriptor returned by a previous socket() call.

name

 The pointer to a socket address structure that contains the name that is to

be bound to s. The format of the name buffer is expected to be sockaddr_in

for an IPv4 socket address or sockaddr_in6 for an IPv6 socket address, as

defined in the header file in.h. The format of the structure is shown in

Table 19 on page 160.

 Use the following fields to specify the IPv4 socket address structure for the

socket that is to be bound:

sin_family

Field must be set to AF_INET.

sin_port

Field is set to the port to which the application must bind. It must

be specified in network byte order. If sin_port is set to 0, the caller

expects the system to assign an available port. The application can

call getsockname() to discover the port number assigned.

in_addr.sin_addr

Field is set to an IPv4 IP address and must be specified in network

byte order. On hosts with more than one network interface (called

multihomed hosts), you can select the interface to which it is to

bind. Subsequently, only TCP connection requests from this

interface are routed to the application.

 If you set this field to the constant INADDR_ANY, as defined in

in.h, the socket is bound to all network interfaces on the host. By

leaving the address unspecified with INADDR_ANY, the server

can accept all TCP connection requests made for its port, regardless

of the network interface on which the requests arrived. Set

INADDR_ANY for servers that offer a service to multiple

networks.

sin_zero

Field is not used and must be set to all zeros.

 Use the following fields to specify the IPv6 socket address structure for the

socket that is to be bound:

sin6_family

Field must be set to AF_INET6.

sin6_port

Field is set to the port to which the application must bind. It must

be specified in network byte order. If sin6_port is set to 0, the caller

expects the system to assign an available port. The application can

call getsockname() to discover the port number assigned.

sin6_flowinfo

Field is used to specify the traffic class and flow label. This field

must be set to zero.

in6_addr.sin6_addr

Field is set to an IPv6 address and must be specified in network

byte order. On hosts with more than one network interface (called

multihomed hosts), you can select the interface to which it is to

166 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

bind. Subsequently, only TCP connection requests from this

interface are routed to the application.

 If you set this field to the constant in6addr_any, as defined in in.h,

the socket is bound to all network interfaces on the host. By

leaving the address unspecified with in6addr_any, the server can

accept all TCP connection requests made for its port, regardless of

the network interface on which the requests arrived. Set

in6addr_any for servers that offer a service to multiple networks.

sin6_scope_id

Field is used to identify a set of interfaces as appropriate for the

scope of the address carried in the in6_addr.sin6_addr field. A value

of zero indicates the sin6_scope_id field does not identify the set of

interfaces to be used, and might be specified for any address types

and scopes. For a link scope in6_addr.sin6_addr field, sin6_scope_id

might specify a link index which identifies a set of interfaces. For

all other address scopes, sin6_scope_id must be set to zero.

namelen

The size, in bytes, of the buffer pointed to by name. For an IPv4 socket

address, the namelen parameter should contain a decimal 16. For an IPv6

socket address, the namelen parameter should contain a decimal 28.

Return values

The value 0 indicates success; the value −1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

EADDRINUSE

The address is already in use. See the SO_REUSEADDR option described

in “getsockopt(), setsockopt()” on page 187 for more information.

 The address is in a timed wait because a LINGER delay from a previous

close or another process is using the address. This error also occurs if the

port specified in the bind call has been configured as RESERVED on a port

reservation statement in the TCP/IP profile.

 If you want to reuse the same address, use the SO_REUSEADDR

parameter in setsockopt(). If you do not want to reuse the same address,

use a different address or port in the socket address structure. If the port

has been configured as RESERVED, then the port is unavailable for bind.

EADDRNOTAVAIL

The address specified is not valid on this host. For example, the IP address

does not specify a valid network interface.

EAFNOSUPPORT

The address family is not supported (it is not AF_INET or AF_INET6).

EBADF

The s parameter is not a valid socket descriptor.

EFAULT

Using name and namelen results in an attempt to copy the address into a

nonwritable portion of the caller’s address space.

EINVAL

The socket is already bound to an address. An example is trying to bind a

name to a socket that is in the connected state. This value is also returned

if namelen is not the expected length.

Chapter 7. C language application programming 167

|
|
|

|
|
|
|

|
|
|
|

close()

A close() call shuts down a socket and frees all resources allocated to the socket. If

the socket refers to an open TCP connection, the connection is closed. If a stream

socket is closed when input data is queued, the TCP connection is reset rather than

being cleanly closed.

Format

This call has the following format:

Parameter

s The descriptor of the socket to be closed.

Return values

The value 0 indicates success; the value −1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

EBADF

The s parameter is not a valid socket descriptor.

connect()

A connect() call attempts to establish a connection between a local socket and a

remote socket. For a stream socket, the call performs two tasks. First, it completes

the binding necessary for a stream socket in case it has not been previously bound

by a bind() call. Second, it attempts to make a connection to another socket.

The connect() call on a stream socket is used by a client application to establish a

connection to a server. To be able to accept a connection with an accept() call, the

server must have a passive open pending, which means it must have successfully

called bind() and listen() before the client issues connect().

If the socket is in blocking mode, the connect() call blocks the caller until the

connection is set up, or until an error is received. If the socket is in nonblocking

mode and no errors occurred, the return codes indicate that the connection can be

initiated. The caller can test the completion of the connection setup by calling

select() and testing for the ability to write to the socket.

Stream sockets can call connect() one time only.

Format

This call has the following format:

Parameters

s The socket descriptor of the socket that is going to be used as the local

endpoint of the connection.

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

int close(int s)

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>

#include <socket.h>

#include <in.h>

int connect(int s, struct sockaddr *name, int namelen)

168 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

name The pointer to a socket address structure that contains the destination

socket address to which a connection is requested.

 The format of the name buffer is expected to be sockaddr_in for an IPv4

socket address or sockaddr_in6 for an IPv6 socket address, as defined in the

header file in.h. The format of the structure is shown in Table 19 on page

160.

 Use the following fields to specify the IPv4 socket address structure for the

socket that is to be bound:

sin_family

Field must be set to AF_INET.

sin_port

Field is set to the port to which the server is bound. It must be

specified in network byte order.

in_addr.sin_addr

Field is set to the 32-bit IPv4 Internet address of the server’s host

machine in network byte order.

sin_zero

Field is not used and must be set to all zeros.

 Use the following fields to specify the IPv6 socket address structure for the

socket that is to be bound:

sin6_family

Field must be set to AF_INET6.

sin6_port

Field is set to the port to which the server is bound. It must be

specified in network byte order.

sin6_flowinfo

Field is used to specify the traffic class and flow label. This field

must be set to zero.

in6_addr.sin6_addr

Field is set to the 128-bit IPv6 Internet address of the server’s host

machine in network byte order.

sin6_scope_id

Field is used to identify a set of interfaces as appropriate for the

scope of the address carried in the in6_addr.sin6_addr field. A value

of zero indicates the sin6_scope_id field does not identify the set of

interfaces to be used, and might be specified for any address types

and scopes. For a link scope in6_addr.sin6_addr, sin6_scope_id might

specify a link index which identifies a set of interfaces. For all

other address scopes, sin6_scope_id must be set to zero.

namelen

The size of the socket address pointed to by name in bytes. For an IPv4

socket address the namelen parameter should contain a decimal 16 and for

an IPv6 socket address the namelen parameter should contain a decimal 28.

Return values

The value 0 indicates success; the value −1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

Chapter 7. C language application programming 169

EADDRNOTAVAIL

The calling host cannot reach the specified destination.

EAFNOSUPPORT

The address family is not supported.

EALREADY

The socket s is marked nonblocking, and a previous connection attempt

has not completed.

EBADF

The s parameter is not a valid socket descriptor.

ECONNREFUSED

The connection request was rejected by the destination host.

EFAULT

Using name and namelen results in an attempt to copy the address into a

portion of the caller’s address space to which data cannot be written.

EINPROGRESS

The socket s is marked nonblocking, and the connection cannot be

completed immediately. The EINPROGRESS value does not indicate an

error condition.

EINVAL

The namelen parameter is not a valid length.

EISCONN

The socket s is already connected.

ENETUNREACH

The network cannot be reached from this host.

ETIMEDOUT

The connection establishment timed out before a connection was made.

fcntl()

The fcntl() call controls whether a socket is in blocking or nonblocking mode.

The blocking or nonblocking mode of a socket affects the operation of certain

commands. In blocking mode, a call waits for certain events until they happen.

When this happens, the operating system suspends the program until the event

occurs.

In similar situations with nonblocking calls, the call returns an error return code

and the program continues.

Format

This call has the following format:

Parameters

s The socket descriptor.

cmd The command to perform. Set cmd to one of the following:

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

#include <bsdtypes.h>

#include <fcntl.h>

signed int fcntl(int s, int cmd, int arg)

170 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

F_SETFL

This command sets the status flags of socket s. One flag,

FNDELAY, can be set.

 Setting the FNDELAY flag marks s as being in nonblocking mode.

If data is not present on calls that can block, such as recvfrom(),

the call returns −1, and errno is set to EWOULDBLOCK.

F_GETFL

This command gets the status flags of socket s. One flag,

FNDELAY, can be queried.

 The FNDELAY flag marks s as being in nonblocking mode. If data

is not present on calls that can block, such as recvfrom(), the call

returns with −1, and errno is set to EWOULDBLOCK.
arg Set to FNDELAY if using F_SETFL. Ignored otherwise.

Return values

For the F_GETFL command, the return value is a bit mask that is comprised of the

flag settings. For the F_SETFL command, the value 0 indicates success; the value

−1 indicates an error. To determine which error occurred, check the errno global

variable, which is set to a return code. Possible codes include:

EBADF

The s parameter is not a valid socket descriptor.

EINVAL

The arg parameter is not a valid flag.

freeaddrinfo()

The freeaddrinfo() call receives an input addrinfo structure pointer and releases

that storage (plus any other chained addrinfo structures and related storage) back

into the general storage pool, thereby making the getaddrinfo() call thread-safe.

Format

This call has the following format:

Parameters

ai A pointer to an addrinfo structure returned by the getaddrinfo() res

function variable.

Return values

The value 0 indicates success; the value -1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

EAI_AGAIN

The resolver address space has not been started. The request can be retried

later.

EAI_FAIL

An unrecoverable error has occurred.

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

#include <in.h>

#include <netdb.h>

void freeaddrinfo(struct addrinfo *ai)

Chapter 7. C language application programming 171

gai_strerror()

The gai_strerror() function returns a pointer to a text string describing the error

value returned by a failure return from either the getaddrinfo() or getnameinfo()

function. If the ecode is not one of the EAI_xxx values from the <netdb.h> then

gai_strerror() returns a pointer to a string indicating an unknown error. Subsequent

calls to gai_strerror() overwrites the buffer that contains the text string.

Format

This call has the following format:

Parameters

ecode The errno value returned by the getaddrinfo() or getnameinfo() functions.

Return values

When successful, gai_strerror() returns a pointer to a string describing the error.

Upon failure, gai_strerror() returns NULL and set errno to the following:

ENOMEN

Insufficient memory to allocate buffer for text string describing the error.

getaddrinfo()

The getaddrinfo() call translates the name of a service location (for example, a host

name), a service name, or both and returns a set of socket addresses and associated

information. This information is used to open a socket with which to address the

specified service or to send a datagram to the specified service.

Format

This call has the following format:

Parameters

nodename

Maximum storage of 256 bytes that contains the null terminated host name

being queried. If the AI_NUMERICHOST flag is specified in the storage

pointed to by the hints parameter, nodename should contain the queried

host IP address in presentation form.

 You can append scope information to the host name, using the format

nodename%scope information. The combined length of the value specified

must still fit within 256 bytes, and must still be null terminated. For

information about using scope information about getaddrinfo() processing,

see z/OS Communications Server: IPv6 Network and Application Design Guide .

servname

Maximum storage of 33 bytes that contains the null terminated service

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <netdb.h>

const char *gai_strerror(int ecode)

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

#include <in.h>

#include <netdb.h>

int getaddrinfo(const char *nodename, const char *servname,

 cons struct addrinfo *hints,

 struct addrinfo **res)

172 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|

name being queried. If the AI_NUMERICSERV flag is specified in the

storage pointed to by the hints parameter, servname should contain the

queried port number in presentation form.

hints Contains the address of an addrinfo structure that contains input values that

might direct the operation by providing options and by limiting the

returned information to a specific socket type, address family, and protocol.

If the hints parameter is 0, then the information returned is as if it referred

to a structure that contains the value 0 for the ai_flags, ai_socktype, and

ai_protocol fields, and AF_UNSPEC for the ai_family field.

 The addrinfo structure has the following fields:

ai_flags A fullword binary field. Must have the value of 0 or the

bitwise or of one or more of the following:

AI_PASSIVE

 Specifies how to fill in the ai_addr pointed to by the

returned res.

 If this flag is specified, the returned address

information is suitable for use in binding a socket

for accepting incoming connections for the

specified service (for example, the bind() call). In

this case, if the nodename parameter is null, the IP

address portion of the socket address structure

pointed to by the returned res is set to

INADDR_ANY, for an IPv4 address, or to the IPv6

unspecified address (in6addr_any).

 If this flag is not set, the returned address

information is suitable for the connect() call (for a

connection-mode protocol) or for a connect(),

sendto() or sendmsg() call (for a connectionless

protocol). In this case, if the nodename parameter is

not specified, the ai_addr pointed to by the

returned res is set to the loopback address.

 This flag is ignored if the nodename parameter is

specified.

AI_CANONNAMEOK

If this flag is specified and the nodename parameter

is specified, the getaddrinfo() call attempts to

determine the canonical name corresponding to the

nodename parameter.

AI_NUMERICHOST

If this flag is specified, the nodename parameter

must be a numeric host address in presentation

form. Otherwise, an error of host not found

[EAI_NONAME] is returned.

AI_NUMERICSERV

If this flag is specified, the servname parameter

must be a numeric port in presentation form.

Otherwise, an error [EAI_NONAME] is returned.

AI_V4MAPPED

If this flag is specified with the ai_family field using

the value of AF_INET6, or the value of

Chapter 7. C language application programming 173

|
|

AF_UNSPEC when IPv6 is supported on the

system, the caller accepts IPv4-mapped IPv6

addresses. When the AI_ALL flag is not also

specified, if no IPv6 addresses are found, a query is

made for IPv4 addresses. If IPv4 addresses are

found, they are returned as IPv4-mapped IPv6

addresses. If the ai_family field does not have the

value of AF_INET6, or the ai_family field contains

AF_UNSPEC but IPv6 is not supported on the

system, then this flag is ignored.

AI_ALL

If the ai_family field has a value of AF_INET6 and

AI_ALL is set, the AI_V4MAPPED flag must also

be set to indicate that the caller accepts all

addresses: IPv6 and IPv4-mapped IPv6 addresses.

If the ai_family field has a value of AF_UNSPEC

when the system supports IPv6 and AI_ALL is set,

the caller accepts both IPv6 and IPv4 addresses. A

query is first made for IPv6 addresses and if

successful, the IPv6 addresses are returned.

Another query is then made for IPv4 addresses,

and any IPv4 addresses found are returned as

IPv4-mapped IPv6 addresses (if AI_V4MAPPED is

also specified) or as IPv4 addresses (if

AI_V4MAPPED is not specified). If the ai_family

field does not have the value of AF_INET6, or does

not have the value of AF_UNSPEC when the

system supports IPv6, then this flag is ignored.

AI_ADDRCONFIG

If this flag is specified, then a query on the name

in nodename occurs if the resolver determines that

one of the following is true:

v If the system is IPv6 enabled and has at least

one IPv6 interface, the resolver makes a query

for IPv6 (AAAA or A6 DNS records) records.

v If the system is IPv4 enabled and has at least

one IPv4 interface, the resolver makes a query

for IPv4 (A DNS records) records.

ai_family Used to limit the returned information to a specific address

family. The value of AF_UNSPEC means that the caller

accepts any protocol family. The value of a decimal 0

indicates AF_UNSPEC. The value of a decimal 2 indicates

AF_INET and the value of a decimal 19 indicates

AF_INET6.

ai_socktype Used to limit the returned information to a specific socket

type. A value of 0 means that the caller accepts any socket

type. If a specific socket type is not given (for example, a

value of 0), information about all supported socket types

are returned.

 The following are the acceptable socket types:

 Type Name Decimal Value Description

SOCK_STREAM 1 for stream socket

174 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Type Name Decimal Value Description

SOCK_DGRAM 2 for datagram socket

SOCK_RAW 3 for raw-protocol interface

 Any other socket type fails with a return code of

EAI_SOCKTYPE. Note that although SOCK_RAW is

accepted, it is only valid when servname is numeric (for

example, servname=23). A lookup for a service name never

occurs in the appropriate services file (for example,

hlq.ETC.SERVICES) using any protocol value other than

SOCK_STREAM or SOCK_DGRAM. If ai_protocol is not 0

and ai_socktype is 0, the only acceptable input values for

ai_protocol are IPPROTO_TCP and IPPROTO_UDP;

otherwise, the getaddrinfo() function fails with a return

code of EAI_BADFLAGS. If ai_socktype and ai_protocol are

both specified as 0, getaddrinfo() proceeds as follows:

v If servname is null, or if servname is numeric, any

returned addrinfo structures default to a specification of

ai_socktype as SOCK_STREAM.

v If servname is specified as a service name, for example

servname=FTP, the getaddrinfo() call searches the

appropriate services file (for example,

hlq.ETC.SERVICES) twice. The first search uses

SOCK_STREAM as the protocol, and the second search

uses SOCK_DGRAM as the protocol. No default socket

type provision exists in this case.

If both ai_socktype and ai_protocol are specified as nonzero,

then they should be compatible, regardless of the value

specified by the servname parameter. In this context,

compatibility means one of the following:

v ai_socktype=SOCK_STREAM and

ai_protocol=IPPROTO_TCP

v ai_socktype=SOCK_DGRAM and

ai_protocol=IPPROTO_UDP

v ai_socktype is specified as SOCK_RAW. In this case,

ai_protocol can be anything.

ai_protocol Used to limit the returned information to a specific

protocol. A value of 0 means that the caller accepts any

protocol.

 The following are the acceptable protocols:

 Protocol Name Decimal Value Description

IPPROTO_TCP 6 TCP

IPPROTO_UDP 17 user datagram

 If ai_protocol and ai_socktype are both specified as 0,

getaddrinfo() proceeds as follows:

v If servname is null, or if servname is numeric, then any

returned addrinfos default to a specification of

ai_socktype as SOCK_STREAM.

Chapter 7. C language application programming 175

v If servname is specified as a service name (for example,

servname=FTP), getaddrinfo() searches the appropriate

services file (for example, hlq.ETC.SERVICES) twice. The

first search uses SOCK_STREAM as the protocol, and the

second search uses SOCK_DGRAM as the protocol. No

default socket type provision exists in this case.

If both ai_socktype and ai_protocol are specified as nonzero

then they should be compatible, regardless of the value

specified by servname. In this context, compatibility means

one of the following:

v ai_socktype=SOCK_STREAM and

ai_protocol=IPPROTO_TCP

v ai_socktype=SOCK_DGRAM and

ai_protocol=IPPROTO_UDP

v ai_socktype=SOCK_RAW. In this case, ai_protocol can be

anything.

If the lookup for the value specified in servname fails [that

is, the service name does not appear in the appropriate

services file (for example, hlq.ETC.SERVICES) using the

input protocol], the getaddrinfo() call fails with return code

of EAI_SERVICE.

ai_addrlen On input, this field must be 0.

ai_canonname On input, this field must be 0.

ai_addr On input, this field must be 0.

ai_next On input, this field must be 0.
res On a successful return this field contains a pointer to an addrinfo structure.

This pointer is also used as input to the freeaddrinfo() call, which must be

used to free storage obtained by this call. The structures returned by

getaddrinfo() are a tasks’s serially reusable storage area. They should not

be used or referenced between MVS tasks. The storage is freed when a

freeaddrinfo() is issued or when the task terminates. The freeaddrinfo() call

receives an input addrinfo structure pointer and releases that storage (plus

any other chained addrinfo structures and related storage) back into the

general storage pool, thereby making the getaddrinfo() call thread-safe.

 The address information structure contains the following fields:

ai_flags Not used as output.

ai_family The value returned in this field can be used as the domain

argument on the socket() call to create a socket suitable for

use with the returned socket address pointed to by ai_addr.

ai_socktype The value returned in this field can be used as the type

argument on the socket() call to create a socket suitable for

use with the returned address socket pointed to by ai_addr.

ai_protocol The value returned in this field can be used as the protocol

argument on the socket() call to create a socket suitable for

use with the returned socket address pointed to by ai_addr.

ai_addrlen The length of the socket address structure pointed to by

the ai_addr field. The value returned in this field can be

176 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|

used as the arguments for the connect() or bind() call with

this socket type, according to the AI_PASSIVE flag.

ai_canonname A pointer to the canonical name for the value specified by

nodename. If the nodename argument is specified, and if the

AI_CANONNAMEOK flag was specified by the hints

parameter, the ai_canonname field in the first returned

address information structure contains the address of

storage that contains the canonical name corresponding to

the input nodename parameter. If the canonical name is not

available, the ai_canonname field refers to the nodename

parameter or a string with the same contents.

ai_addr The address of the returned socket address structure. The

value returned in this field can be used as the arguments

for the connect() or bind() call with this socket type,

according to the AI_PASSIVE flag.

ai_next Contains the address of the next address information

structure on the list, or zeros if it is the last structure on

the list.

Return values

The value 0 indicates success; the value -1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

EAI_AGAIN

The name specified by the nodename parameter could be not be resolved

within the configured time interval, or the resolver address space has not

been started. The request can be retried later.

EAI_BADFLAGS

The flags parameter had a value that is incorrect.

EAI_BADFLAGS

The flags parameter had a value that is incorrect.

EAI_FAMILY

The family parameter has a value that is incorrect.

EAI_MEMORY

Memory allocation failure occurred trying to acquire an addrinfo structure.

EAI_NONAME

The name does not resolve for the specified parameters. At least one of the

nodename or servname parameters must be specified. Or the requested

nodename parameter is valid but does not have a record at the name

server.

EAI_SERVICE

The service passed was not recognized for the specified socket type.

EAI_SOCKTYPE

The intended socket type was not recognized.

getclientid()

A getclientid() call returns the identifier by which the calling application is known

to the TCP/IP address space. Do not be confused by the term client in the name of

this call; the call always returns the ID of the calling process, be it client or server.

Chapter 7. C language application programming 177

For example, in CICS TCP/IP, this call is issued by the IBM listener; the identifier

returned in that case is that of the listener (a server). This identifier is used in the

givesocket() and takesocket() calls.

Format

This call has the following format:

Parameters

domain The domain must be set to AF_INET when requesting client data from an

IPv4 stack and it must be set to AF_INET6 when requesting client data

from an IPv6 stack.

clientid Points to a clientid structure to be provided.

domain Domain associated with the program executing this call. Contains

either AF_INET (a decimal 2) or AF_INET6 (a decimal 19).

name Address space name associated with the program executing this

call.

subtaskname

Subtask name associated with the program executing this call.

reserved

Binary zeros.

Return values

The value 0 indicates success; the value −1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

EFAULT

Using the clientid parameter as specified results in an attempt to access

storage outside the caller’s address space, or storage not modifiable by the

caller.

EPFNOSUPPORT

Domain is not AF_INET or AF_INET6.

gethostbyaddr()

The gethostbyaddr() call tries to resolve the IP address to a host name. The

resolution attempted depends on how the resolver is configured and if any local

host tables exist. See z/OS Communications Server: IP Configuration Guide for

information about configuring the resolver and using local host tables.

Format

This call has the following format:

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>

#include <socket.h>

int getclientid(int domain, struct clientid *clientid)

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <netdb.h>

 struct hostent *gethostbyaddr(char *addr, int addrlen, int domain)

178 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Parameters

addr The pointer to an unsigned long value that contains the address of the

host.

addrlen

The size of addr in bytes.

domain The address domain supported (AF_INET).

Return values

The gethostbyaddr() call returns a pointer to a hostent structure for the host

address specified on the call. For more information about the hostent structure, see

Figure 128 on page 250. A null pointer is returned if the gethostbyaddr() call fails.

There are no errno values for gethostbyaddr().

gethostbyname()

The gethostbyname() call tries to resolve the host name to an IP address. The

resolution attempted depends on how the resolver is configured and if any local

host tables exist. See z/OS Communications Server: IP Configuration Guide for

information about configuring the resolver and using local host tables.

Format

This call has the following format:

Parameters

name The name of the host being queried. The name has a maximum length of

255 characters.

Return values

The gethostbyname() call returns a pointer to a hostent structure for the host name

specified on the call. For more information about the hostent structure, see

Figure 130 on page 252. A null pointer is returned if the gethostbyname() call fails.

There are no errno values for gethostbyname().

A new part called EZACIC17 has been created. EZACIC17 is like EZACIC07 except

it uses the internal C errno function. Also, a new header file called cmanifes.h has

been created to remap EZACIC17’s long function names into unique 8-character

names.

EZACIC07 and EZACIC17 now support the gethostbyaddr() and gethostbyname()

functions.

gethostid()

The gethostid() call gets the unique 32-bit identifier for the current host in network

byte order. This value is the default home IP address.

Format

This call has the following format:

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <netdb.h>

 struct hostent *gethostbyname(char *name)

Chapter 7. C language application programming 179

Parameters

None.

Return values

The gethostid() call returns the 32-bit identifier of the current host, which should

be unique across all hosts.

gethostname()

The gethostname() call returns the name of the host processor on which the

program is running.

Note: The host name returned is the host name that the TCPIP stack learned at

startup from the TCPIP.DATA file that was found.

Format

This call has the following format:

Parameters

name The character array to be completed with the host name. The name that is

returned is NULL-terminated unless truncated to the size of the name

array.

namelen

The length of thename value. The minimum length of the name field is 1

character. The maximum length of the name field is 24 characters.

Return values

The value 0 indicates success; the value −1 indicates an error. To determine what

error has occurred, check the errno global variable, which is set to a return code.

Possible codes are:

EFAULT

The name parameter specified an address outside the caller’s address space.

getipv4sourcefilter()

Obtains a list of the IPv4 source addresses that comprise the source filter, along

with the current mode on a given interface and a multicast group for a socket. The

source filter can either include or exclude the set of source addresses, depending

on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE).

Format

This call has the following format:

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

unsigned long gethostid()

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

int gethostname(char *name, int namelen)

180 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|

|

|
|

|
|

|
|
||

|
||
|
|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|
|
|

Parameters

s The socket descriptor.

interface

The local IP address of the interface.

group The IP multicast address of the group.

fmode A pointer to an integer that contains the filter mode on a successful return.

The value of the filter mode can be MCAST_INCLUDE or

MCAST_EXCLUDE.

numsrc

As an input parameter, a pointer to the number of source addresses that

can fit in the array specified by the slist parameter. As an output

parameter, a pointer to the total number of source addresses in the filter.

slist A pointer to an array of IP addresses that is either included or excluded,

depending on the filter mode. If the numsrc value was 0 on input, a NULL

pointer can be supplied.

 If the application does not know the size of the source list before, it can make a

reasonable guess (for example, 0). When the process completes, the numsrc value is

larger, the operation can be repeated with a larger buffer.

On return, the numsrc value is always updated to be the total number of sources in

the filter. The slist value specifies as many source addresses as fit, up to the

minimum array size that was specified by the numsrc value and the total number

of sources in the filter.

Return values

When successful, the value 0 is returned. When an error has occurred, the value -1

is returned and the errno value is one of the following:

EBADF

The s parameter value is not a valid socket descriptor.

EINVAL

The interface or group parameter value is not a valid IPv4 address, or the

socket s has already requested multicast setsockopt options. For more

information, see the z/OS Communications Server: IP Sockets Application

Programming Interface Guide and Reference.

EPROTOTYPE

The socket protocol type is not correct.

EADDRNOTAVAIL

The tuple consisting of socket, interface, and multicast group values does

not exist, or the specified interface address is incorrect for this host, or the

specified interface address is not multicast capable.

ENOMEM

Insufficient storage is available to supply the array.

#include <manifest.h> (non-reentrant programs only)

#include <camifes.h> (reentrant programs only)

#include <netinet.h>

int getipv4sourcefilter(int s,

 struct in_addr interface,

 struct in_addr group,

 uint32_t *fmode, uint32_t *numsrc,

 struct in_addr *slist)

Chapter 7. C language application programming 181

|
|
|
|
|
|
|
|
|
|

|
||
|
|
||
||
|
|
|
|
|
|
||
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

getnameinfo()

The getnameinfo() call returns the node name and service location of a socket

address that is specified in the call.

Format

This call has the following format:

Parameters

sa The pointer to a socket address structure that is expected to be either

sockaddr_in for an IPv4 socket address or sockaddr_in6 for an IPv6 socket

address, as defined in the header file in.h. Table 19 on page 160 shows the

format of the structure.

 The following fields are used to specify the IPv4 socket address structure

to be translated.

v The sin_family field must be set to AF_INET.

v The sin_port field is set to a port number, in network byte order.

v The in_addr.sin_addr field is set to an IPv4 address and must be specified

in network byte order.

v The sin_zero field is not used and must be set to all zeros.

The following fields are used to specify the IPv6 socket address structure

to be translated.

v The sin6_family field must be set to AF_INET6.

v The sin6_port field is set to the a port number, in network byte order.

v The sin6_flowinfo field is used to specify the traffic class and flow label.

This field is currently not implemented.

v The in6_addr.sin6_addr field is set to an IPv6 address and must be

specified in network byte order.

v The sin6_scope_id field is used to specify the link scope for an IPv6

address as an interface index. The resolver ignores the sin6_scope_id field,

unless the input IPv6 address is a link-local address and the host

parameter is also specified.

salen The size, in bytes, of the buffer pointed to by sa. For an IPv4 socket

address, the salen parameter should contain a decimal 16, and for an IPv6

socket address, the salen parameter should contain a decimal 28.

host On input, storage capable of holding the returned resolved host name. The

host name can be a maximum of 255 bytes for a null terminated string, for

the input socket address. If inadequate storage is specified to contain the

resolved host name, then the resolver returns the host name up to the

storage amount specified and truncation might occur. If the host name

cannot be located, the numeric form of the host address is returned instead

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

#include <in.h>

#include <netdb.h>

int getnameinfo(const struct sockaddr *sa, socklen_t salen,

 char *host, socklen_t hostlen,

 char *serv, socklen_t servlen,

 int flags)

182 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|

of its name. However, if the NI_NAMEREQD option is specified and no

host name is located, an error is returned.

 If the specified IPv6 address is a link-local address, and the sin6_scope_id

interface index is a non-zero value, scope information is appended to the

resolved host name using the format host%scope information. The scope

information can be either the numeric form of the interface index, or the

interface name associated with the interface index.

 Use the NI_NUMERICSCOPE option to select which form should be

returned. The combined host name and scope information is always a

null-terminated string that is no more than 256 bytes in length. For more

information about scope information and getnameinfo() processing, see

z/OS Communications Server: IPv6 Network and Application Design Guide .

 This is an optional field, but if this field value is not 0, you must also

specify the hostlen parameter. Specify both the service and servlen

parameters or both the host and hostlen parameters. An error occurs if both

are omitted.

hostlen A field that contains the length of the host storage used to contain the

resolved host name. The hostlen parameter value must be equal to or

greater than the length of the longest host name or of the host name and

scope information combination, plus one for the null termination character,

to be returned. The getnameinfo() call returns the host name, or host name

and scope information, up to the length specified by the hostlen parameter.

If the hostlen parameter is 0 on input, then the resolved host name is not

returned.

 This is an optional field, but if the field value is not 0, you must also

specify the host parameter. Specify both the service and servlen parameters

or both the host and hostlen parameters. An error occurs if both are

omitted.

serv On input, storage capable of holding the returned resolved service name,

which can be a maximum of 33 bytes for a null terminated string, for the

input socket address. If inadequate storage is specified to contain the

resolved service name, the resolver returns the service name up to the

storage specified and truncation might occur. If the service name cannot be

located, or if NI_NUMERICSERV was specified in the flags parameter, then

the numeric form of the service address is returned instead of its name.

 This is an optional field, but if the value is not 0, then you must also

specify the servlen parameter. Specify both the service and servlen

parameters or both the host and hostlen parameters. An error occurs if both

are omitted.

servlen A field that contains the length of the storage used to contain the returned

resolved service name (specified by the serv parameter). The servlen

parameter must be equal to or greater than the length of the longest

service name to be returned, plus one for the null termination character.

The getnameinfo() call returns the service name up to the length specified

by the servlen parameter value. If the servlen value is 0 on input, the service

name information is not returned.

 This is an optional field, but if the value is not 0, you must also specify the

serv parameter. Specify both the service and servlen parameters or both the

host and hostlen parameters. An error occurs if both are omitted.

flags The parameter can be set to 0 or one of the following:

Chapter 7. C language application programming 183

|
|
|
|
|

|
|
|
|
|

|
|
|
|

||
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

NI_NOFQDN

Return the NAME portion of the fully qualified domain name.

NI_NUMERICHOST

Return only the numeric form of host’s address.

NI_NAMEREQD

Return an error if the host’s name cannot be located.

NI_NUMERICSERV

Return only the numeric form of the service address.

NI_DGRAM

Indicates that the service is a datagram service. The default

behavior is to assume that the service is a stream service.

NI_NUMERICSCOPE

Return only the numeric form of the sin6_scope_id interface index,

if applicable.

Return values

The value 0 indicates success; the value -1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

EAI_AGAIN

The host address specified could not be resolved within the configured

time interval, or the resolver address space has not been started. The

request can be retried later.

EAI_BADFLAGS

The flags parameter had an incorrect value.

EAI_FAIL

An unrecoverable error has occurred.

EAI_FAMILY

The address family was not recognized, or the address length was incorrect

for the specified family.

EAI_MEMORY

A memory allocation failure occurred.

EAI_NONAME

The hostname does not resolve for the supplied parameters.

NI_NAMEREQD is set and the hostname cannot be located, or both

nodename and servname were null. Or the requested address is valid but

does not have a record at the name server.

getpeername()

The getpeername() call returns the name of the peer connected to a specified

socket.

Format

This call has the following format:

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

#include <bsdtypes.h>

int getpeername(int s, struct sockaddr *name, int *namelen)

184 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|

Parameters

s The socket descriptor.

name A pointer to a structure that contains the IP address of the connected

socket that is filled by getpeername() before it returns. The exact format of

name is determined by the domain in which communication occurs.

 The following fields are used to define the IPv4 socket address structure

for the remote socket that is connected to the local socket specified in field

s.

v The sin_family field is set to AF_INET.

v The sin_port field contains the connection peer’s port number.

v The in_addr.sin_addr field contains the 32-bit IPv4 Internet address, in

network byte order, of the connection peer’s host machine.

v The sin_zero field is not used and is set to all zeros.

The following fields are used to define the IPv6 socket address structure

for the remote socket that is connected to the local socket specified in field

s.

v The sin6_family field is set to AF_INET6.

v The sin6_port field contains the connection peer’s port number.

v The sin6_flowinfo field contains the traffic class and flow label. The value

of this field is undefined.

v The in6_addr.sin6_addr field contains the 128-bit IPv6 Internet address, in

network byte order, of the connection peer’s host machine.

v The sin6_scope_id field identifies a set of interfaces as appropriate for the

scope of the address carried in the in6_addr.sin6_addr field. For a link

scope in6_addr.sin6_addr, sin6_scope_id contains the link index for the

in6_addr.sin6_addr. For all other address scopes, sin6_scope_id is

undefined.

namelen

A pointer to the structure that contains the size of the address structure

pointed to by name in bytes. For an IPv4 socket address the namelen

parameter should contain a decimal 16 and for an IPv6 socket address the

namelen parameter should contain a decimal 28.

Return values

The value 0 indicates success; the value −1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

EBADF

The s parameter is not a valid socket descriptor.

EFAULT

Using the name and namelen parameters as specified results in an attempt

to access storage outside of the caller’s address space.

ENOTCONN

The socket is not in the connected state.

getsockname()

A getsockname() call returns the current name for socket s in the sockaddr structure

pointed to by the name parameter. It returns the address of the socket that has been

bound. If the socket is not bound to an address, the call returns with family set,

Chapter 7. C language application programming 185

and the rest of the structure set to zero. For example, an unbound IPv4 socket

causes the name to point to a sockaddr_in structure with the sin_ family field set to

AF_INET and all other fields set to zero. An unbound IPv6 socket causes the name

to point to a sockaddr_in6 structure with the sin6_family field set to AF_INET6

and all other fields set to zero.

Stream sockets are not assigned a name until after a successful call to either bind(),

connect(), or accept().

The getsockname() call is often used to discover the port assigned to a socket after

the socket has been implicitly bound to a port. For example, an application can call

connect() without previously calling bind(). In this case, the connect() call

completes the binding necessary by assigning a port to the socket. This assignment

can be discovered with a call to getsockname().

Format

This call has the following format:

Parameters

s The socket descriptor.

name The address of the buffer into which getsockname() copies the name of s.

 The following fields are used to define the IPv4 socket address structure

returned by the call.

v The sin_family field is set to AF_INET.

v The sin_port field contains the port number bound to this socket. If the

socket is not bound, 0 is returned.

v The in_addr.sin_addr field contains the 32-bit IPv4 Internet address, in

network byte order, of the local host machine. If the socket is not bound,

the address is INADDR_ANY.

v The sin_zero field is not used and is set to all zeros.

The following fields are used to define the IPv6 socket address structure

returned by the call.

v The sin6_family field is set to AF_INET6.

v The sin6_port field contains the port number bound to this socket. If the

socket is not bound, 0 is returned.

v The sin6_flowinfo field contains the traffic class and flow label. The value

of this field is undefined.

v The in6_addr.sin6_addr field contains the 128-bit IPv6 Internet address, in

network byte order, of the local host machine. If the socket is not bound,

the address is the IPv6 unspecified address (in6addr_any).

v The sin6_scope_id field identifies a set of interfaces as appropriate for the

scope of the address carried in the in6_addr.sin6_addr field. For a link

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

#include <bsdtypes.h>

#include <in.h>

int getsockname(int s, struct sockaddr *name, int *namelen)

186 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|

scope in6_addr.sin6_addr, sin6_scope_id contains the link index for the

in6_addr.sin6_addr. For all other address scopes, sin6_scope_id is

undefined.

namelen

Must initially point to an integer that contains the size in bytes of the

storage pointed to by name. Upon return, that integer contains the size of

the data returned in the storage pointed to by name. For an IPv4 socket

address the namelen parameter contains a decimal 16 and for an IPv6

socket address the namelen parameter contains a decimal 28.

Return values

The value 0 indicates success; the value −1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

EBADF

The s parameter is not a valid socket descriptor.

EFAULT

Using the name and namelen parameters as specified results in an attempt

to access storage outside of the caller’s address space.

getsockopt(), setsockopt()

The getsockopt() call gets options associated with a socket; setsockopt() sets the

options.

The following options are recognized at the IPPROTO_IP level:

v Joining a multicast group

v Leaving a multicast group or leaving all sources for a given multicast group

v Setting the multicast interface

v Setting the IP time-to-live of outgoing multicast datagrams

v Looping back multicast datagrams

v Joining a source-specific multicast group

v Leaving a source-specific multicast group

v Blocking data from a given source to a given multicast group

v Unblocking a previously blocked source for a given multicast group

The following options are recognized at the IPPROTO_IPV6 level:

v Joining a multicast group

v Leaving a multicast group

v Setting the multicast interface

v Setting multicast hop limit

v Looping back multicast datagrams

v Setting unicast hop limit

v Restricting sockets to AF_INET6 sockets

The following options are recognized at the IPPROTO_IP and IPPROTO_IPV6

level:

v Joining an IPv4 or IPv6 multicast group

v Leaving an IPv4 or IPv6 multicast group or leaving all sources for a given IPv4

or IPv6 multicast group

Chapter 7. C language application programming 187

|

|

|

|

|

|

|

|

|

|
|

|

|
|

v Joining an IPv4 or IPv6 source-specific multicast group

v Leaving an IPv4 or IPv6 source-specific multicast group

v Blocking IPv4 or IPv6 data from a given source to a given multicast group

v Unblocking an IPv4 or IPv6 previously blocked source for a given multicast

group

The following options are recognized at the socket level:

v Broadcasting messages (IPv4 UDP socket only)

v Toggling the TCP keep-alive mechanism for a stream socket

v Lingering on close if data is present

v Receiving of out-of-band data

v Local address reuse

The following option is recognized at the TCP level (IPPROTO_TCP):

v Disable sending small data amounts until acknowledgment (Nagle algorithm)

As well as checking current options, getsockopt() can return pending errors and

the type of socket.

Format

The format for getsockopt() is as follows:

The format for setsockopt() is as follows:

Note: The above code sample is for getsockopt(). The setsockopt() call requires the

same parameters and declarations, except that:

v The socket function name changes; getsockopt() becomes setsockopt().

v int *optlen should be replaced by int optlen (without the asterisk).

Parameters

s The socket descriptor.

level When manipulating socket options, you must specify the level at which the

option resides and the name of the option. To manipulate options at the

socket level, the level parameter must be set to SOL_SOCKET as defined in

socket.h. For TCP_NODELAY at the TCP level, the level parameter must be

set to IPPROTO_TCP. To manipulate other TCP level options or options at

any other level, such as the IP level, supply the appropriate protocol

number for the protocol controlling the option. Currently, only the

IPPROTO_IP, IPPROTO_IPV6, IPPROTO_TCP, and SOL_SOCKET levels are

supported.

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

#include <bsdtypes.h>

int getsockopt(int s, int level, int optname, char *optval, int *optlen)

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

#include <bsdtypes.h>

int setsockopt(int s, int level, int optname, char *optval, int optlen)

188 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|

|

|
|

optname

The name of a specified socket option. The options that are available with

CICS TCP/IP are shown in “Possible entries for optname.”

optval and optlen

For getsockopt(), the optval and optlen parameters are used to return data

used by the particular form of the call. The optval parameter points to a

buffer that is to receive the data requested by the get command. The optlen

parameter points to the size of the buffer pointed to by the optval

parameter. It must be initially set to the size of the buffer before calling

getsockopt(). On return it is set to the actual size of the data returned.

 For setsockopt(), the optval and optlen parameters are used to pass data

used by the particular set command. The optval parameter points to a

buffer that contains the data needed by the set command. The optval

parameter is optional and can be set to the NULL pointer, if data is not

needed by the command. The optlen parameter must be set to the size of

the data pointed to by optval.

 For both calls, all of the socket level options except SO_LINGER expect

optval to point to an integer and optlen to be set to the size of an integer.

When the integer is nonzero, the option is enabled. When it is zero, the

option is disabled. The SO_LINGER option expects optval to point to a

linger structure as defined in socket.h.

 This structure is defined in the following example:

#include <manifest.h>

struct linger

{

 int l_onoff; /* option on/off */

 int l_linger; /* linger time */

};

The l_onoff field is set to zero if the SO_LINGER option is being disabled.

A nonzero value enables the option. The l_linger field specifies the amount

of time to linger on close. The units of l_linger are seconds.

Possible entries for optname

The following options are recognized at the IPPROTO_IP level:

Option Description

IP_ADD_MEMBERSHIP

Enables an application to join a multicast group on a specific

interface. An interface must be specified with this option. Only

applications that want to receive multicast datagrams need to join

multicast groups. This is an IPv4 only socket option.

 For setsockopt(), set the optval value to the structure as defined in

in.h. The ip_mreq structure contains a 4-byte IPv4 multicast

address followed by a 4-byte IPv4 interface address.

 This option cannot be specified with the getsockopt() call.

IP_ADD_SOURCE_MEMBERSHIP

Enables an application to join a multicast group on a specific

interface and a specific source address. An interface and a source

address must be specified with this option. Only applications that

want to receive multicast datagrams need to join source multicast

groups. This socket option applies only to IPv4.

Chapter 7. C language application programming 189

|
|
|

|
|
|
|
|
|

For the setsockopt() function, set the optval value to the

ip_mreq_source structure as defined in the in.h header. The

ip_mreq_source structure contains the following:

v 4-byte IPv4 multicast address

v 4-byte IPv4 source address

v 4-byte IPv4 interface address

This option cannot be specified with the getsockopt() function.

IP_BLOCK_SOURCE

Enables an application to block multicast packets that have a

source address that matches the given IPv4 source address. An

interface and a source address must be specified with this option.

The specified multicast group must be joined previously. This

socket option applies only to IPv4.

 For the setsockopt() function, set the optval value to the

ip_mreq_source structure as defined in the in.h header. The

ip_mreq_source structure contains the following:

v 4-byte IPv4 multicast address

v 4-byte IPv4 source address

v 4-byte IPv4 interface address

This option cannot be specified with the getsockopt() function.

IP_DROP_MEMBERSHIP

Enables an application to exit a multicast group or to exit a

multicast group and drop all sources. This is an IPv4-only socket

option.

 For the setsockopt() function, set the optval value to the ip_mreq

structure as defined in the in.h header. The ip_mreq structure

contains the following:

v 4-byte IPv4 multicast address

v 4-byte IPv4 interface address

This option cannot be specified with the getsockopt() function.

IP_DROP_SOURCE_MEMBERSHIP

Enables an application to exit a source multicast group. This socket

option applies only to IPv4.

 For the setsockopt() function, set the optval value to the

ip_mreq_source structure as defined in the in.h header. The

ip_mreq_source structure contains the following:

v 4-byte IPv4 multicast address

v 4-byte IPv4 source address

v 4-byte IPv4 interface address

This option cannot be specified with the getsockopt() function.

IP_MULTICAST_IF

Sets or obtains the IPv4 interface address used for sending

outbound multicast datagrams from the socket application. This is

an IPv4-only socket option.

190 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|

|

|

|

|

|
|
|
|
|
|

|
|
|

|

|

|

|

|
|
|
|

|
|
|

|

|

|

|
|
|

|
|
|

|

|

|

|

Note: Multicast datagrams can be transmitted only on one

interface at a time.

For setsockopt(), set optval to an IPv4 interface address.

 For getsockopt(), optval contains an IPv4 interface address.

IP_MULTICAST_TTL

Sets or obtains the IP time-to-live of outgoing multicast datagrams.

The default value is ‘01‘x, meaning that multicast is available only

to the local subnet. This is an IPv4-only socket option.

 For setsockopt(), set optval to a value in the range of x’00’–x’ff’

specifying the time-to-live. optval is a 1 byte field.

 For getsockopt(), optval contains a value in the range from

x’00’–x’ff’, indicating time-to-live. optval is a one byte field.

IP_MULTICAST_LOOP

Controls or determines if a copy of multicast datagrams is looped

back for multicast datagrams sent to a group to which the sending

host itself belongs. The default is to loop the datagrams back. This

is an IPv4-only socket option.

 For setsockopt(), set optval to 1 to enable and set to 0 to disable.

 For getsockopt(), optval contains a 1 when enabled and contains a 0

when disabled.

IP_UNBLOCK_SOURCE

Enables an application to unblock a previously blocked source for

a given IPv4 source multicast group. An interface and a source

address must be specified with this option. This socket option

applies only to IPv4.

 For the setsockopt() function, set the optval value to the

ip_mreq_source structure as defined in the in.h header. The

ip_mreq_source structure contains the following:

v 4-byte IPv4 multicast address

v 4-byte IPv4 source address

v 4-byte IPv4 interface address

This option cannot be specified with the getsockopt() function.

The following options are recognized at the IPPROTO_IPV6 level:

Option Description

IPV6_JOIN_GROUP

Controls the reception of multicast packets and specifies that the

socket join a multicast group. This is an IPv6-only socket option.

 For setsockopt(), set optval to the ipv6_mreq structure as defined in

in.h. The ipv6_mreq structure contains a 16-byte IPv6 multicast

address followed by a 4-byte IPv6 interface index number. If the

interface number is 0, the stack chooses the local interface.

 This cannot be specified with getsockopt().

IPV6_LEAVE_GROUP

Controls the reception of multicast packets and specify that the

socket leave a multicast group. This is an IPv6-only socket option.

Chapter 7. C language application programming 191

|
|
|
|
|

|
|
|

|

|

|

|

For setsockopt(), set optval to the ipv6_mreq structure as defined in

in.h. The ipv6_mreq structure contains a 16-byte IPv6 multicast

address followed by a 4-byte IPv6 interface index number. If the

interface number is 0, then the stack chooses the local interface.

 This cannot be specified with getsockopt().

IPV6_MULTICAST_HOPS

Sets or obtains the hop limit used for outgoing multicast packets.

This is an IPv6-only socket option.

 For setsockopt(), set optval to a value in the range of 0 to 255,

specifying the multicast hops. If optval is not specified or is set to 0,

the default is 1 hop. If optval is set to a -1, the stack default hop is

used.

 Rule: An application must be APF authorized to enable it to set

the hop limit value above the system defined hop limit value. The

CICS application cannot execute as APF authorized.

 For getsockopt(), optval contains a value in the range from 0–255,

indicating the number of multicast hops.

IPV6_MULTICAST_IF

Sets or obtains the index of the IPv6 interface used for sending

outbound multicast datagrams from the socket application. This is

an IPv6 only socket option.

 For setsockopt(), set optval to a value that contains an IPv6

interface index.

 For getsockopt(), optval contains an IPv6 interface index.

IPV6_MULTICAST_LOOP

Controls or determines whether a multicast datagram is looped

back on the outgoing interface by the IP layer for local delivery

when datagrams are sent to a group to which the sending host

itself belongs. The default is to loop multicast datagrams back. This

is an IPv6-only socket option.

 For setsockopt(), set optval to 1 to enable and set to 0 to disable.

 For getsockopt(), optval contains a 1 when enabled and contains a 0

when disabled.

IPV6_UNICAST_HOPS

Sets or obtains the hop limit used for outgoing unicast IPv6

packets. This is an IPv6 only socket option.

 For setsockopt(), set optval to a value in the range of 0–255,

specifying the unicast hops. If optval is not specified or is set to 0,

the default is 1 hop. If optval is set to a -1, the stack default hop is

used.

 Rule: An application must be APF authorized to enable it to set

the hop limit value above the system defined hop limit value. The

CICS application cannot execute as APF authorized.

 For getsockopt(), optval contains a value in the range from 0–255

indicating the number of unicast hops.

IPV6_V6ONLY

Sets or determines whether the socket is restricted to send and

192 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

receive only IPv6 packets. The default is to not restrict the sending

and receiving of only IPv6 packets. This is an IPv6-only socket

option.

 For setsockopt(), set optval to 1 to enable and set to 0 to disable.

 For getsockopt(), optval contains a 1 when enabled and contains a 0

when disabled.

The following options are recognized at the IPPROTO_IP and IPPROTO_IPV6

level:

Option Description

MCAST_BLOCK_SOURCE

Enables an application to block multicast packets that have a

source address that matches the given source address. An interface

index and a source address must be specified with this option. The

specified multicast group must have been joined previously.

 For the setsockopt() function, set the optval value to the

group_source_req structure as defined in the in.h header. The

group_source_req structure contains the following:

v 4-byte interface index number

v Socket address structure of the multicast address

v Socket address structure of the source address

This option cannot be specified with the getsockopt() function.

MCAST_JOIN_GROUP

Enables an application to join a multicast group on a specific

interface. An interface index must be specified with this option.

The stack chooses a default interface if the interface index 0 is

specified. Only applications that want to receive multicast

datagrams need to join multicast groups.

 For the setsockopt() function, set the optval value to the group_req

structure as defined in the in.h header. The group_req structure

contains the following:

v 4-byte interface index number

v Socket address structure of the multicast address

This option cannot be specified with the getsockopt() function.

 Sets the IPv4 or IPv6 multicast address and the local interface

index. Use the setsockopt() function and specify the address of the

group_req structure that controls the address and the interface

index. The application can join multiple multicast groups on a

single socket and can also join the same group on multiple

interfaces on the same socket. However, there is a maximum limit

of 20 groups per single UDP socket and there is a maximum limit

of 256 groups per single RAW socket. The stack chooses a default

multicast interface if the interface index 0 is passed. The format of

the group_req structure is in the in.h header.

MCAST_JOIN_SOURCE_GROUP

Enables an application to join a multicast group on a specific

interface and a source address. An interface index and the source

address must be specified with this option. The stack chooses a

Chapter 7. C language application programming 193

|
|

||

|
|
|
|
|

|
|
|

|

|

|

|

|
|
|
|
|
|

|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

default interface if the interface index 0 is specified. Only

applications that want to receive multicast datagrams need to join

source multicast groups.

 For the setsockopt() function, set the optval value to the

group_source_req structure as defined in the in.h header. The

group_source_req structure contains the following:

v 4-byte interface index number

v Socket address structure of the multicast address

v Socket address structure of the source address

This option cannot be specified with the getsockopt() function.

MCAST_LEAVE_GROUP

Enables an application to exit a multicast group or to exit a

multicast group and drop all sources.

 For the setsockopt() function, set the optval value to the group_req

structure as defined in the in.h header. The group_req structure

contains the following:

v 4-byte interface index number

v Socket address structure of the multicast address

This option cannot be specified with the getsockopt() function.

MCAST_LEAVE_SOURCE_GROUP

Enables an application to exit a source multicast group on a

specific interface and a source address.

 For the setsockopt() function, set the optval value to the

group_source_req structure as defined in the in.h header. The

group_source_req structure contains the following:

v 4-byte interface index number

v Socket address structure of the multicast address

v Socket address structure of the source address

This option cannot be specified with the getsockopt() function.

MCAST_UNBLOCK_SOURCE

Enables an application to unblock a previously blocked source for

a given multicast group. An interface index and a source address

must be specified with this option.

 For the setsockopt() function, set the optval value to the

group_source_req structure as defined in the in.h header. The

group_source_req structure contains the following:

v 4-byte interface index number

v Socket address structure of the multicast address

v Socket address structure of the source address

This option cannot be specified with the getsockopt() function.

The following options are recognized at the TCP level:

TCP_KEEPALIVE

For setsockopt, the TCP_KEEPALIVE socket option specifies a

socket-specific timer value which remains in effect until specified

194 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|

|
|
|

|

|

|

|

|
|
|

|
|
|

|

|

|

|
|
|

|
|
|

|

|

|

|

|
|
|
|

|
|
|

|

|

|

|

|
|
|

by SETSOCKOPT or until the socket is closed. Valid values are in

the range 0 - 2 147 460 seconds; if a value greater than the allowed

range is specified, 2 147 460 seconds is used. For the getsockopt

call, the TCP_KEEPALIVE socket option returns the specific timer

value in seconds in effect for the given socket, or 0 if

TCP_KEEPALIVE timing is not active. See z/OS Communications

Server: IP Programmer’s Guide and Reference for more information

about the socket option parameters.

TCP_NODELAY

For setsockopt, toggles the use of the Nagle algorithm (RFC 896)

for all data sent over the socket. Under most circumstances, TCP

sends data when it is presented. However, when outstanding data

has not yet been acknowledged, TCP gathers small amounts of

output to be sent in a single packet after an acknowledgment is

received. For interactive applications, such as ones that send a

stream of mouse events which receive no replies, this gathering of

output can cause significant delays. For these types of applications,

disabling the Nagle algorithm improves response time. When the

Nagle algorithm is disabled, TCP can send small amounts of data

before the acknowledgment for previously sent data is received.

 For getsockopt, returns the setting of the Nagle algorithm for the

socket. When optval is 0, the Nagle algorithm is enabled and TCP

waits to send small packets of data until the acknowledgment for

the previous data is received. When optval is not 0, the Nagle

algorithm is disabled and TCP can send small packets of data

before the acknowledgment for previously sent data is received.

The following options are recognized at the socket level:

SO_BROADCAST

Toggles the ability to broadcast messages. If this option is enabled,

it allows the application to send broadcast messages over s, if the

interface specified in the destination supports the broadcasting of

packets. This option has no meaning for stream sockets.

SO_ERROR This cannot be specified with setsockopt(). It returns any pending

error on the socket and clears the error status. It can be used to

check for asynchronous errors on connected datagram sockets or

for other asynchronous errors (errors that are not returned

explicitly by one of the socket calls).

SO_KEEPALIVE

Sets or determines whether the keepalive mechanism periodically

sends a packet on an otherwise idle connection for a stream socket.

The default is disabled. When activated, the keepalive mechanism

periodically sends a packet on an otherwise idle connection. If the

remote TCP does not respond to the packet or to retransmissions of

the packet, the connection is terminated with the error

ETIMEDOUT.

SO_LINGER Lingers on close if data is present. When this option is enabled and

there is unsent data present when close() is called, the calling

application is blocked during the close() call until the data is

transmitted or the connection has timed out. If this option is

disabled, the TCP/IP address space waits to try to send the data.

Although the data transfer is usually successful, it cannot be

Chapter 7. C language application programming 195

|
|
|
|
|
|
|
|

guaranteed, because the TCP/IP address space waits a finite

amount of time trying to send the data. The close() call returns

without blocking the caller.

Note: If you set a 0 linger time, the connection cannot close in an

orderly manner, but stops, resulting in a RESET segment

being sent to the connection partner. Also, if the aborting

socket is in nonblocking mode, the close call is treated as

though no linger option had been set.

SO_OOBINLINE

Toggles reception of out-of-band data. When this option is enabled,

it causes out-of-band data to be placed in the normal data input

queue as it is received, making it available to recvfrom() without

having to specify the MSG_OOB flag in the call. When this option

is disabled, it causes out-of-band data to be placed in the priority

data input queue as it is received, making it available to

recvfrom(), and only by specifying the MSG_OOB flag in that call.

SO_REUSEADDR

Toggles local address reuse. When enabled, this option allows local

addresses that are already in use to be bound. This alters the

normal algorithm used in the bind() call. Normally, the system

checks at connect time to ensure that the local address and port do

not have the same foreign address and port. The error

EADDRINUSE is returned if the association already exists. If you

require multiple servers to bind to the same port and listen on

INADDR_ANY or the IPv6 unspecified address (in6addr_any), see

to the SHAREPORT option on the PORT statement in

TCPIP.PROFILE.

SO_SNDBUF Applies to getsockopt() only. Returns the size of the data portion of

the TCP/IP send buffer in optval. The size of the data portion of

the send buffer is protocol-specific, based on the

DATABUFFERPOOLSIZE statement in the PROFILE.TCPIP data

set. The value is adjusted to allow for protocol header information.

SO_TYPE This is for getsockopt() only. This option returns the type of the

socket. On return, the integer pointed to by optval is set to

SOCK_STREAM or SOCK_DGRAM.

Return values

The value 0 indicates success; the value −1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

EBADF

The s parameter is not a valid socket descriptor.

EFAULT

Using optval and optlen parameters results in an attempt to access storage

outside the caller’s address space.

ENOPROTOOPT

The optname parameter is unrecognized, or the level parameter is not

SOL_SOCKET.

196 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

getsourcefilter()

Obtains a list of the IPv4 or IPv6 source addresses that comprise the source filter,

along with the current mode on a given interface and a multicast group for a

socket. The source filter can either include or exclude the set of source addresses,

depending on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE).

Format

This call has the following format:

Parameters

s The socket descriptor.

interface

The interface index of the interface.

group A pointer to either a sockaddr_in structure for IPv4 addresses or a

sockaddr_in6 structure for IPv6 addresses that holds the IP multicast

address of the group.

grouplen

The length of the sockaddr_in or sockaddr_in6 structure.

fmode A pointer to an integer that contains the filter mode on a successful return.

The value of the filter mode can be either MCAST_INCLUDE or

MCAST_EXCLUDE.

numsrc

On input, a pointer to the number of source addresses that can fit in the

array specified by the slist parameter. On output, a pointer to the total

number of source addresses in the filter.

slist A pointer to an array of IP addresses that is either included or excluded,

depending on the filter mode. If a numsrc value 0 was specified on input,

you can specify a NULL pointer.

 On return, the numsrc value is always updated to be the total number of sources in

the filter; the slist pointer points to an array that holds as many source addresses

as fit, which is the minimum of the array size specified by the input numsrc value

and the total number of sources in the filter.

If the application is not aware of the size of the source list before processing, it can

make a reasonable guess (for example, 0). When the process completes, if the

numsrc is large, the operation can be repeated with a large buffer.

Return values

When successful, the value 0 is returned. When an error has occurred, the value -1

is returned and the errno value is one of the following:

EBADF

The s parameter value is not a valid socket descriptor.

 #include <manifest.h> (non-reentrant programs only)

#include <cmanfies.h> (reentrant programs only)

#include <netinet/in.h>

int getsourcefilter(int s, uint32_t interface,

struct sockaddr *group, socklen_t grouplen,

uint32_t *fmode, uint32_t *numsrc,

struct sockaddr_storage *slist);

Chapter 7. C language application programming 197

|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
||

|

||

|
|

||
|
|

|
|

||
|
|

|
|
|
|

||
|
|

|
|
|
|

|
|
|

|
|
|

|
|

EAFNOSUPPORT

The address family of the sockaddr value is not AF_INET or AF_INET6.

EPROTOTYPE

The socket protocol type is not correct.

EADDRNOTAVAIL

The tuple consisting of socket, interface, and multicast group values does

not exist, or the specified interface address is not multicast capable.

EINVAL

The socket address family of an input parameter is not correct or the

socket specified by the s parameter already requested multicast setsockopt

options. For more information, see the z/OS Communications Server: IP

Sockets Application Programming Interface Guide and Reference.

ENOMEM

Insufficient storage is available to supply the array.

ENXIO

The interface index specified by the interface parameter does not exist.

givesocket()

The givesocket() call tells TCP/IP to make a specified socket available to a

takesocket() call issued by another program. Any connected stream socket can be

given. Typically, givesocket() is used by a parent server that obtains sockets by

means of accept() and gives them to child servers that handle one socket at a time.

To pass a socket, the parent server first calls givesocket(), passing the name of the

child server’s address space.

The parent server then uses the EXEC CICS START command to start the child

server. The START command uses the FROM data to pass the socket descriptor

and the parent’s client ID that were previously returned by the socket() and

getclientid() calls respectively.

The child server calls takesocket(), specifying the parent’s client ID and socket

descriptor.

Having issued a givesocket() and started the child server that is to take the socket,

the concurrent server uses select() to test the socket for an exception condition.

When select() reports that an exceptional condition is pending, the concurrent

server calls close() to free the socket. If the concurrent server closes the socket

before a pending exception condition is indicated, the TCP connection is

immediately reset, and the child server’s takesocket() call is unsuccessful.

When a program has issued a givesocket() call for a socket, it cannot issue any

further calls for that socket, except close().

Format

This call has the following format:

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>

#include <socket.h>

int givesocket(int s, struct clientid *clientid)

198 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|

|
|

|
|
|

|
|
|
|
|

|
|

|
|

|

Parameters

s The descriptor of a socket to be given to another application.

clientid A pointer to a clientid structure specifying the target program to whom the

socket is to be given. You should fill the structure as follows:

domain Set to either AF_INET (a decimal 2) or AF_INET6 (a decimal 19).

 Rule: An AF_INET socket can be given only to an AF_INET

takesocket(). An AF_INET6 socket can be given only to an

AF_INET6 takesocket(). EBADF is set if the domain does not

match.

name This is the child server’s address space name, left-justified and

padded with blanks. The child server can run in the same address

space as the parent server. In this case, the field is set to the parent

server’s address space.

subtaskname

Blanks.

reserved

Binary zeros.

Return Values

The value 0 indicates success; the value −1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

EBADF

The s parameter is not a valid socket descriptor, the socket has already

been given, or the socket domain is not AF_INET or AF_INET6.

EBUSY

listen() has been called for the socket.

EFAULT

Using the clientid parameter as specified results in an attempt to access

storage outside the caller’s address space.

EINVAL

The clientid parameter does not specify a valid client identifier.

ENOTCONN

The socket is not connected.

EOPNOTSUPP

The socket type is not SOCK_STREAM.

if_freenameindex()

The if_freenameindex() function is used to release the array storage obtained by

the if_nameindex() function.

Format

This call has the following format:

#include <manifest.h> (non-reentrant programs only)

#include <cmanfies.h> (reentrant programs only)

#include <if.h>

void if_freenameindex(struct if_nameindex *ptr)

Chapter 7. C language application programming 199

Parameters

ptr A pointer that contains the address of the array of structures returned by

the if_nameindex() function.

Return values

No return value is defined.

if_indextoname()

The if_indextoname() function returns an interface name when given an interface

index.

Format

This call has the following format:

Parameters

ifindex

Storage that contains an interface index.

ifname

A buffer that contain the name of the index value specified in the ifindex

parameter.

Return values

Possible return values include:

EINVAL The ifindex parameter was zero, or the ifname parameter was

NULL, or both.

ENOMEM Insufficient storage is available to obtain the information for the

interface name.

ENXIO The ifindex does not yield an interface name.

if_nameindex()

The if_nameindex() function is used to obtain a list of interface names and their

corresponding indices. The if_nameindex() function is not supported by IPv4-only

stacks. However, if a mixture of IPv4-only and IPv4 and IPv6 stacks are active

under CINET, CINET assigns a single interface index to the IPv4-only stack. This

allows applications using IPv6 sockets to target an IPv4-only stack but does not

allow the selection of a particular interface on an IPv4-only stack. Not all interfaces

are returned in the output from if_nameindex(). VIPA interfaces are not returned.

Interfaces that have never been activated are not returned.

Format

This call has the following format:

#include <manifest.h> (non-reentrant programs only)

#include <cmanfies.h> (reentrant programs only)

#include <if.h>

char * if_indextoname(unsigned int ifindex, char *ifname)

#include <manifest.h> (non-reentrant programs only)

#include <cmanfies.h> (reentrant programs only)

#include <if.h>

struct if_nameindex * if_nameindex(void)

200 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Parameters

There are no input parameters as the if_nameindex() function returns a pointer to

an array of structures that contains information about each system interface. Check

the if_nameindex structure in if.h for the format of the returned data.

Return values

When successful, if_nameindex() returns a pointer to an array of if_nameindex

structures. Upon failure, if_nameindex() returns NULL and sets errno to the

following:

ENOMEM Insufficient storage is available to supply the array.

if_nametoindex()

The if_nametoindex() function returns an interface index when given an interface

name.

Format

This call has the following format:

Parameters

ifname

A pointer to null terminated storage that contains the interface name. If the

interface specified by ifname does not exist then 0 is returned.

Return values

When successful, if_nametoindex() returns the interface index corresponding to the

interface name ifname. Upon failure, if_nametoindex() returns zero and sets errno to

one of the following:

EINVAL A parameter was not specified. The ifname parameter was NULL.

ENOMEM Insufficient storage is available to obtain the information for the

interface name.

ENXIO The specified interface name provided in the ifname parameter does

not exist.

inet_ntop()

Converts numeric IP addresses to their printable form.

Format

This call has the following format:

Parameters

af The address family of the IP address being converted specified as AF_INET

or AF_INET6.

#include <manifest.h> (non-reentrant programs only)

#include <cmanfies.h> (reentrant programs only)

#include <if.h>

unsigned int if_nametoindex(const char * ifname)

#include <manifest.h> (non-reentrant programs only)

#include <cmanfies.h> (reentrant programs only)

#include <inet.h>

const char * inet_ntop(int af, const void *src, char *dst, socklen_t size)

Chapter 7. C language application programming 201

src A pointer to the IP address, in network byte order, to be converted to

presentable form.

dst A pointer to storage used to contain the converted IP address.

size The size of the IP address pointed to by the src parameter.

Return values

If successful, inet_ntop() returns a pointer to the buffer that contains the converted

address.

If unsuccessful, inet_ntop() returns NULL and sets errno to one of the following

values:

EAFNOSUPPORT

The address family specified in af is unsupported.

ENOSPC The destination buffer size is too small.

inet_pton()

Converts IP addresses from presentable text form to numeric form.

Format

This call has the following format:

Parameters

af The address family of the IP address being converted, specified as

AF_INET or AF_INET6.

src A pointer to the IP address, in presentable text form, to be converted to

numeric form.

dst A pointer to storage used to contain the converted IP address. The

converted address is in numeric form and network byte order.

Return values

If successful, inet_pton() returns 1 and stores the binary form of the Internet

address in the buffer pointed to by dst.

If unsuccessful because the input buffer pointed to by src is not a valid string,

inet_pton() returns 0.

If unsuccessful because the af argument is unknown, inet_pton() returns -1 and sets

errno to the following value:

EAFNOSUPPORT

The address family specified in af is unsupported.

initapi()

The initapi() call connects your application to the TCP/IP interface.

#include <manifest.h> (non-reentrant programs only)

#include <cmanfies.h> (reentrant programs only)

#include <inet.h>

int inet_pton(int af, const char *src, void *dst)

202 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Format

This call has the following format:

Parameters

max_sock

The maximum number of sockets requested. This value cannot exceed

2000. The minimum value is 50.

subtaskid

A unique 8-character ID, which should be the 4-byte packed EIBTASKN

value in the EIB plus three character 0’s and a unique displayable

character.

 Using the letter L as the last character in the subtask parameter causes the

tasking mechanism to assume that the CICS transaction is a listener. The

task mechanism schedules the transaction using a non-reusable subtask by

way of MVS attach processing when OTE=NO. This value has no effect

when OTE=YES.

Return values

A positive value indicates success; a value of −1 indicates an error. To determine

which error occurred, check the errno global variable, which is set to a return code.

ioctl()

The ioctl() call controls the operating characteristics of sockets. This call can issue a

command to do any of the following:

v Set or clear nonblocking input and output for a socket.

v Get the number of immediately readable bytes for the socket.

v Query whether the current location in the data input is pointing to out-of-band

data.

v Get the IPv6 home interface addresses.

v Get the network interface address.

v Get the network interface broadcast address.

v Get the network interface configuration.

v Get the network interface names and indices.

v Control Application Transparent Transport Layer Security (AT-TLS) for a

connection

Format

This call has the following format:

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

int initapi(int max_sock, char *subtaskid)

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>

#include <ioctl.h>

#include <ezbztlsc.h>

#include <ezbyaplc.h>

#include <rtrouteh.h>

#include <if.h>

int ioctl(int s, unsigned long cmd, char *arg)

Chapter 7. C language application programming 203

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

Parameters

s The socket descriptor.

cmd and arg

cmd is the command to perform; arg is a pointer to the data associated with

cmd. The following are valid ioctl() commands:

FIONBIO

Sets or clears nonblocking input and output for a socket. arg is a

pointer to an integer. If the integer is 0, the socket is in

nonblocking mode. Otherwise, the socket is set for nonblocking

input/output.

FIONREAD

Gets the number of immediately readable bytes for the socket. arg

is a pointer to an integer. Sets the value of the integer to the

number of immediately readable characters for the socket.

SIOCATMARK

Queries whether the current location in the data input is pointing

to out-of-band data. The arg parameter is a pointer to an integer.

The parameter sets the argument to 1 if the socket points to a mark

in the data stream for out-of-band data. Otherwise, it sets the

argument to 0.

SIOCGHOMEIF6

Get the IPv6 home interfaces. The arg parameter is a pointer to a

NetConfHdr structure, as defined in ioctl.h. A pointer to a HomeIf

structure that contains a list of home interfaces is returned in the

NetConfHdr pointed to by the argument.

SIOCGIFADDR

Gets the network interface address. The arg parameter is a pointer

to an ifreq structure, as defined in if.h. The interface address is

returned in the argument.

SIOCGIFBRDADDR

Gets the network interface broadcast address. The arg parameter is

a pointer to an ifreq structure, as defined in if.h. The interface

broadcast address is returned in the argument.

SIOCGIFCONF

Gets the network interface configuration. The arg parameter is a

pointer to an ifconf structure, as defined in if.h. The interface

configuration is returned in the argument.

SIOCGIFDSTADDR

Gets the network interface destination address. The arg parameter

is a pointer to an ifreq structure, as defined in if.h. The interface

destination (point-to-point) address is returned in the argument.

SIOCSAPPLDATA

Enables an application to associate 40 bytes of user-specified

application data with a TCP connection. Identifies socket endpoints

in tools such as Netstat, SMF, or network management

applications.

 Requirement: When you issue the SIOCSAPPLDATA ioctl()

function, ensure that the arg parameter contains a SetApplData

structure as defined by the EZBYAPLC header file in the

SEZANMAC dataset. See z/OS Communications Server: IP

204 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|

|
|
|
|

Programmer’s Guide and Reference for more information about

programming the SIOCSAPPLDATA IOCTL.

SetAD_buffer

The user-defined application data comprises 40 bytes of

data that is used to identify the TCP connection with the IP

CICS socket API sockets application. The application data

can be displayed in the following ways:

v By requesting Netstat reports. The information is

displayed conditionally using the modifier APPLDATA

on the ALLC/-a and COnn /-c reports and

unconditionally on the ALL/-A report. See the Netstat

ALL/-A report, Netstat ALLConn/-a report, and Netstat

COnn/-c report in z/OS Communications Server: IP System

Administrator’s Commands for more information about

Netstat reports.

v In the SMF 119 TCP connection termination record. See

z/OS Communications Server: IP Configuration Reference for

more information about the application data written on

the SMF 119 record.

v By network management applications. See z/OS

Communications Server: IP Programmer’s Guide and

Reference for more information about application data.

Applications using this ioctl need to consider the following

guidelines:

v The application is responsible for documenting the

content, format, and meaning of the ApplData strings

that it associates with sockets it owns.

v The application should uniquely identify itself with

printable EBCDIC characters at the beginning of the

string. Strings beginning with 3-character IBM product

identifiers, such as EZA or EZB, are reserved for IBM

use. IBM product identifiers begin with a letter in the

range A - I.

v Printable EBCDIC characters should be used for the

entire string to enable searching with Netstat filters.

Tip: Separate application data elements with a blank for

easier reading.

SIOCTTLSCTL

Controls Application Transparent Transport Layer Security

(AT-TLS) for the connection. The arg parameter is a pointer to a

TTLS_IOCTL structure, as defined in ezbztlsc.h. If a partner

certificate is requested, the TTLS_IOCTL must include a pointer to

additional buffer space and the length of that buffer. Information is

returned in the TTLS_IOCTL structure. If a partner certificate is

requested and one is available, it is returned in the additional

buffer space. For more usage information, see z/OS Communications

Server: IP Programmer’s Guide and Reference .

Return values

The value 0 indicates success; the value −1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

Chapter 7. C language application programming 205

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|

EBADF

The s parameter is not a valid socket descriptor.

EINVAL

The request is not correct or not supported.

listen()

The listen() call performs two tasks for a specified stream socket:

1. Completes the necessary binding if bind() has not been called for the socket.

2. Creates a connection request queue of a specified length to queue incoming

connection requests.

The listen() call indicates a readiness to accept client connection requests. It

transforms an active socket into a passive socket. A passive socket can never be

used as an active socket to initiate connection requests.

Calling listen() is the third of four steps that a server performs to accept a

connection. It is called after allocating a stream socket with socket(), and after

binding a name to the socket with bind(). It must be called before calling accept()

to accept a connection request from a client.

Format

This call has the following format:

Parameters

s The socket descriptor.

backlog Defines the maximum length for the queue of pending connections.

Note: The backlog value specified on the LISTEN call cannot be greater

than the value configured by the SOMAXCONN statement in the

stack’s TCPIP PROFILE (default=10); no error is returned if a greater

backlog value is requested. If you want a larger backlog, update the

SOMAXCONN statement. See the z/OS Communications Server: IP

Configuration Reference for details.

Return values

The value 0 indicates success; the value −1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

EBADF

The s parameter is not a valid socket descriptor.

EOPNOTSUPP

The s parameter is not a socket descriptor that supports the listen() call.

read()

The read() call reads data on a specified connected socket.

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

int listen(int s, int backlog)

206 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|

Stream sockets act like streams of information with no boundaries separating data.

For example, if applications A and B are connected with a stream socket and

application A sends 1000 bytes, each call to this function can return one byte, or 10

bytes, or the entire 1000 bytes. Therefore, applications using stream sockets should

place this call in a loop, which should repeat until all data has been received.

Format

This call has the following format:

Parameters

s The socket descriptor.

buf The pointer to the buffer that receives the data.

len The length in bytes of the buffer pointed to by the buf parameter.

Return values

If successful, the number of bytes copied into the buffer is returned. The value 0

indicates that the connection is closed. The value −1 indicates an error. To

determine which error occurred, check the errno global variable, which is set to a

return code. Possible codes include:

EBADF

s is not a valid socket descriptor.

EFAULT

Using the buf and len parameters results in an attempt to access storage

outside the caller’s address space.

EWOULDBLOCK

s is in nonblocking mode, and data is not available to read.

recv()

The recv() call receives data on a specified socket.

If a datagram packet is too long to fit in the supplied buffer, datagram sockets

discard extra bytes. Stream sockets act like streams of information with no

boundaries separating data. For example, if applications A and B are connected

with a stream socket and application A sends 1000 bytes, each call to this function

can return 1 byte, or 10 bytes, or up to 1000 bytes. Therefore, applications using

stream sockets should place this call in a loop, calling this function until all data

has been received.

Format

This call has the following format:

Parameters

s The socket descriptor.

buf The pointer to the buffer that receives the data.

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

int read(int s, char *buf, int len)

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>

#include <socket.h>

int recvfrom(int s, char *buf, int len, int flags)

Chapter 7. C language application programming 207

len The length in bytes of the buffer pointed to by the buf parameter.

flags A parameter that can be set to 0 or MSG_PEEK.

MSG_OOB

Reads any out-of-band data on the socket.

MSG_PEEK

Peeks at the data present on the socket. The data is returned but

not destroyed, so that a subsequent receive operation can recognize

the same data.

Return values

If successful, the length of the message or datagram in bytes is returned. The value

0 indicates that the connection is closed. The value −1 indicates an error. To

determine which error occurred, check the errno global variable, which is set to a

return code. Possible codes include:

EBADF

s is not a valid socket descriptor.

EFAULT

Using the buf and len parameters results in an attempt to access storage

outside the caller’s address space.

EWOULDBLOCK

s is in nonblocking mode, and data is not available to read.

recvfrom()

The recvfrom() call receives data on a specified socket. The recvfrom() call applies

to any datagram socket, whether connected or unconnected.

The call returns the length of the incoming message or data. If a datagram packet

is too long to fit in the supplied buffer, datagram sockets discard extra bytes.

Stream sockets act like streams of information with no boundaries separating data.

For example, if applications A and B are connected with a stream socket and

application A sends 1000 bytes, each call to this function can return 1 byte, or 10

bytes, or the entire 1000 bytes. Therefore, applications using stream sockets should

place this call in a loop, calling this function until all data has been received.

Format

This call has the following format:

Parameters

s The socket descriptor.

buf The pointer to the buffer that receives the data.

len The length in bytes of the buffer pointed to by the buf parameter.

flags A parameter that can be set to 0 or MSG_PEEK.

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>

#include <socket.h>

int recvfrom(int s, char *buf, int len, int flags,

struct sockaddr *name, int *namelen)

208 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

MSG_OOB

Reads any out-of-band data on the socket.

MSG_PEEK

Peeks at the data present on the socket. The data is returned but

not destroyed, so that a subsequent receive operation can recognize

the same data.

name A pointer to a socket address structure from which data is received. If name

is a nonzero value, the source address is returned.

 The following fields are used to define the IPv4 socket address structure of

the socket that sent the data.

sin_family This field is set to AF_INET.

sin_port Contains the port number of the sending socket.

in_addr.sin_addr

Contains the 32-bit IPv4 Internet address, in network byte

order, of the sending socket.

sin_zero This field is not used and is set to all zeros.

 The following fields are used to define the IPv6 socket address structure of

the socket that sent the data.

sin6_family This field is set to AF_INET6.

sin6_port Contains the port number bound of the sending socket.

sin6_flowinfo Contains the traffic class and flow label. The value of this

field is undefined.

in6_addr.sin6_addr

Contains the 128-bit IPv6 Internet address, in network byte

order, of the sending socket.

sin6_scope_id Identifies a set of interfaces as appropriate for the scope of

the address carried in the in6_addr.sin6_addr field. For a

link scope in6_addr.sin6_addr, sin6_scope_id contains the link

index for the in6_addr.sin6_addr. For all other address

scopes, sin6_scope_id is undefined.

namelen

A pointer to an integer that contains the size of name in bytes. For an IPv4

socket address, the namelen parameter contains a decimal 16. For an IPv6

socket address, the namelen parameter contains a decimal 28.

Return values

If successful, the length of the message or datagram in bytes is returned. The value

0 indicates that the connection is closed. The value −1 indicates an error. To

determine which error occurred, check the errno global variable, which is set to a

return code. Possible codes include:

EBADF

s is not a valid socket descriptor.

EFAULT

Using the buf and len parameters results in an attempt to access storage

outside the caller’s address space.

EWOULDBLOCK

s is in nonblocking mode, and data is not available to read.

Chapter 7. C language application programming 209

select()

The select() call is useful in processes where multiple operations can occur, and it

is necessary for the program to be able to wait on one or several of the operations

to complete.

For example, consider a program that issues a read() to multiple sockets whose

blocking mode is set. Because the socket blocks on a read() call, only one socket

could be read at a time. Setting the sockets nonblocking solves this problem, but

requires polling each socket repeatedly until data became available. The select() call

allows you to test several sockets and to execute a subsequent I/O call only when

one of the tested sockets is ready, thereby ensuring that the I/O call does not

block.

Defining which sockets to test

The select() call monitors for read operations, write operations, and exception

operations:

v When a socket is ready to read, either:

– A buffer for the specified sockets contains input data. If input data is

available for a given socket, a read operation on that socket does not block.

– A connection has been requested on that socket.
v When a socket is ready to write, TCP/IP can accommodate additional output

data. If TCP/IP can accept additional output for a given socket, a write

operation on that socket does not block.

v When an exception condition has occurred on a specified socket, it is an

indication that a takesocket() has occurred for that socket.

Each socket is represented by a bit in a bit string. The bit strings are contained in

32-bit fullwords, numbered from right-to-left. The right-most bit represents socket

0, the leftmost bit represents socket 31, and so on. Thus, if the process uses 32 (or

less) sockets, the bit string is one word long; if the process uses up to 64 sockets,

the bit string is two words long, etc. You define which sockets to test by turning on

the corresponding bit in the bit string.

Read operations: Read operations include accept(), read(), recv(), or recvfrom()

calls. A socket is ready to be read when data has been received for it, or when a

connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits

in READFDS to ‘1’ before issuing the select() call. When the select() call returns,

the corresponding bits in the READFDS indicate sockets ready for reading.

Write operations: A socket is selected for writing (ready to be written) when:

v TCP/IP can accept additional outgoing data.

v A connection request is received in response to an accept() call.

v The socket is marked nonblocking, and a connect() cannot be completed

immediately. In this case, ERRNO contains a value of 36 (EINPROGRESS). This

is not an error condition.

A call to write(), send(), or sendto() blocks when the amount of data to be sent

exceeds the amount of data TCP/IP can accept. To avoid this, you can precede the

write operation with a select() call to ensure that the socket is ready for writing.

After a socket is selected for write(), the program can determine the amount of

TCP/IP buffer space available by issuing the getsockopt() call with the

SO_SNDBUF option.

210 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

To test whether any of several sockets is ready for writing, set the WRITEFDS bits

representing those sockets to 1 before issuing the select() call. When the select() call

returns, the corresponding bits in the WRITEFDS indicate sockets ready for

writing.

Exception operations: For each socket to be tested, the select() call can check for

an existing exception condition. Two exception conditions are supported:

v The calling program (concurrent server) has issued a givesocket() command and

the target child server has successfully issued the takesocket() call. When this

condition is selected, the calling program (concurrent server) should issue close()

to dissociate itself from the socket.

v A socket has received out-of-band data. On this condition, a READ returns the

out-of-band data ahead of program data.

To test whether any of several sockets have an exception condition, set the

EXCEPTFDS bits representing those sockets to 1. When the select() call returns, the

corresponding bits in the EXCEPTFDS indicate sockets with exception conditions.

NFDS parameter: The select() call tests each bit in each string before returning

results. For efficiency, the NFDS parameter can be used to specify the number of

socket descriptors that need to be tested for any event type. The select() call tests

only bits in the range 0 through the (NFDS-1) value.

TIMEOUT parameter: If the time specified in the TIMEOUT parameter elapses

before any event is detected, the select() call returns, and RETCODE is set to 0.

Format: This call has the following format:

Parameters:

nfds The number of socket descriptors to check.

readfds The pointer to a bit mask of descriptors to check for reading.

writefds

The pointer to a bit mask of descriptors to check for writing.

exceptfds

The pointer to a bit mask of descriptors to be checked for exceptional

pending conditions.

timeout

The pointer to the time to wait for the select() call to complete. If timeout is

a NULL pointer, a zero-valued timeval structure is substituted in the call.

The zero-valued timeval structure causes TCP/IP stacks to poll the sockets

and return immediately to the caller.

Return values: A positive value represents the total number of ready sockets in

all bit masks. The value 0 indicates an expired time limit. The three bit masks

indicate status (with one bit for each socket). A 1-bit indicates that the respective

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

#include <bsdtypes.h>

#include <bsdtime.h>

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,

struct timeval *timeout)

Chapter 7. C language application programming 211

socket is ready; a 0-bit indicates that the respective socket is not ready. You can use

the macro FD_ISSET

10 with each socket to test its status.

The value −1 indicates an error. To determine which error occurred, check the errno

global variable, which is set to a return code. Possible codes include:

EBADF

One of the bit masks specified an incorrect socket. FD_ZERO was probably

not called to clear the bit mask before the sockets were set.

EFAULT

One of the bit masks pointed to a value outside the caller’s address space.

EINVAL

One of the fields in the timeval structure is not correct.

send()

The send() call sends data on an already-connected socket.

The select() call can be used prior to issuing the send() call to determine when it is

possible to send more data.

Stream sockets act like streams of information with no boundaries separating data.

For example, if an application is required to send 1000 bytes, each call to this

function can send 1 byte, or 10 bytes, or the entire 1000 bytes. Therefore,

applications using stream sockets should place this call in a loop, calling this

function until all data has been sent.

Format

This call has the following format:

Parameters

s The socket descriptor.

msg The pointer to the buffer that contains the message to transmit.

len The length of the message pointed to by the buf parameter.

flags The flags parameter is set by specifying one or more of the following flags.

If more than one flag is specified, the logical OR operator (|) must be used

to separate them.

MSG_OOB

Sends out-of-band data.

MSG_DONTROUTE

The SO_DONTROUTE option is turned on for the duration of the

operation. This is usually used only by diagnostic or routing

programs.

10. See z/OS Communications Server: IP Programmer’s Guide and Reference for details.

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>

#include <socket.h>

int send(int s, char *msg, int len, int flags)

212 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Return values

A positive value represents the number of bytes sent. The value −1 indicates locally

detected errors. When datagram sockets are specified, no indication of failure to

deliver is implicit in a send() routine.

To determine which error occurred, check the errno global variable, which is set to

a return code. Possible codes include:

EBADF

s is not a valid socket descriptor.

EFAULT

Using the buf and len parameters results in an attempt to access storage

outside the caller’s address space.

ENOBUFS

Buffer space is not available to send the message.

EWOULDBLOCK

s is in nonblocking mode and data is not available to read.

sendto()

The sendto() call sends data to the address specified in the call.

Stream sockets act like streams of information with no boundaries separating data.

For example, if an application wishes to send 1000 bytes, each call to this function

can send 1 byte, or 10 bytes, or the entire 1000 bytes. Therefore, applications using

stream sockets should place this call in a loop, calling this function until all data

has been sent.

Format

This call has the following format:

Parameters

s The socket descriptor.

msg The pointer to the buffer that contains the message to transmit.

len The length of the message in the buffer pointed to by the msg parameter.

flags A parameter that can be set to 0 or MSG_DONTROUTE.

MSG_DONTROUTE

The SO_DONTROUTE option is turned on for the duration of the

operation. This is usually used only by diagnostic or routing

programs.

to The address of the target socket address structure.

 The following fields are used to define the IPv4 socket address structure

the data is sent to.

sin_family Must be set to AF_INET.

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>

#include <socket.h>

int sendto(int s, char *msg, int len, int flags,

struct sockaddr *to, int tolen)

Chapter 7. C language application programming 213

sin_port Set to the port number bound to the socket.

in_addr.sin_addr

Set to the 32-bit IPv4 Internet address in network byte

order.

sin_zero This field is not used and must be set to all zeros.

 The following fields are used to specify the IPv6 socket address structure

the data is sent to.

sin6_family Must be set to AF_INET6.

sin6_port Set to the port number bound to the socket.

sin6_flowinfo Used to specify the traffic class and flow label. This field

must be set to zero.

in6_addr.sin6_addr

Set to the 128-bit IPv6 Internet address in network byte

order.

sin6_scope_id Used to identify a set of interfaces as appropriate for the

scope of the address carried in the in6_addr.sin6_addr field.

A value of zero indicates the sin6_scope_id does not identify

the set of interfaces to be used, and might be specified for

any address types and scopes. For a link scope

in6_addr.sin6_addr, sin6_scope_id might specify a link index

which identifies a set of interfaces. For all other address

scopes, sin6_scope_id is undefined.

tolen The size of the structure pointed to by to. For an IPv4 socket address, the

tolen parameter contains a decimal 16. For an IPv6 socket address, the tolen

parameter contains a decimal 28.

Return values

If positive, indicates the number of bytes sent. The value −1 indicates an error. No

indication of failure to deliver is implied in the return value of this call when used

with datagram sockets.

To determine which error occurred, check the errno global variable, which is set to

a return code. Possible codes include:

EBADF

s is not a valid socket descriptor.

EFAULT

Using the buf and len parameters results in an attempt to access storage

outside the caller’s address space.

EINVAL

tolen is not the size of a valid address for the specified address family.

EMSGSIZE

The message was too big to be sent as a single datagram. The default is

large-envelope-size.

ENOBUFS

Buffer space is not available to send the message.

EWOULDBLOCK

s is in nonblocking mode, and data is not available to read.

214 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

setipv4sourcefilter()

Sets a list of the IPv4 source addresses that comprise the source filter, along with

the current mode on a given interface and a multicast group for a socket. The

source filter can either include or exclude the set of source addresses, depending

on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE).

Format

This call has the following format:

Parameters

s The socket descriptor.

interface

The local IP address of the interface.

group The IP multicast address of the group.

fmode An integer that contains the filter mode to be set. The value of the filter

mode can be MCAST_INCLUDE or MCAST_EXCLUDE.

numsrc

The number of source addresses in the slist array.

slist A pointer to an array of IP addresses that is either included or excluded,

depending on the filter mode. If the numsrc value 0 was specified on input,

you can specify a NULL pointer. A maximum of 64 IP addresses can be

specified.

Return values

When successful, the value 0 is returned. When an error occurs, the value -1 is

returned and the errno value is one of the following:

EBADF

The s parameter value is not a valid socket descriptor

EINVAL

The interface or group parameter value is not a valid IPv4 address, the

specified fmode value is not valid, or the socket s has already requested

multicast setsockopt options. For more information, see z/OS

Communications Server: IP Sockets Application Programming Interface Guide and

Reference.

EPROTOTYPE

The socket protocol type is not correct.

ENOBUFS

The number of source addresses exceeds the allowed limit.

ENOMEM

Insufficient storage is available to supply the array.

EADDRNOTAVAIL

The specified interface address is incorrect for this host, or the specified

interface address is not multicast capable.

setsockopt()

See “getsockopt(), setsockopt()” on page 187.

#include <manifest.h> (non-reentrant programs only)

#include <cmanfies.h> (reentrant programs only)

#include <netinet/in.h>

int setipv4sourcefilter (int s, struct in_addr interface,

 struct in_addr group, uint32_t fmode,

 uint32_t numsrc, struct in_addr *slist);

Chapter 7. C language application programming 215

|
|
|
|
|
|
|

|

|
|
|
|

|
|
||

|
||
|
|
||
||
|
|
|
||
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

setsourcefilter()

Sets a list of the IPv4 or IPv6 source addresses that comprise the source filter,

along with the current mode on a given interface and a multicast group for a

socket. The source filter can either include or exclude the set of source addresses,

depending on the filter mode (MCAST_INCLUDE or MCAST_EXCLUDE).

Format

This call has the following format:

Parameters

s The socket descriptor.

interface

The interface index of the interface.

group A pointer to either a sockaddr_in structure for IPv4 addresses or a

sockaddr_in6 structure for IPv6 addresses. The pointer holds the IP

multicast address of the group.

grouplen

The length of the sockaddr_in or sockaddr_in6 structure.

fmode An integer that contains the filter mode to be set. The value of the filter

mode can be either MCAST_INCLUDE or MCAST_EXCLUDE.

numsrc

An integer that specifies the number of source addresses that are provided

in the array that is pointed to by the slist parameter.

slist A pointer to an array of IP addresses that is either included or excluded,

depending on the filter mode. If the numsrc value 0 was specified on input,

you can specify a NULL pointer.

Return values

When successful, the value 0 is returned. When an error occurs, the value -1 is

returned and the errno value is one of the following:

EBADF

The s parameter value is not a valid socket descriptor.

EAFNOSUPPORT

The address family of the input sockaddr value is not AF_INET or

AF_INET6.

EINVAL

The socket address family of an input parameter is not correct, the

specified fmode value is not correct, or the socket specified by the s

parameter already requested multicast setsockopt options. See z/OS

Communications Server: IP Sockets Application Programming Interface Guide and

Reference for more information.

ENOBUFS

The number of source addresses exceeds the allowed limit.

 #include <manifest.h> (non-reentrant programs only)

#include <cmanfies.h> (reentrant programs only)

#include <netinet/in.h>

int setsourcefilter(int s, uint32_t interface,

struct sockaddr *group, socklen_t grouplen,

uint32_t fmode, uint32_t numsrc,

struct sockaddr_storage *slist);

216 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
||

|

||

|
|

||
|
|

|
|

||
|

|
|
|

||
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

EPROTOTYPE

The socket protocol type is not correct.

ENOMEM

Insufficient storage is available to supply the array.

ENXIO

The specified interface index provided in the interface parameter does not

exist.

shutdown()

The shutdown() call shuts down all or part of a duplex connection.

Format

This call has the following format:

Parameters

s The socket descriptor.

how The how parameter can have a value of 0, 1, or 2, where:

v 0 ends communication from socket s.

v 1 ends communication to socket s.

v 2 ends communication both to and from socket s.

Return values

The value 0 indicates success; the value −1 indicates an error. To determine which

error occurred, check the errno global variable, which is set to a return code.

Possible codes include:

EBADF

s is not a valid socket descriptor.

EINVAL

The how parameter was not set to one of the valid values. Valid values are

0, 1, and 2.

socket()

The socket() call creates an endpoint for communication and returns a socket

descriptor representing the endpoint. Different types of sockets provide different

communication services.

SOCK_STREAM sockets model duplex byte streams. They provide reliable,

flow-controlled connections between peer applications. Stream sockets are either

active or passive. Active sockets are used by clients that initiate connection

requests with connect(). By default, socket() creates active sockets. Passive sockets

are used by servers to accept connection requests with the connect() call. An active

socket is transformed into a passive socket by binding a name to the socket with

the bind() call and by indicating a willingness to accept connections with the

listen() call. After a socket is passive, it cannot be used to initiate connection

requests.

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

int shutdown(int s, int how)

Chapter 7. C language application programming 217

|
|

|
|

|
|
|

|

SOCK_DGRAM supports datagrams (connectionless messages) of a fixed

maximum length. Transmission reliability is not guaranteed. Datagrams can be

corrupted, received out of order, lost, or delivered multiple times.

Sockets are deallocated with the close() call.

Format

This call has the following format:

Parameters

domain The domain parameter specifies a communication domain within which

communication is to take place. This parameter selects the address family

(format of addresses within a domain) that is used. The only families

supported by CICS TCP/IP are AF_INET and AF_INET6, which are both

the Internet domain. The AF_INET and AF_INET6 constant is defined in

the socket.h header file.

type The type parameter specifies the type of socket created. These socket type

constants are defined in the socket.h header file.

 This must be set to either SOCK_STREAM or SOCK_DGRAM.

protocol

The protocol parameter specifies a particular protocol to be used with the

socket. In most cases, a single protocol exists to support a particular type

of socket in a particular addressing family. If the protocol parameter is set to

0, the system selects the default protocol number for the domain and

socket type requested. Protocol numbers are found in the hlq.ETC.PROTO

data set. The default protocol for stream sockets is TCP. The default protocol

for datagram sockets is UDP.

Return values

A nonnegative socket descriptor indicates success. The value −1 indicates an error.

To determine which error occurred, check the errno global variable, which is set to

a return code. Possible codes include:

EPROTONOSUPPORT

The protocol is not supported in this domain, or this protocol is not

supported for this socket type.

takesocket()

The takesocket() call acquires a socket from another program. The CICS listener

passes the client ID and socket descriptor in the COMMAREA.

Format

This call has the following format:

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>

#include <socket.h>

int socket(int domain, int type, int protocol)

218 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Parameters

clientid A pointer to the clientid of the application from which you are taking a

socket.

domain Sets the domain of the program giving the socket. Set as

either AF_INET (a decimal 2) or AF_INET6 (a decimal 19).

 Rule: An AF_INET socket can be taken only from an

AF_INET givesocket(). An AF_INET6 socket can be taken

only from an AF_INET6 givesocket(). EBADF is set if the

domain does not match.

name Set to the address space identifier of the program that gave

the socket.

subtaskname Set to the task identifier of the task that gave the socket.

reserved Binary zeros.

hisdesc The descriptor of the socket to be taken.

Return values

A nonnegative socket descriptor is the descriptor of the socket to be used by this

process. The value −1 indicates an error. To determine which error occurred, check

the errno global variable, which is set to a return code. Possible codes include:

EACCES

The other application did not give the socket to your application.

EBADF

The hisdesc parameter does not specify a valid socket descriptor owned by

the other application. The socket has already been taken.

EFAULT

Using the clientid parameter as specified results in an attempt to access

storage outside the caller’s address space.

EINVAL

The clientid parameter does not specify a valid client identifier.

EMFILE

The socket descriptor table is already full.

ENOBUFS

The operation cannot be performed because of the shortage of SCB or

SKCB control blocks in the TCP/IP address space.

EPFNOSUPPORT

The domain field of the clientid parameter is not AF_INET or AF_INET6.

write()

This call writes data on a connected socket.

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <bsdtypes.h>

#include <socket.h>

int takesocket(struct clientid *client_id, int hisdesc)

Chapter 7. C language application programming 219

Stream sockets act like streams of information with no boundaries separating data.

For example, if an application wishes to send 1000 bytes, each call to this function

can send 1 byte or 10 bytes or the entire 1 000 bytes. Therefore, applications using

stream sockets should place this call in a loop, calling this function until all data

has been sent.

Format

This call has the following format:

Parameters

s The socket descriptor.

buf The pointer to the buffer holding the data to be written.

len The length in bytes of the buffer pointed to by the buf parameter.

Return values

If successful, the number of bytes written is returned. The value −1 indicates an

error. To determine which error occurred, check the errno global variable, which is

set to a return code. Possible codes include:

EBADF

s is not a valid socket descriptor.

EFAULT

Using the buf and len parameters results in an attempt to access storage

outside the caller’s address space.

ENOBUFS

Buffer space is not available to send the message.

EWOULDBLOCK

s is in nonblocking mode and data is not available to write.

Address Testing Macros

This topic describes the macros that can be used to test for special IPv6 addresses.

#include <manifest.h> (non-reentrant programs only)

#include <cmanifes.h> (reentrant programs only)

#include <socket.h>

int write(int s, char *buf, int len)

220 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

IN6_IS_ADDR_UNSPECIFIED

Returns true if the address is the unspecified IPv6 address

(in6addr_any). Otherwise, the macro returns false.

IN6_IS_ADDR_LOOPBACK

Returns true if the address is an IPv6 loopback address. Otherwise,

the macro returns false.

IN6_IS_ADDR_MULTICAST

Returns true if the address is an IPv6 multicast address. Otherwise,

the macro returns false.

IN6_IS_ADDR_LINKLOCAL

Returns true if the address is an IPv6 link local address. Otherwise,

the macro returns false.

 Returns true for local-use IPv6 unicast addresses.

 Returns false for the IPv6 loopback address.

 Does not return true for IPv6 multicast addresses of link-local

scope.

IN6_IS_ADDR_SITELOCAL

Returns true if the address is an IPv6 site local address. Otherwise,

the macro returns false.

 Returns true for local-use IPv6 unicast addresses.

 Does not return true for IPv6 multicast addresses of site-local

scope.

IN6_IS_ADDR_V4MAPPED

Returns true if the address is an IPv4 mapped IPv6 address.

Otherwise, the macro returns false.

IN6_IS_ADDR_V4COMPAT

Returns true if the address is an IPv4 compatible IPv6 address.

Otherwise, the macro returns false.

#include <netinet/in.h>

int IN6_IS_ADDR_UNSPECIFIED (const struct in6_addr *)

int IN6_IS_ADDR_LOOPBACK (const struct in6_addr *)

int IN6_IS_ADDR_MULTICAST (const struct in6_addr *)

int IN6_IS_ADDR_LINKLOCAL (const struct in6_addr *)

int IN6_IS_ADDR_SITELOCAL (const struct in6_addr *)

int IN6_IS_ADDR_V4MAPPED (const struct in6_addr *)

int IN6_IS_ADDR_V4COMPAT (const struct in6_addr *)

int IN6_IS_ADDR_MC_NODELOCAL (const struct in6_addr *)

int IN6_IS_ADDR_MC_LINKLOCAL (const struct in6_addr *)

int IN6_IS_ADDR_MC_SITELOCAL (const struct in6_addr *)

int IN6_IS_ADDR_MC_ORGLOCAL (const struct in6_addr *)

int IN6_IS_ADDR_MC_GLOBAL (const struct in6_addr *)

Chapter 7. C language application programming 221

|
|

IN6_IS_ADDR_MC_NODELOCAL

Used to test the scope of a multicast address and returns true if the

address is a multicast address of the specified scope or false if the

address is not a multicast address or not of the specified scope.

IN6_IS_ADDR_MC_LINKLOCAL

Used to test the scope of a multicast address and returns true if the

address is a multicast address of the specified scope or false if the

address is either not a multicast address or not of the specified

scope.

IN6_IS_ADDR_MC_SITELOCAL

Used to test the scope of a multicast address and returns true if the

address is a multicast address of the specified scope or false if the

address is either not a multicast address or not of the specified

scope.

IN6_IS_ADDR_MC_ORGLOCAL

Used to test the scope of a multicast address and returns true if the

address is a multicast address of the specified scope or false if the

address is either not a multicast address or not of the specified

scope.

IN6_IS_ADDR_MC_GLOBAL

Used to test the scope of a multicast address and returns true if the

address is a multicast address of the specified scope or false if the

address is either not a multicast address or not of the specified

scope.

222 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Chapter 8. Sockets extended API

This topic contains information about the sockets extended application

programming interface (API).

Environmental restrictions and programming requirements

The following environmental restrictions and programming requirements apply to

the Callable Socket API:

v SRB mode

This API can only be invoked in TCB mode (task mode).

v Cross-memory mode

This API can only be invoked in a non-cross-memory environment

(PASN=SASN=HASN).

v Functional Recovery Routine (FRR)

Do not invoke this API with an FRR set. This causes system recovery routines to

be bypassed and severely damage the system.

v Locks

No locks should be held when issuing this call.

v INITAPI, INITAPIX, and TERMAPI calls

The INITAPI, INITAPIX, and TERMAPI calls must be issued under the same

task.

v Storage

Storage acquired for the purpose of containing data returned from a socket call

must be obtained in the same key as the application program status word (PSW)

at the time of the socket call.

v Nested socket API calls

You can not issue ″nested″ API calls within the same task. That is, if a request

block (RB) issues a socket API call and is interrupted by an interrupt request

block (IRB) in an STIMER exit, any additional socket API calls that the IRB

attempts to issue are detected and flagged as an error.

CALL instruction API

This topic describes the CALL instruction API for TCP/IP application programs

written in the COBOL, PL/I, or System/370 Assembler language. The format and

parameters are described for each socket call.

Notes:

1. Unless your program is running in a CICS environment, reentrant code and

multithread applications are not supported by this interface.

2. Only one copy of an interface can exist in a single address space.

3. For a PL/I program, include the following statement before your first call

instruction.

 DCL EZASOKET ENTRY OPTIONS(RETCODE,ASM,INTER) EXT;

4. The entry point for the CICS Sockets Extended module (EZASOKET) is within

the EZACICAL module; therefore, EZACICAL should be included explicitly in

© Copyright IBM Corp. 1994, 2007 223

|
|

your link-editing JCL. If not included, you could experience problems, such as

the CICS region waiting for the socket calls to complete.

See Figure 175 on page 368.

If you do not want to explicitly include EZACICAL in your link-edit JCL then

you can use the EZACICSO CICS Sockets Extended module. The EZACICSO

CICS Sockets Extended module is an ALIAS for EZASOKET that resides in the

same entry point in EZACICAL as EZASOKET. You must also substitute any

″CALL EZASOKET″ invocations in your program with ″CALL EZACICSO″.

This allows you to use the Binder’s Automatic Library Call option

(AUTOCALL) to build your load modules.

Note: SEZATCP load library data set needs to be included in the SYSLIB DD

concatenation.

Understanding COBOL, assembler, and PL/I call formats

This API is invoked by calling the EZASOKET or EZACICSO program and

performs the same functions as the C language calls. The parameters look different

because of the differences in the programming languages.

COBOL language call format

The following is the ’EZASOKET’ call format for COBOL language programs.

�� CALL ‘EZASOKET’ USING SOC-FUNCTION parm1, parm2, ... ERRNO RETCODE. ��

The following is the ’EZACICSO’ call format for the COBOL language programs.

�� CALL ‘EZACICSO’ USING SOC-FUNCTION parm1, parm2, ... ERRNO RETCODE. ��

SOC-FUNCTION

A 16-byte character field, left-aligned and padded on the right with blanks.

Set to the name of the call. SOC-FUNCTION is case-specific. It must be in

uppercase.

parmn A variable number of parameters depending on the type of call.

ERRNO

If RETCODE is negative, there is an error number in ERRNO. This field is

used in most, but not all, of the calls. It corresponds to the value returned

by the tcperror() function in C.

RETCODE

A fullword binary variable containing a code returned by the EZASOKET

call. This value corresponds to the normal return value of a C function.

Assembler language call format

The following is the ‘EZASOKET’ call format for assembler language programs.

Because DATAREG is used to access the application’s working storage,

applications using the assembler language format should not code DATAREG but

should let it default to the CICS data register.

�� CALL EZASOKET,(SOC-FUNCTION, parm1, parm2, ... ERRNO RETCODE),VL,MF=(E, PARMLIST) ��

224 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

The following is the ’EZACICSO’ call format for assembler language programs.

�� CALL EZACICSO,(SOC-FUNCTION, parm1, parm2, ... ERRNO RETCODE),VL,MF=(E, PARMLIST) ��

PARMLIST

A remote parameter list defined in dynamic storage DFHEISTG. This list

contains addresses of 30 parameters that can be referenced by all execute

forms of the CALL.

Note: This form of CALL is necessary to meet the CICS requirement for

quasi-reentrant programming.

SOC-FUNCTION

A 16-byte character field, left-aligned and padded on the right with blanks.

Set to the name of the call. SOC-FUNCTION is case-specific. It must be in

uppercase.

parm n

A variable number of parameters depending on the type call.

ERRNO

If RETCODE is negative, there is an error number in ERRNO. This field is

used in most, but not all, of the calls. It corresponds to the value returned

by the tcperror() function in C.

RETCODE

A fullword binary variable containing a code returned by the EZASOKET

call. This value corresponds to the normal return value of a C function.

PL/I language call format

The following is the ’EZASOKET’ call format for PL/I language programs.

�� CALL EZASOKET (SOC-FUNCTION parm1, parm2, ... ERRNO RETCODE); ��

The following is the ’EZACICSO’ call format for the PL/I language programs.

�� CALL EZACICSO (SOC-FUNCTION parm1, parm2, ... ERRNO RETCODE); ��

SOC-FUNCTION

A 16-byte character field, left-aligned and padded on the right with blanks.

Set to the name of the call.

parmn A variable number of parameters depending on the type call.

ERRNO

If RETCODE is negative, there is an error number in ERRNO. This field is

used in most, but not all, of the calls. It corresponds to the value returned

by the tcperror() function in C.

RETCODE

A fullword binary variable containing a code returned by the EZASOKET

call. This value corresponds to the normal return value of a C function.

Chapter 8. Sockets extended API 225

Converting parameter descriptions

The parameter descriptions in this topic are written using the VS COBOL II PIC

language syntax and conventions, but you should use the syntax and conventions

that are appropriate for the language you want to use.

Figure 118 shows examples of storage definition statements for COBOL, PL/I, and

assembler language programs.

Error messages and return codes

For information about error messages, see z/OS Communications Server: IP Messages

Volume 1 (EZA).

For information about error codes that are returned by TCP/IP, see Appendix B.

Return codes.

Code CALL instructions

This topic contains the description, syntax, parameters, and other related

information for each call instruction included in this API.

ACCEPT

A server issues the ACCEPT call to accept a connection request from a client. The

call points to a socket that was previously created with a SOCKET call and marked

by a LISTEN call.

The ACCEPT call is a blocking call. When issued, the ACCEPT call:

1. Accepts the first connection on a queue of pending connections.

2. Creates a new socket with the same properties as s, and returns its descriptor

in RETCODE. The original sockets remain available to the calling program to

accept more connection requests.

VS COBOL II PIC

 PIC S9(4) BINARY HALFWORD BINARY VALUE

 PIC S9(8) BINARY FULLWORD BINARY VALUE

 PIC X(n) CHARACTER FIELD OF N BYTES

COBOL PIC

 PIC S9(4) COMP HALFWORD BINARY VALUE

 PIC S9(8) COMP FULLWORD BINARY VALUE

 PIC X(n) CHARACTER FIELD OF N BYTES

PL/1 DECLARE STATEMENT

 DCL HALF FIXED BIN(15), HALFWORD BINARY VALUE

 DCL FULL FIXED BIN(31), FULLWORD BINARY VALUE

 DCL CHARACTER CHAR(n) CHARACTER FIELD OF n BYTES

ASSEMBLER DECLARATION

 DS H HALFWORD BINARY VALUE

 DS F FULLWORD BINARY VALUE

 DS CLn CHARACTER FIELD OF n BYTES

Figure 118. Storage definition statement examples

226 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

3. The address of the client is returned in NAME for use by subsequent server

calls.

Notes:

1. The blocking or nonblocking mode of a socket affects the operation of certain

commands. The default is blocking; nonblocking mode can be established by

use of the FCNTL and IOCTL calls. When a socket is in blocking mode, an I/O

call waits for the completion of certain events. For example, a READ call blocks

until the buffer contains input data. When an I/O call is issued: if the socket is

blocking, program processing is suspended until the event completes; if the

socket is nonblocking, program processing continues.

2. If the queue has no pending connection requests, ACCEPT blocks the socket

unless the socket is in nonblocking mode. The socket can be set to nonblocking

by calling FCNTL or IOCTL.

3. When multiple socket calls are issued, a SELECT call can be issued prior to the

ACCEPT to ensure that a connection request is pending. Using this technique

ensures that subsequent ACCEPT calls do not block.

4. TCP/IP does not provide a function for screening clients. As a result, it is up to

the application program to control which connection requests it accepts, but it

can close a connection immediately after discovering the identity of the client.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 119 on page 228 shows an example of ACCEPT call instructions.

Chapter 8. Sockets extended API 227

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing 'ACCEPT'. Left-justify the field and

pad it on the right with blanks.

S A halfword binary number specifying the descriptor of a socket that was

previously created with a SOCKET call. In a concurrent server, this is the

socket upon which the server listens.

Parameter values returned to the application

NAME

v An IPv4 socket address structure that contains the client’s IPv4 socket

address.

FAMILY

A halfword binary field specifying the addressing family. The

call returns the decimal value of 2 for AF_INET.

PORT A halfword binary field that is set to the client’s port number.

IP-ADDRESS

A fullword binary field that is set to the 32-bit IPv4 Internet

address, in network byte order, of the client’s host machine.

RESERVED

Specifies 8 bytes of binary zeros. This field is required, but not

used.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’ACCEPT’.

 01 S PIC 9(4) BINARY.

 *

 * IPv4 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 *

 * IPv6 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 FLOW-INFO PIC 9(8) BINARY.

 03 IP-ADDRESS.

 05 FILLER PIC 9(16) BINARY.

 05 FILLER PIC 9(16) BINARY.

 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 119. ACCEPT call instructions example

228 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

v An IPv6 socket address structure that contains the client’s IPv6 socket

address.

FAMILY

A halfword binary field specifying the addressing family. The

call returns the decimal value of 19 for AF_INET6.

PORT A halfword binary field that is set to the client’s port number.

FLOW-INFO

A fullword binary field specifying the traffic class and flow label.

The value of this field is undefined.

IP-ADDRESS

A 16-byte binary field that is set to the 128-bit IPv6 Internet

address, in network byte order, of the client’s host machine.

SCOPE-ID

A fullword binary field which identifies a set of interfaces as

appropriate for the scope of the address carried in the

IP-ADDRESS field. For a link scope IP-ADDRESS, SCOPE-ID

contains the link index for the IP-ADDRESS. For all other

address scopes, SCOPE-ID is undefined.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

If the RETCODE value is positive, the RETCODE value is the new socket

number.

 If the RETCODE value is negative, check the ERRNO field for an error

number.

BIND

In a typical server program, the BIND call follows a SOCKET call and completes

the process of creating a new socket.

The BIND call can either specify the required port or let the system choose the

port. A listener program should always bind to the same well-known port, so that

clients know what socket address to use when attempting to connect.

Even if an application specifies a value of 0 for the IP address on the BIND, the

system administrator can override that value by specifying the BIND parameter on

the PORT reservation statement in the TCP/IP profile. This has a similar effect to

the application specifying an explicit IP address on the BIND macro. For more

information, see z/OS Communications Server: IP Configuration Reference.

In the AF_INET or AF_INET6 domain, the BIND call for a stream socket can

specify the networks from which it is willing to accept connection requests. The

application can fully specify the network interface by setting the IP-ADDRESS field

to the Internet address of a network interface. Alternatively, the application can use

a wildcard to specify that it wants to receive connection requests from any network

interface. This is done by setting the IP-ADDRESS field to the value of

INADDR-ANY or IN6ADDR-ANY.

Chapter 8. Sockets extended API 229

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 120 shows an example of BIND call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing BIND. The field is left-aligned and

padded to the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket

to be bound.

NAME

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’BIND’.

 01 S PIC 9(4) BINARY.

 *

 * IPv4 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 *

 * IPv6 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 FLOW-INFO PIC 9(8) BINARY.

 03 IP-ADDRESS.

 05 FILLER PIC 9(16) BINARY.

 05 FILLER PIC 9(16) BINARY.

 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 120. BIND call instruction example

230 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

v Specifies the IPv4 socket address structure for the socket that is to be

bound.

FAMILY

A halfword binary field specifying the addressing family. The

value is set to a decimal 2, indicating AF_INET.

PORT A halfword binary field that is set to the port number to which

you want the socket to be bound.

Note: If PORT is set to 0 when the call is issued, the system

assigns the port number for the socket. The application

can call the GETSOCKNAME call after the BIND call to

discover the assigned port number.

IP-ADDRESS

A fullword binary field that is set to the 32-bit Internet address

(network byte order) of the socket to be bound.

RESERVED

Specifies an eight-byte character field that is required but not

used.
v Specifies the IPv6 socket address structure for the socket that is to be

bound.

FAMILY

A halfword binary field specifying the addressing family. The

value is set to a decimal 19, indicating AF_INET6.

PORT A halfword binary field that is set to the port number to which

you want the socket to be bound.

Note: If PORT is set to 0 when the call is issued, the system

assigns the port number for the socket. The application

can call the GETSOCKNAME call after the BIND call to

discover the assigned port number.

FLOW-INFO

A fullword binary field specifying the traffic class and flow label.

This field must be set to zero.

IP-ADDRESS

A 16-byte binary field that is set to the 128-bit IPv6 Internet

address (network byte order) of the socket to be bound.

SCOPE-ID

A fullword binary field which identifies a set of interfaces as

appropriate for the scope of the address carried in the

IP-ADDRESS field. A value of zero indicates the SCOPE-ID field

does not identify the set of interfaces to be used, and can be

specified for any address types and scopes. For a link scope

IP-ADDRESS, SCOPE-ID can specify a link index which

identifies a set of interfaces. For all other address scopes,

SCOPE-ID must be set to zero.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, this field contains an

error number. See Appendix B. Return codes on page 397, for information

about ERRNO return codes.

Chapter 8. Sockets extended API 231

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

CLOSE

The CLOSE call performs the following functions:

v The CLOSE call shuts down a socket and frees all resources allocated to it. If the

socket refers to an open TCP connection, the connection is closed.

v The CLOSE call is also issued by a concurrent server after it gives a socket to a

child server program. After issuing the GIVESOCKET and receiving notification

that the client child has successfully issued a TAKESOCKET, the concurrent

server issues the close command to complete the passing of ownership. In

high-performance, transaction-based systems the timeout associated with the

CLOSE call can cause performance problems. In such systems you should

consider the use of a SHUTDOWN call before you issue the CLOSE call. See

“SHUTDOWN” on page 338 for more information.

Notes:

1. If a stream socket is closed while input or output data is queued, the TCP

connection is reset and data transmission might be incomplete. The

SETSOCKET call can be used to set a linger condition, in which TCP/IP

continues to attempt to complete data transmission for a specified period of

time after the CLOSE call is issued. See SO-LINGER in the description of

“SETSOCKOPT” on page 326.

2. A concurrent server differs from an iterative server. An iterative server

provides services for one client at a time; a concurrent server receives

connection requests from multiple clients and creates child servers that

actually serve the clients. When a child server is created, the concurrent

server obtains a new socket, passes the new socket to the child server, and

then dissociates itself from the connection. The CICS listener is an example of

a concurrent server.

3. After an unsuccessful socket call, a close should be issued and a new socket

should be opened. An attempt to use the same socket with another call

results in a nonzero return code.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 121 on page 233 shows an example of CLOSE call instructions.

232 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values returned to the application

SOC-FUNCTION

A 16-byte field containing CLOSE. Left-justify the field and pad it on the

right with blanks.

S A halfword binary field containing the descriptor of the socket to be

closed.

Parameter values set by the application

ERRNO

A fullword binary field. If RETCODE is negative, this field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

CONNECT

The CONNECT call is issued by a client to establish a connection between a local

socket and a remote socket.

Stream sockets

For stream sockets, the CONNECT call is issued by a client to establish connection

with a server. The call performs two tasks:

1. It completes the binding process for a stream socket if a BIND call has not been

previously issued.

2. It attempts to make a connection to a remote socket. This connection is

necessary before data can be transferred.

UDP sockets

For UDP sockets, a CONNECT call need not precede an I/O call, but if issued, it

allows you to send messages without specifying the destination.

 The call sequence issued by the client and server for stream sockets is:

1. The server issues BIND and LISTEN to create a passive open socket.

2. The client issues CONNECT to request the connection.

3. The server accepts the connection on the passive open socket, creating a new

connected socket.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’CLOSE’.

 01 S PIC 9(4) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S ERRNO RETCODE.

Figure 121. CLOSE call instruction example

Chapter 8. Sockets extended API 233

The blocking mode of the CONNECT call conditions its operation.

v If the socket is in blocking mode, the CONNECT call blocks the calling program

until the connection is established, or until an error is received.

v If the socket is in nonblocking mode, the return code indicates whether the

connection request was successful.

– A RETCODE of 0 indicates that the connection was completed.

– A nonzero RETCODE with an ERRNO of 36 (EINPROGRESS) indicates that

the connection is not completed but because the socket is nonblocking, the

CONNECT call returns normally.
The caller must test the completion of the connection setup by calling SELECT

and testing for the ability to write to the socket.

The completion cannot be checked by issuing a second CONNECT. For more

information, see “SELECT” on page 307.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 122 on page 235 shows an example of CONNECT call instructions.

234 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte field containing CONNECT. Left-justify the field and pad it on

the right with blanks.

S A halfword binary number specifying the socket descriptor of the socket

that is to be used to establish a connection.

NAME

v A structure that contains the IPv4 socket address of the target to which

the local client socket is to be connected.

FAMILY

A halfword binary field specifying the addressing family. The

value must be a decimal 2 for AF_INET.

PORT A halfword binary field that is set to the server’s port number in

network byte order. For example, if the port number is 5000 in

decimal, it is stored as X'1388' in hexadecimal.

IP-ADDRESS

A fullword binary field that is set to the 32-bit IPv4 Internet

address of the server’s host machine in network byte order. For

example, if the Internet address is 129.4.5.12 in dotted decimal

notation, it would be represented as ’8104050C’ in hexadecimal.

RESERVED

Specifies an 8-byte reserved field. This field is required, but is

not used.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’CONNECT’.

 01 S PIC 9(4) BINARY.

 *

 * IPv4 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 *

 * IPv6 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 FLOW-INFO PIC 9(8) BINARY.

 03 IP-ADDRESS.

 05 FILLER PIC 9(16) BINARY.

 05 FILLER PIC 9(16) BINARY.

 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 122. CONNECT call instruction example

Chapter 8. Sockets extended API 235

v A structure that contains the IPv6 socket address of the target to which

the local client socket is to be connected.

FAMILY

A halfword binary field specifying the addressing family. The

value must be a decimal 19 for AF_INET6.

PORT A halfword binary field that is set to the server’s port number in

network byte order. For example, if the port number is 5000 in

decimal, it is stored as X’1388’ in hexadecimal.

FLOW-INFO

A fullword binary field specifying the traffic class and flow label.

This field must be set to zero.

IP-ADDRESS

A 16-byte binary field that is set to the 128-bit IPv6 Internet

address of the server’s host machine in network byte order. For

example, if the IPv6 Internet address is

12ab:0:0:cd30:123:4567:89ab:cedf in colon-hexadecimal notation, it

is set to X’12AB00000000CD300123456789ABCDEF’.

SCOPE-ID

A fullword binary field which identifies a set of interfaces as

appropriate for the scope of the address carried in the

IP-ADDRESS field. A value of zero indicates the SCOPE-ID field

does not identify the set of interfaces to be used, and can be

specified for any address types and scopes. For a link scope

IP-ADDRESS, SCOPE-ID can specify a link index which

identifies a set of interfaces. For all other address scopes,

SCOPE-ID must be set to zero.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, this field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

FCNTL

The blocking mode of a socket can either be queried or set to nonblocking using

the FNDELAY flag described in the FCNTL call. You can query or set the

FNDELAY flag even though it is not defined in your program.

See “IOCTL” on page 278 for another way to control a socket’s blocking mode.

Values for Command which are supported by the UNIX Systems Services fcntl

callable service is also be accepted. See the z/OS UNIX System Services Programming:

Assembler Callable Services Reference for more information.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

236 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 123 shows an example of FCNTL call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing FCNTL. The field is left-aligned and

padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket

that you want to unblock or query.

COMMAND

A fullword binary number with the following values.

Value Description

3 Query the blocking mode of the socket

4 Set the mode to blocking or nonblocking for the socket

REQARG

A fullword binary field containing a mask that TCP/IP uses to set the

FNDELAY flag.

v If COMMAND is set to 3 ('query') the REQARG field should be set to 0.

v If COMMAND is set to 4 ('set')

– Set REQARG to 4 to turn the FNDELAY flag on. This places the

socket in nonblocking mode.

– Set REQARG to 0 to turn the FNDELAY flag off. This places the

socket in blocking mode.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’FCNTL’.

 01 S PIC 9(4) BINARY.

 01 COMMAND PIC 9(8) BINARY.

 01 REQARG PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S COMMAND REQARG

 ERRNO RETCODE.

Figure 123. FCNTL call instruction example

Chapter 8. Sockets extended API 237

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

v If COMMAND was set to 3 (query), a bit string is returned.

– If RETCODE contains X'00000004', the socket is nonblocking. (The

FNDELAY flag is on.)

– If RETCODE contains X'00000000', the socket is blocking. (The

FNDELAY flag is off.)
v If COMMAND was set to 4 (set), a successful call is indicated by 0 in

this field. In both cases, a RETCODE of −1 indicates an error (Check the

ERRNO field for the error number.)

FREEADDRINFO

FREEADDRINFO frees all the address information structures returned by

GETADDRINFO in the RES parameter. Figure 124 shows an example of

FREEADDRINFO call instructions.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 124 shows an example of FREEADDRINFO call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’FREEADDRINFO’.

 01 ADDRINFO PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION ADDRINFO ERRNO RETCODE.

Figure 124. FREEADDRINFO call instruction example

238 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing ’FREEADDRINFO’. The field is

left-justified and padded on the right with blanks.

ADDRINFO

The address of a set of address information structures returned by the

GETADDRINFO RES argument.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, ERRNO contains an error

number. See Appendix B. Return codes on page 397 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

GETADDRINFO

GETADDRINFO translates the name of a service location (for example, a host

name), service name, or both and returns a set of socket addresses and associated

information to be used in creating a socket with which to address the specified

service or sending a datagram to the specified service. Figure 125 on page 240

shows an example of GETADDRINFO call instructions.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 125 on page 240 shows an example of GETADDRINFO call instructions.

Chapter 8. Sockets extended API 239

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing ’GETADDRINFO’. The field is

left-justified and padded on the right with blanks.

NODE

Storage maximum of 255 bytes that contains the host name being queried.

If the AI-NUMERICHOST flag is specified in the storage pointed to by the

HINTS operand, then NODE should contain the queried hosts IP address

in presentation form. This is an optional field but if specified you must

also code NODELEN.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETADDRINFO’.

 01 NODE PIC X(255).

 01 NODELEN PIC 9(8) BINARY.

 01 SERVICE PIC X(32).

 01 SERVLEN PIC 9(8) BINARY.

 01 AI-PASSIVE PIC 9(8) BINARY VALUE 1.

 01 AI-CANONNAMEOK PIC 9(8) BINARY VALUE 2.

 01 AI-NUMERICHOST PIC 9(8) BINARY VALUE 4.

 01 AI-NUMERICSERV PIC 9(8) BINARY VALUE 8.

 01 AI-V4MAPPED PIC 9(8) BINARY VALUE 16.

 01 AI-ALL PIC 9(8) BINARY VALUE 32.

 01 AI-ADDRCONFIG PIC 9(8) BINARY VALUE 64.

 01 HINTS USAGE IS POINTER.

 01 RES USAGE IS POINTER.

 01 CANNLEN PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 LINKAGE SECTION.

 01 HINTS-ADDRINFO.

 03 FLAGS PIC 9(8) BINARY.

 03 AF PIC 9(8) BINARY.

 03 SOCTYPE PIC 9(8) BINARY.

 03 PROTO PIC 9(8) BINARY.

 03 FILLER PIC 9(8) BINARY.

 03 FILLER PIC 9(8) BINARY.

 03 FILLER PIC 9(8) BINARY.

 03 FILLER PIC 9(8) BINARY.

 01 RES-ADDRINFO.

 03 FLAGS PIC 9(8) BINARY.

 03 AF PIC 9(8) BINARY.

 03 SOCTYPE PIC 9(8) BINARY.

 03 PROTO PIC 9(8) BINARY.

 03 NAMELEN PIC 9(8) BINARY.

 03 CANONNAME USAGE IS POINTER.

 03 NAME USAGE IS POINTER.

 03 NEXT USAGE IS POINTER.

 PROCEDURE DIVISION.

 MOVE ’www.hostname.com’ TO NODE.

 MOVE 16 TO HOSTLEN.

 MOVE ’TELNET’ TO SERVICE.

 MOVE 6 TO SERVLEN.

 SET HINTS TO ADDRESS OF HINTS-ADDRINFO.

 CALL ’EZASOKET’ USING SOC-FUNCTION

 NODE NODELEN SERVICE SERVLEN HINTS

 RES CANNLEN ERRNO RETCODE.

Figure 125. GETADDRINFO call instruction example

240 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Scope information can be appended to the host name, using the format

node%scope information. The combined length of the value specified must

still fit within 255 bytes. For information about using scope information on

GETADDRINFO processing, see z/OS Communications Server: IPv6 Network

and Application Design Guide .

NODELEN

A fullword binary field set to the length of the host name specified in the

NODE field. This field should not include extraneous blanks. This is an

optional field but if specified you must also code NODE.

SERVICE

Storage maximum of 32 bytes that contains the service name being

queried. If the AI-NUMERICSERV flag is specified in the storage pointed

to by the HINTS operand, then SERVICE should contain the queried port

number in presentation form. This is an optional field but if specified you

must also code SERVLEN.

SERVLEN

A fullword binary field set to the length of the service name specified in

the SERVICE field. This field should not include extraneous blanks. This is

an optional field but if specified you must also code SERVICE.

HINTS

If the HINTS argument is specified, it contains the address of an addrinfo

structure containing input values that can direct the operation by

providing options and by limiting the returned information to a specific

socket type, address family, and protocol. If the HINTS argument is not

specified, the information returned is as if it referred to a structure

containing the value 0 for the FLAGS, SOCTYPE and PROTO fields, and

AF_UNSPEC for the AF field. Include the EZBREHST resolver macro to

enable your assembler program to contain the assembler mappings for the

ADDR_INFO structure.

 The EZBREHST macro is stored in SYS1.MACLIB, and it defines the

Resolver hostent, addrinfo mappings, and services return codes. The

hostent (host entry) is the name of the structure returned by the Resolver’s

gethostbyaddr() and gethostbyname() calls.

 This is an optional field. The address information structure has the

following fields:

Field Description

FLAGS A fullword binary field. Must have the value of 0 or the

bitwise or of one or more of the following:

AI-PASSIVE (X’00000001’) or a decimal value of 1

Specifies how to fill in the name pointed to by the

returned RES parameter.

 If this flag is specified, the returned address

information can be used to bind a socket for

accepting incoming connections for the specified

service (for example, using the BIND call). If you

use the BIND call and if the NODE argument is

not specified, the IP address portion of the socket

address structure pointed to by the returned RES

parameter is set to INADDR_ANY for an IPv4

address or to the IPv6 unspecified address

(in6addr_any).

Chapter 8. Sockets extended API 241

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

If this flag is not set, the returned address

information can be used for the CONNECT call

(for a connection-mode protocol) or on a

CONNECT, SENDTO, or SENDMSG call (for a

connectionless protocol). If you use a CONNECT

call and if the NODE argument is not specified, the

NAME pointed to by the returned RES is set to the

loopback address.

 This flag is ignored if the NODE argument is

specified.

AI-CANONNAMEOK (X’00000002’) or a decimal value of

2 If this flag is specified and the NODE argument is

specified, the GETADDRINFO call attempts to

determine the canonical name corresponding to the

NODE argument.

AI-NUMERICHOST (X’00000004’) or a decimal value of 4

If this flag is specified, the NODE argument must

be a numeric host address in presentation form.

Otherwise, an error of host not found

[EAI_NONAME] is returned.

AI-NUMERICSERV (X’00000008’) or a decimal value of 8

If this flag is specified, the SERVICE argument

must be a numeric port in presentation form.

Otherwise, an error [EAI_NONAME] is returned.

AI-V4MAPPED (X’00000010’) or a decimal value of 16

If this flag is specified along with the AF field with

the value of AF_INET6, or a value of AF_UNSPEC

when IPv6 is supported on the system, the caller

accepts IPv4-mapped IPv6 addresses. When the

AI-ALL flag is not also specified, if no IPv6

addresses are found, a query is made for IPv4

addresses. If IPv4 addresses are found, they are

returned as IPv4-mapped IPv6 addresses. If the AF

field does not have the value of AF_INET6, or the

AF field contains AF_UNSPEC but IPv6 is not

supported on the system, then this flag is ignored.

AI-ALL (X’00000020’) or a decimal value of 32

When the AF field has a value of AF_INET6 and

AI-ALL is set, the AI-V4MAPPED flag must also be

set to indicate that the caller accepts all addresses

(IPv6 and IPv4-mapped IPv6 addresses). When the

AF field has a value of AF_UNSPEC, and when the

system supports IPv6 and AI-ALL is set, the caller

accepts both IPv6 and IPv4 addresses. A query is

first made for IPv6 addresses and if successful, the

IPv6 addresses are returned. Another query is then

made for IPv4 addresses, and any IPv4 addresses

found are returned as either IPv4-mapped IPv6

addresses (if AI-V4MAPPED is also specified) or as

IPv4 addresses (if AI-V4MAPPED is not specified).

If the AF field does not have the value of

242 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|

|
|

AF_INET6, or does not have the value of

AF_UNSPEC when the system supports IPv6, then

this flag is ignored.

AI-ADDRCONFIG (X’00000040’) or a decimal value of 64

If this flag is specified, a query on the name in

nodename occurs if the resolver determines that

one of the following is true:

v If the system is IPv6 enabled and has at least

one IPv6 interface, then the resolver makes a

query for IPv6 (AAAA or A6 DNS records)

records.

v If the system is IPv4 enabled and has at least

one IPv4 interface, then the resolver makes a

query for IPv4 (A DNS records) records.

Tip: To perform the binary OR’ing of the flags

above in a COBOL program, add the necessary

COBOL statements as in the following example.

Note that the value of the FLAGS field after the

COBOL ADD is a decimal 80 or a X’00000050’

which is the sum of OR’ing AI_V4MAPPED and

AI_ADDRCONFIG or x’00000010’ and x’00000040’:

01 AI-V4MAPPED PIC 9(8) BINARY VALUE 16.

01 AI-ADDRCONFIG PIC 9(8) BINARY VALUE 64.

ADD AI-V4MAPPED TO FLAGS.

ADD AI-ADDRCONFG TO FLAGS.

AF A fullword binary field. Used to limit the returned

information to a specific address family. The value

of AF_UNSPEC means that the caller accepts any

protocol family. The value of a decimal 0 indicates

AF_UNSPEC. The value of a decimal 2 indicates

AF_INET and the value of a decimal 19 indicates

AF_INET6.

SOCTYPE

A fullword binary field. Used to limit the returned

information to a specific socket type. A value of 0

means that the caller accepts any socket type. If a

specific socket type is not given (for example, a

value of 0), information about all supported socket

types is returned.

 The following are the acceptable socket types:

 Type Name Decimal

Value

Description

SOCK_STREAM 1 for stream socket

SOCK_DGRAM 2 for datagram socket

SOCK_RAW 3 for raw-protocol

interface

 Anything else fails with return code

EAI_SOCKTYPE. Although SOCK_RAW is

accepted, it is only valid when SERVICE is numeric

(for example, SERVICE=23). A lookup for a

Chapter 8. Sockets extended API 243

SERVICE name never occurs in the appropriate

services file (for example, hlq.ETC.SERVICES) using

any protocol value other than SOCK_STREAM or

SOCK_DGRAM. If PROTO is nonzero and

SOCKTYPE is zero, the only acceptable input

values for PROTO are IPPROTO_TCP and

IPPROTO_UDP. Otherwise, the GETADDRINFO

call fails with a return code of EAI_BADFLAGS. If

SOCTYPE and PROTO are both specified as zero,

GETADDRINFO proceeds as follows:

v If SERVICE is null, or if SERVICE is numeric,

any returned addrinfos default to a specification

of SOCTYPE as SOCK_STREAM.

v If SERVICE is specified as a service name (for

example, SERVICE=FTP), the GETADDRINFO

call searches the appropriate services file (for

example, hlq.ETC.SERVICES) twice. The first

search uses SOCK_STREAM as the protocol, and

the second search uses SOCK_DGRAM as the

protocol. No default socket type provision exists

in this case.

If both SOCTYPE and PROTO are specified as

nonzero, they should be compatible, regardless of

the value specified by SERVICE. In this context,

compatible means one of the following:

v SOCTYPE=SOCK_STREAM and

PROTO=IPPROTO_TCP

v SOCTYPE=SOCK_DGRAM and

PROTO=IPPROTO_UDP

v SOCTYPE is specified as SOCK_RAW, in which

case PROTO can be anything.

PROTO

A fullword binary field. Used to limit the returned

information to a specific protocol. A value of 0

means that the caller accepts any protocol.

 The following are the acceptable protocols:

 Protocol Name Decimal Value Description

IPPROTO_TCP 6 TCP

IPPROTO_UDP 17 user datagram

 If PROTO and SOCTYPE are both specified as zero,

GETADDRINFO proceeds as follows:

v If SERVICE is null, or if SERVICE is numeric,

any returned addrinfos default to a specification

of SOCTYPE as SOCK_STREAM.

v If SERVICE is specified as a service name (for

example, SERVICE=FTP), the GETADDRINFO

call searches the appropriate services file (for

example, hlq.ETC.SERVICES) file twice. The first

search uses SOCK_STREAM as the protocol, and

244 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

the second search uses SOCK_DGRAM as the

protocol. No default socket type provision exists

in this case.

If both PROTO and SOCTYPE are specified as

nonzero, they should be compatible, regardless of

the value specified by SERVICE. In this context,

compatible means one of the following:

v SOCTYPE=SOCK_STREAM and

PROTO=IPPROTO_TCP

v SOCTYPE=SOCK_DGRAM and

PROTO=IPPROTO_UDP

v SOCTYPE=SOCK_RAW, in which case PROTO

can be anything.

If the lookup for the value specified in SERVICE

fails [that is, the service name does not appear in

the appropriate services file (for example,

hlq.ETC.SERVICES) using the input protocol], the

GETADDRINFO call fails with a return code of

EAI_SERVICE.

NAMELEN

A fullword binary field. On input, this field

must be 0.

CANONNAME

A fullword binary field. On input, this field

must be 0.

NAME

A fullword binary field. On input, this field

must be 0.

NEXT

A fullword binary field. On input, this field

must be 0.

RES Initially a fullword binary field. On a successful

return this field contains a pointer to an addrinfo

structure. This pointer is also used as input to the

FREEADDRINFO call, which must be used to free

storage obtained by this call. The structures

returned by GETADDRINFO are a task's serially

reusable storage area. Do not use or reference these

structures between MVS tasks. The storage is freed

when a FREEADDRINFO call is issued or when

the task terminates.

 The address information structure contains the

following fields:

Field Description

FLAGS A fullword binary field that is not

used as output.

AF A fullword binary field. The value

returned in this field can be used

as the AF argument on the

Chapter 8. Sockets extended API 245

|
|
|
|
|
|

SOCKET call to create a socket

suitable for use with the returned

address NAME.

SOCTYPE A fullword binary field. The value

returned in this field can be used

as the SOCTYPE argument on the

SOCKET call to create a socket

suitable for use with the returned

address NAME.

PROTO A fullword binary field. The value

returned in this field can be used

as the PROTO argument on the

SOCKET call to create a socket

suitable for use with the returned

address ADDR.

NAMELEN A fullword binary field. The length

of the NAME socket address

structure. The value returned in

this field can be used as the

arguments for the CONNECT or

BIND call with this socket type,

according to the AI-PASSIVE flag.

CANONNAME

A fullword binary field. The

canonical name for the value

specified by NODE. If the NODE

argument is specified, and if the

AI-CANONNAMEOK flag was

specified by the HINTS argument,

the CANONNAME field in the first

returned address information

structure contains the address of

storage containing the canonical

name corresponding to the input

NODE argument. If the canonical

name is not available, the

CANONNAME field refers to the

NODE argument or a string with

the same contents. The CANNLEN

field contains the length of the

returned canonical name.

NAME A fullword binary field. The

address of the returned socket

address structure. The value

returned in this field can be used

as the arguments for the

CONNECT or BIND call with this

socket type, according to the

AI-PASSIVE flag.

NEXT A fullword binary field. Contains

the address of the next address

246 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

information structure on the list, or

zeros if it is the last structure on

the list.

CANNLEN

Initially an input parameter. A fullword binary

field used to contain the length of the canonical

name returned by the RES CANONNAME field.

This is an optional field.

Parameter values returned to the application

ERRNO

ERRNO A fullword binary field. If RETCODE is negative, ERRNO contains

an error number. See Appendix B. Return codes on page 397 for

information about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

The ADDRINFO structure uses indirect addressing to return a variable number of

NAMES. If you are coding in PL/I or assembler language, this structure can be

processed in a relatively straightforward manner. If you are coding in COBOL, this

structure might be difficult to interpret. You can use the subroutine EZACIC09 to

simplify interpretation of the information returned by the GETADDRINFO calls.

GETCLIENTID

GETCLIENTID call returns the identifier by which the calling application is known

to the TCP/IP address space in the calling program. The CLIENT parameter is

used in the GIVESOCKET and TAKESOCKET calls. See “GIVESOCKET” on page

274 for a discussion of the use of GIVESOCKET and TAKESOCKET calls.

Do not be confused by the terminology; when GETCLIENTID is called by a server,

the identifier of the caller (not necessarily the client) is returned.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 126 on page 248 shows an example of GETCLIENTID call instructions.

Chapter 8. Sockets extended API 247

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing 'GETCLIENTID'. The field is

left-aligned and padded to the right with blanks.

Parameter values returned to the application

CLIENT

A client-ID structure that describes the application that issued the call.

DOMAIN

On input this is an optional parameter for AF_INET, and required

parameter for AF_INET6 to specify the domain of the client. This is

a fullword binary number specifying the caller’s domain. For

TCP/IP, the value is set to a decimal 2 for AF_INET or a decimal

19 for AF_INET6.

NAME

An 8-byte character field set to the caller’s address space name.

TASK An 8-byte character field set to the task identifier of the caller.

RESERVED

Specifies 20-byte character reserved field. This field is required, but

not used.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

GETHOSTBYADDR

The GETHOSTBYADDR call returns the domain name and alias name of a host

whose Internet address is specified in the call. A given TCP/IP host can have

multiple alias names and multiple host Internet addresses.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETCLIENTID’.

 01 CLIENT.

 03 DOMAIN PIC 9(8) BINARY.

 03 NAME PIC X(8).

 03 TASK PIC X(8).

 03 RESERVED PIC X(20).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION CLIENT ERRNO RETCODE.

Figure 126. GETCLIENTID call instruction example

248 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

The address resolution depends on how the resolver is configured and if any local

host tables exist. See z/OS Communications Server: IP Configuration Guide for

information about configuring the resolver and using local host tables.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 127 shows an example of GETHOSTBYADDR call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing 'GETHOSTBYADDR'. The field is

left-aligned and padded on the right with blanks.

HOSTADDR

A fullword binary field set to the Internet address (specified in network

byte order) of the host whose name is being sought. See Appendix B.

Return codes on page 397 for information about ERRNO return codes.

Parameter values returned to the application

HOSTENT

A fullword containing the address of the HOSTENT structure.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 An error occurred

GETHOSTBYADDR returns the HOSTENT structure shown in Figure 128 on page

250.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTBYADDR’.

 01 HOSTADDR PIC 9(8) BINARY.

 01 HOSTENT PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION HOSTADDR HOSTENT RETCODE.

Figure 127. GETHOSTBYADDR call instruction example

Chapter 8. Sockets extended API 249

This structure contains:

v The address of the host name that the call returns. The name length is variable

and is ended by X'00'.

v The address of a list of addresses that point to the alias names returned by the

call. This list is ended by the pointer X'00000000'. Each alias name is a variable

length field ended by X'00'.

v The value returned in the FAMILY field is always 2 for AF_INET.

v The length of the host Internet address returned in the HOSTADDR_LEN field is

always 4 for AF_INET.

v The address of a list of addresses that point to the host Internet addresses

returned by the call. The list is ended by the pointer X'00000000'. If the call

cannot be resolved, the HOSTENT structure contains the ERRNO 10214.

The HOSTENT structure uses indirect addressing to return a variable number of

alias names and Internet addresses. If you are coding in PL/I or assembler

language, this structure can be processed in a relatively straightforward manner. If

you are coding in COBOL, this structure might be difficult to interpret. You can

use the subroutine EZACIC08 to simplify interpretation of the information

returned by the GETHOSTBYADDR and GETHOSTBYNAME calls. For more

information about EZACIC08, see “EZACIC08” on page 356. If you are coding in

assembler, this structure is defined in the EZBREHST macro.

GETHOSTBYNAME

The GETHOSTBYNAME call returns the alias name and the Internet address of a

host whose domain name is specified in the call. A given TCP/IP host can have

multiple alias names and multiple host Internet addresses.

Hostent

Hostname

Hostaddr_Len

Hostaddr_List

Address of

Address of INET Addr#1

Alias#1 X'00'

Name X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#3

Alias#3 X'00'

Address of

List

List

Address of

Address of

Address of

Address of

Address of

Address of

X'00000004'

X'00000000'

X'00000000'

X'00000002'

Alias_List

Family

Figure 128. HOSTENT structure returned by the GETHOSTBYADDR call

250 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

The name resolution attempted depends on how the resolver is configured and if

any local host tables exist. See z/OS Communications Server: IP Configuration Guide

for information about configuring the resolver and using local host tables.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 129 shows an example of GETHOSTBYNAME call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing 'GETHOSTBYNAME'. The field is

left-aligned and padded on the right with blanks.

NAMELEN

A value set to the length of the host name. The maximum is 255.

NAME

A character string, up to 255 characters, set to a host name. This call

returns the address of the HOSTENT structure for this name.

Parameter values returned to the application

HOSTENT

A fullword binary field that contains the address of the HOSTENT

structure.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 An error occurred

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTBYNAME’.

 01 NAMELEN PIC 9(8) BINARY.

 01 NAME PIC X(255).

 01 HOSTENT PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION NAMELEN NAME

 HOSTENT RETCODE.

Figure 129. GETHOSTBYNAME call instruction example

Chapter 8. Sockets extended API 251

GETHOSTBYNAME returns the HOSTENT structure shown in Figure 130. This

structure contains:

v The address of the host name that the call returns. The name length is variable

and is ended by X'00'.

v The address of a list of addresses that point to the alias names returned by the

call. This list is ended by the pointer X'00000000'. Each alias name is a variable

length field ended by X'00'.

v The value returned in the FAMILY field is always 2 for AF_INET.

v The length of the host Internet address returned in the HOSTADDR_LEN field is

always 4 for AF_INET.

v The address of a list of addresses that point to the host Internet addresses

returned by the call. The list is ended by the pointer X'00000000'. If the call

cannot be resolved, the HOSTENT structure contains the ERRNO 10214.

The HOSTENT structure uses indirect addressing to return a variable number of

alias names and Internet addresses. If you are coding in PL/I or assembler

language, this structure can be processed in a relatively straightforward manner. If

you are coding in COBOL, this structure might be difficult to interpret. You can

use the subroutine EZACIC08 to simplify interpretation of the information

returned by the GETHOSTBYADDR and GETHOSTBYNAME calls. For more

information about EZACIC08, see “EZACIC08” on page 356. If you are coding in

assembler, this structure is defined in the EZBREHST macro.

GETHOSTID

The GETHOSTID call returns the 32-bit IPv4 Internet address for the current host.

Hostent

Hostname

Hostaddr_Len

Hostaddr_List

Address of

Address of INET Addr#1

Alias#1 X'00'

Name X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#3

Alias#3 X'00'

Address of

List

List

Address of

Address of

Address of

Address of

Address of

Address of

X'00000004'

X'00000000'

X'00000000'

X'00000002'

Alias_List

Family

Figure 130. HOSTENT structure returned by the GETHOSTYBYNAME call

252 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 131 shows an example of GETHOSTID call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

SOC-FUNCTION

A 16-byte character field containing 'GETHOSTID'. The field is left-aligned

and padded on the right with blanks.

RETCODE

Returns a fullword binary field containing the 32-bit IPv4 Internet address

of the host. There is no ERRNO parameter for this call.

GETHOSTNAME

The GETHOSTNAME call returns the domain name of the local host.

The host name that is returned is the host name that the TCPIP stack learned at

startup from the TCPIP.DATA file that was found.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTID’.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION RETCODE.

Figure 131. GETHOSTID call instruction example

Chapter 8. Sockets extended API 253

|
|

Figure 132 shows an example of GETHOSTNAME call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing GETHOSTNAME. The field is

left-aligned and padded on the right with blanks.

NAMELEN

A fullword binary field set to the length of the NAME field. The minimum

length of the NAME field is 1 character. The maximum length of the

NAME field is 255 characters.

Parameter values returned to the application

NAME

Indicates the receiving field for the host name. If the host name is shorter

than the NAMELEN value, then the NAME field is filled with binary zeros

after the host name. If the host name is longer than the NAMELEN value,

then the name is truncated.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

GETNAMEINFO

The GETNAMEINFO returns the node name and service location of a socket

address that is specified in the call. On successful completion, GETNAMEINFO

returns host name, host name length, service name, and service name length, if

requested, in the buffers provided.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTNAME’.

 01 NAMELEN PIC 9(8) BINARY.

 01 NAME PIC X(24).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION NAMELEN NAME

 ERRNO RETCODE.

Figure 132. GETHOSTNAME call instruction example

254 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|

|
|
|
|

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 133 shows an example of GETNAMEINFO call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETNAMEINFO’.

 01 NAMELEN PIC 9(8) BINARY.

 01 HOST PIC X(255).

 01 HOSTLEN PIC 9(8) BINARY.

 01 SERVICE PIC X(32).

 01 SERVLEN PIC 9(8) BINARY.

 01 FLAGS PIC 9(8) BINARY VALUE 0.

 01 NI-NOFQDN PIC 9(8) BINARY VALUE 1.

 01 NI-NUMERICHOST PIC 9(8) BINARY VALUE 2.

 01 NI-NAMEREQD PIC 9(8) BINARY VALUE 4.

 01 NI-NUMERICSERVER PIC 9(8) BINARY VALUE 8.

 01 NI-DGRAM PIC 9(8) BINARY VALUE 16.

 01 NI-NUMERICSCOPE PIC 9(8) BINARY VALUE 32.

 * IPv4 socket structure.

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 * IPv6 socket structure.

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 FLOWINFO PIC 9(8) BINARY.

 03 IP-ADDRESS.

 10 FILLER PIC 9(16) BINARY.

 10 FILLER PIC 9(16) BINARY.

 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 MOVE 28 TO NAMELEN.

 MOVE 255 TO HOSTLEN.

 MOVE 32 TO SERVLEN.

 MOVE NI-NAMEREQD TO FLAGS.

 CALL ’EZASOKET’ USING SOC-FUNCTION NAME NAMELEN HOST

 HOSTLEN SERVICE SERVLEN FLAGS ERRNO RETCODE.

Figure 133. GETNAMEINFO call instruction example

Chapter 8. Sockets extended API 255

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing ’GETNAMEINFO’. The field is

left-justified and padded on the right with blanks.

NAME

 A socket address structure to be translated that has the following fields:

Field Description

FAMILY A halfword binary number specifying the IPv4 addressing

family. For TCP/IP, the value is a decimal 2, indicating

AF_INET.

PORT A halfword binary number specifying the port number.

IP-ADDRESS

A fullword binary number specifying the 32-bit IPv4

Internet address.

RESERVED An eight-byte reserved field. This field is required, but is

not used.

 The IPv6 socket address structure specifies the following fields:

Field Description

FAMILY A halfword binary field specifying the IPv6 addressing

family. For TCP/IP, the value is a decimal 19, indicating

AF_INET6.

PORT A halfword binary number specifying the port number.

FLOW-INFO A fullword binary field specifying the traffic class and flow

label. This field is not implemented.

IP-ADDRESS

A 16-byte binary field specifying the 128-bit IPv6 Internet

address, in network byte order.

SCOPE-ID A fullword binary field that specifies the link scope for an

IPv6 address as an interface index. The resolver ignores the

SCOPE-ID field, unless the address in the IP-ADDRESS

field is a link-local address and the HOST parameter is also

specified.

NAMELEN

A fullword binary field. The length of the socket address structure pointed

to by the NAME argument.

HOST

On input, a storage area that is large enough to hold the returned resolved

host name. The host name can be a maximum of 255 bytes, for the input

socket address. If inadequate storage is specified to contain the resolved

host name, then the resolver returns the host name value up to the storage

amount specified and truncation can occur. If the host’s name cannot be

located, the numeric form of the host’s address is returned instead of its

name. However, if the NI_NAMEREQD option is specified and no host

name is located, then an error is returned. This is an optional field, but if

this field is specified, you must also code the HOSTLEN parameter. Specify

both the HOST and HOSTLEN parameters or both the SERVICE and

SERVLEN parameters. An error occurs if both are omitted.

256 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||
|
|
|
|

|

|
|
|

If the IP-ADDRESS value represents a link-local address, and the

SCOPE-ID interface index is a nonzero value, scope information is

appended to the resolved host name using the format host%scope

information. The scope information can be either the numeric form of the

SCOPE-ID interface index, or the interface name associated with the

SCOPE-ID interface index.

 Use the NI_NUMERICSCOPE option to select which form of scope

information should be returned. The combined host name and scope

information can be a maximum of 255 characters long. For more

information about scope information and GETNAMEINFO processing, see

the z/OS Communications Server: IPv6 Network and Application Design Guide

for more information.

HOSTLEN

An output parameter. A fullword binary field that contains the length of

the host storage (HOST parameter) used to contain the resolved host name

that is returned. The HOSTLEN value must be equal to or greater than the

length of the longest host name, or the host name and scope information

combination, to be returned. The GETNAMEINFO call returns the host

name, or hostname and scope information combination, up to the length

specified by the HOSTLEN parameter. On output, the HOSTLEN value

contains the length of the returned resolved host name, or the host name

and scope information combination. If the HOSTLEN value 0 is specified

on input, then the resolved host name is not returned. This is an optional

field, but if it is specified, you must also code the HOST parameter. Specify

both the HOST and HOSTLEN parameters or both the SERVICE and

SERVLEN parameters. An error occurs if both are omitted.

SERVICE

On input, storage capable of holding the returned resolved service name,

which can be a maximum of 32 bytes, for the input socket address. If

inadequate storage is specified to contain the resolved service name, then

the resolver returns the service name up to the storage specified and

truncation can occur. If the service name cannot be located, or if

NI_NUMERICSERV was specified in the FLAGS operand, then the

numeric form of the service address is returned instead of its name. This is

an optional field, but if specified, you must also code SERVLEN. Specify

both the HOST and HOSTLEN parameters or both the SERVICE and

SERVLEN parameters. An error occurs if both are omitted.

SERVLEN

An output parameter. A fullword binary field. The length of the SERVICE

storage used to contain the returned resolved service name. SERVLEN

must be equal to or greater than the length of the longest service name to

be returned. GETNAMEINFO returns the service name up to the length

specified by SERVLEN. On output, SERVLEN contains the length of the

returned resolved service name. If SERVLEN is 0 on input, then the service

name information is not returned. This is an optional field but if specified

you must also code SERVICE. Specify both the HOST and HOSTLEN

parameters or both the SERVICE and SERVLEN parameters. An error

occurs if both are omitted.

FLAGS

An input parameter. A fullword binary field. This is an optional field. The

FLAGS field must contain either a binary or decimal value, depending on

the programming language used:

Chapter 8. Sockets extended API 257

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

Flag Name Binary Value Decimal

Value

Description

’NI_NOFQDN’ X’00000001’ 1 Return the NAME portion of

the fully qualified domain

name.

’NI_NUMERICHOST’ X’00000002’ 2 Return only the numeric

form of host’s address.

’NI_NAMEREQD’ X’00000004’ 4 Return an error if the host’s

name cannot be located.

’NI_NUMERICSERV’ X’00000008’ 8 Return only the numeric

form of the service address.

’NI_DGRAM’ X’00000010’ 16 Indicates that the service is a

datagram service. The

default behavior is to assume

that the service is a stream

service.

’NI_NUMERICSCOPE’ X’00000020’ 32 Return only the numeric

form of the SCOPE-ID

interface index, when

applicable.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, ERRNO contains an error

number. See Appendix B. Return codes on page 397 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

GETPEERNAME

The GETPEERNAME call returns the name of the remote socket to which the local

socket is connected.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

258 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||||
|
|

||||
|
|

||||
|

||||
|

||||
|

||||
|
|
|
|

||||
|
|
|
|

Figure 134 shows an example of GETPEERNAME call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing GETPEERNAME. The field is

left-aligned and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the local socket

connected to the remote peer whose address is required.

Parameter values returned to the application

NAME

 An IPv4 socket address structure to contain the peer name. The structure

that is returned is the socket address structure for the remote socket that is

connected to the local socket specified in field S.

FAMILY

A halfword binary field containing the connection peer’s IPv4

addressing family. The call always returns the decimal value 2,

indicating AF_INET.

PORT A halfword binary field set to the connection peer’s port number.

IP-ADDRESS

A fullword binary field set to the 32-bit IPv4 Internet address of

the connection peer’s host machine.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETPEERNAME’.

 01 S PIC 9(4) BINARY.

 *

 * IPv4 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 *

 * IPv6 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 FLOW-INFO PIC 9(8) BINARY.

 03 IP-ADDRESS.

 05 FILLER PIC 9(16) BINARY.

 05 FILLER PIC 9(16) BINARY.

 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 134. GETPEERNAME call instruction example

Chapter 8. Sockets extended API 259

RESERVED

Specifies an eight-byte reserved field. This field is required, but not

used.

 An IPv6 socket address structure to contain the peer name. The structure

that is returned is the socket address structure for the remote socket that is

connected to the local socket specified in field S.

FAMILY

A halfword binary field containing the connection peer’s IPv6

addressing family. The call always returns the decimal value 19,

indicating AF_INET6.

PORT A halfword binary field set to the connection peer’s port number.

FLOW-INFO

A fullword binary field specifying the traffic class and flow label.

The value of this field is undefined.

IP-ADDRESS

A 16-byte binary field set to the 128-bit IPv6 Internet address of the

connection peer’s host machine.

SCOPE-ID

A fullword binary field that identifies a set of interfaces as

appropriate for the scope of the address carried in the

IP-ADDRESS field. For a link scope IP-ADDRESS, SCOPE-ID

contains the link index for the IP-ADDRESS. For all other address

scopes, SCOPE-ID is undefined.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

GETSOCKNAME

The GETSOCKNAME call returns the address currently bound to a specified

socket. If the socket is not currently bound to an address, the call returns with the

FAMILY field set, and the rest of the structure set to 0.

Because a stream socket is not assigned a name until after a successful call to

either BIND, CONNECT, or ACCEPT, the GETSOCKNAME call can be used after

an implicit bind to discover which port was assigned to the socket.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

260 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 135 shows an example of GETSOCKNAME call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing GETSOCKNAME. The field is

left-aligned and padded on the right with blanks.

S A halfword binary number set to the descriptor of a local socket whose

address is required.

Parameter values returned to the application

NAME

 Specifies the IPv4 socket address structure returned by the call.

FAMILY

A halfword binary field containing the addressing family. The call

always returns the decimal value of 2, indicating AF_INET.

PORT A halfword binary field set to the port number bound to this

socket. If the socket is not bound, zero is returned.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETSOCKNAME’.

 01 S PIC 9(4) BINARY.

 *

 * IPv4 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 *

 * IPv6 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 FLOW-INFO PIC 9(8) BINARY.

 03 IP-ADDRESS.

 05 FILLER PIC 9(16) BINARY.

 05 FILLER PIC 9(16) BINARY.

 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 135. GETSOCKNAME call instruction example

Chapter 8. Sockets extended API 261

IP-ADDRESS

A fullword binary field set to the 32-bit IPv4 Internet address of

the local host machine. If the socket is not bound, the address is

the IPv6 unspecified address (in6addr_any).

RESERVED

Specifies 8 bytes of binary zeros. This field is required but not

used.

 Specifies the IPv6 socket address structure returned by the call.

FAMILY

A halfword binary field containing the addressing family. The call

always returns the decimal value of 19, indicating AF_INET6.

PORT

A halfword binary field set to the port number bound to this

socket. If the socket is not bound, zero is returned.

FLOW-INFO

A fullword binary field specifying the traffic class and flow label.

The value of this field is undefined.

IP-ADDRESS

A 16-byte binary field set to the 128-bit IPv6 Internet address of the

local host machine. If the socket is not bound, the address is

IN6ADDR_ANY.

SCOPE-ID

A fullword binary field which identifies a set of interfaces as

appropriate for the scope of the address carried in the

IP-ADDRESS field. For a link scope IP-ADDRESS, SCOPE-ID

contains the link index for the IP-ADDRESS. For all other address

scopes, SCOPE-ID is undefined.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

GETSOCKOPT

The GETSOCKOPT call queries the options that are set by the SETSOCKOPT call.

Several options are associated with each socket. These options are described below.

You must specify the option to be queried when you issue the GETSOCKOPT call.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

262 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 136 shows an example of GETSOCKOPT call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing GETSOCKOPT. The field is left-aligned

and padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket

requiring options.

OPTNAME

Input parameter. Set OPTNAME to the required option before you issue

GETSOCKOPT. See the table below for a list of the options and their

unique requirements. See Appendix C, “GETSOCKOPT/SETSOCKOPT

command values,” on page 415 for the numeric values of OPTNAME.

Note: COBOL programs cannot contain field names with the underscore

character. Fields representing the option name should contain dashes

instead.

Parameter values returned to the application

OPTVAL

Output parameter. Contains the status of the specified option. See the table

below for a list of the options and their unique requirements

OPTLEN

Output parameter. A fullword binary field containing the length of the data

returned in OPTVAL. See the table below for how to determine the value

of OPTLEN.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GETSOCKOPT’.

 01 S PIC 9(4) BINARY.

 01 OPTNAME PIC 9(8) BINARY.

 01 OPTVAL PIC 9(8) BINARY.

 01 OPTLEN PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S OPTNAME

 OPTVAL OPTLEN ERRNO RETCODE.

Figure 136. GETSOCKOPT call instruction example

Chapter 8. Sockets extended API 263

error number. See Appendix B, “Return codes,” on page 397 for

information about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call.

−1 Check ERRNO for an error code.

 Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

IP_ADD_MEMBERSHIP

Use this option to enable an application to join

a multicast group on a specific interface. An

interface has to be specified with this option.

Only applications that want to receive multicast

datagrams need to join multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ structure as

defined in

SYS1.MACLIB(BPXYSOCK). The

IP_MREQ structure contains a

4-byte IPv4 multicast address

followed by a 4-byte IPv4 interface

address.

See SEZAINST(CBLOCK) for the

PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for the

COBOL example of IP-MREQ.

N/A

IP_ADD_SOURCE_MEMBERSHIP

Use this option to enable an application to join

a source multicast group on a specific interface

and a specific source address. You must specify

an interface and a source address with this

option. Applications that want to receive

multicast datagrams need to join source

multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE

structure as defined in

SYS1.MACLIB(BPXYSOCK). The

IP_MREQ_SOURCE structure

contains a 4-byte IPv4 multicast

address followed by a 4-byte IPv4

source address and a 4-byte IPv4

interface address.

See SEZAINST(CBLOCK) for the

PL/I example of

IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for the

COBOL example of

IP-MREQ-SOURCE.

N/A

IP_BLOCK_SOURCE

Use this option to enable an application to

block multicast packets that have a source

address that matches the given IPv4 source

address. You must specify an interface and a

source address with this option. The specified

multicast group must have been joined

previously.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE

structure as defined in

SYS1.MACLIB(BPXYSOCK). The

IP_MREQ_SOURCE structure

contains a 4-byte IPv4 multicast

address followed by a 4-byte IPv4

source address and a 4-byte IPv4

interface address.

See SEZAINST(CBLOCK) for the

PL/I example of

IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for the

COBOL example of

IP-MREQ-SOURCE.

N/A

264 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

IP_DROP_MEMBERSHIP

Use this option to enable an application to exit

a multicast group or to exit all sources for a

multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ structure as

defined in

SYS1.MACLIB(BPXYSOCK). The

IP_MREQ structure contains a

4-byte IPv4 multicast address

followed by a 4-byte IPv4 interface

address.

See SEZAINST(CBLOCK) for the

PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for the

COBOL example of IP-MREQ.

N/A

IP_DROP_SOURCE_MEMBERSHIP

Use this option to enable an application to exit

a source multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE

structure as defined in

SYS1.MACLIB(BPXYSOCK). The

IP_MREQ_SOURCE structure

contains a 4-byte IPv4 multicast

address followed by a 4-byte IPv4

source address and a 4-byte IPv4

interface address.

See SEZAINST(CBLOCK) for the

PL/I example of

IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for the

COBOL example of

IP-MREQ-SOURCE.

N/A

IP_MULTICAST_IF

Use this option to set or obtain the IPv4

interface address used for sending outbound

multicast datagrams from the socket

application.

This is an IPv4-only socket option.

Note: Multicast datagrams can be transmitted

only on one interface at a time.

A 4-byte binary field containing an

IPv4 interface address.

A 4-byte binary field

containing an IPv4 interface

address.

IP_MULTICAST_LOOP

Use this option to control or determine whether

a copy of multicast datagrams are looped back

for multicast datagrams sent to a group to

which the sending host itself belongs. The

default is to loop the datagrams back.

This is an IPv4-only socket option.

A 1-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.

If enabled, will contain a 1.

If disabled, will contain a 0.

IP_MULTICAST_TTL

Use this option to set or obtain the IP

time-to-live of outgoing multicast datagrams.

The default value is ’01’x meaning that

multicast is available only to the local subnet.

This is an IPv4-only socket option.

A 1-byte binary field containing the

value of ’00’x to ’FF’x.

A 1-byte binary field

containing the value of ’00’x

to ’FF’x.

Chapter 8. Sockets extended API 265

|
|
|

|
|

|

|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

IP_UNBLOCK_SOURCE

Use this option to enable an application to

unblock a previously blocked source for a given

IPv4 multicast group. You must specify an

interface and a source address with this option.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE

structure as defined in

SYS1.MACLIB(BPXYSOCK). The

IP_MREQ_SOURCE structure

contains a 4-byte IPv4 multicast

address followed by a 4-byte IPv4

source address and a 4-byte IPv4

interface address.

See SEZAINST(CBLOCK) for the

PL/I example of

IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for the

COBOL example of

IP-MREQ-SOURCE.

IPV6_JOIN_GROUP

Use this option to control the reception of

multicast packets and specify that the socket

join a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ structure

as defined in

SYS1.MACLIB(BPXYSOCK). The

IPV6_MREQ structure contains a

16-byte IPv6 multicast address

followed by a 4-byte IPv6 interface

index number.

If the interface index number is 0,

then the stack chooses the local

interface.

See the SEZAINST(CBLOCK) for

the PL/I example of IPV6_MREQ.

See SEZAINST(EZACOBOL) for the

COBOL example of IPV6-MREQ.

N/A

IPV6_LEAVE_GROUP

Use this option to control the reception of

multicast packets and specify that the socket

leave a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ structure

as defined in

SYS1.MACLIB(BPXYSOCK). The

IPV6_MREQ structure contains a

16-byte IPv6 multicast address

followed by a 4-byte IPv6 interface

index number.

If the interface index number is 0,

then the stack chooses the local

interface.

See the SEZAINST(CBLOCK) for

the PL/I example of IPV6_MREQ.

See SEZAINST(EZACOBOL) for the

COBOL example of IPV6-MREQ.

N/A

266 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

IPV6_MULTICAST_HOPS

Use to set or obtain the hop limit used for

outgoing multicast packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value

specifying the multicast hops. If not

specified, then the default is 1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit range.

Note: An application must be APF

authorized to enable it to set the

hop limit value above the system

defined hop limit value. CICS

applications cannot execute as APF

authorized.

Contains a 4-byte binary

value in the range 0 – 255

indicating the number of

multicast hops.

IPV6_MULTICAST_IF

Use this option to set or obtain the index of the

IPv6 interface used for sending outbound

multicast datagrams from the socket

application.

This is an IPv6-only socket option.

Contains a 4-byte binary field

containing an IPv6 interface index

number.

Contains a 4-byte binary field

containing an IPv6 interface

index number.

IPV6_MULTICAST_LOOP

Use this option to control or determine whether

a multicast datagram is looped back on the

outgoing interface by the IP layer for local

delivery when datagrams are sent to a group to

which the sending host itself belongs. The

default is to loop multicast datagrams back.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

IPV6_UNICAST_HOPS

Use this option to set or obtain the hop limit

used for outgoing unicast IPv6 packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value

specifying the unicast hops. If not

specified, then the default is 1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit range.

Note: APF authorized applications

are permitted to set a hop limit that

exceeds the system configured

default. CICS applications cannot

execute as APF authorized.

Contains a 4-byte binary

value in the range 0 – 255

indicating the number of

unicast hops.

IPV6_V6ONLY

Use this option to set or determine whether the

socket is restricted to send and receive only

IPv6 packets. The default is to not restrict the

sending and receiving of only IPv6 packets.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

Chapter 8. Sockets extended API 267

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

MCAST_BLOCK_SOURCE

Use this option to enable an application to

block multicast packets that have a source

address that matches the given source address.

You must specify an interface index and a

source address with this option. The specified

multicast group must have been joined

previously.

Contains the

GROUP_SOURCE_REQ structure as

defined in

SYS1.MACLIB(BPXYSOCK). The

GROUP_SOURCE_REQ structure

contains a 4-byte interface index

number followed by a socket

address structure of the multicast

address and a socket address

structure of the source address.

See SEZAINST(CBLOCK) for the

PL/I example of

GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for the

COBOL example of

GROUP-SOURCE-REQ.

N/A

MCAST_JOIN_GROUP

Use this option to enable an application to join

a multicast group on a specific interface. You

must specify an interface index. Applications

that want to receive multicast datagrams must

join multicast groups.

Contains the GROUP_REQ structure

as defined in

SYS1.MACLIB(BPXYSOCK). The

GROUP_REQ structure contains a

4-byte interface index number

followed by a socket address

structure of the multicast address.

See SEZAINST(CBLOCK) for the

PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for the

COBOL example of GROUP-REQ.

N/A

MCAST_JOIN_SOURCE_GROUP

Use this option to enable an application to join

a source multicast group on a specific interface

and a source address. You must specify an

interface index and the source address.

Applications that want to receive multicast

datagrams only from specific source addresses

need to join source multicast groups.

Contains the

GROUP_SOURCE_REQ structure as

defined in

SYS1.MACLIB(BPXYSOCK). The

GROUP_SOURCE_REQ structure

contains a 4-byte interface index

number followed by a socket

address structure of the multicast

address and a socket address

structure of the source address.

See SEZAINST(CBLOCK) for the

PL/I example of

GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for the

COBOL example of

GROUP-SOURCE-REQ.

N/A

268 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

MCAST_LEAVE_GROUP

Use this option to enable an application to exit

a multicast group or exit all sources for a given

multicast groups.

Contains the GROUP_REQ structure

as defined in

SYS1.MACLIB(BPXYSOCK). The

GROUP_REQ structure contains a

4-byte interface index number

followed by a socket address

structure of the multicast address.

See SEZAINST(CBLOCK) for the

PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for the

COBOL example of GROUP-REQ.

N/A

MCAST_LEAVE_SOURCE_GROUP

Use this option to enable an application to exit

a source multicast group.

Contains the

GROUP_SOURCE_REQ structure as

defined in

SYS1.MACLIB(BPXYSOCK). The

GROUP_SOURCE_REQ structure

contains a 4-byte interface index

number followed by a socket

address structure of the multicast

address and a socket address

structure of the source address.

See SEZAINST(CBLOCK) for the

PL/I example of

GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for the

COBOL example of

GROUP-SOURCE-REQ.

N/A

MCAST_UNBLOCK_SOURCE

Use this option to enable an application to

unblock a previously blocked source for a given

multicast group. You must specify an interface

index and a source address with this option.

Contains the

GROUP_SOURCE_REQ structure as

defined in

SYS1.MACLIB(BPXYSOCK). The

GROUP_SOURCE_REQ structure

contains a 4-byte interface index

number followed by a socket

address structure of the multicast

address and a socket address

structure of the source address.

See SEZAINST(CBLOCK) for the

PL/I example of

GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for the

COBOL example of

GROUP-SOURCE-REQ.

N/A

Chapter 8. Sockets extended API 269

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

||
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

SO_ASCII

Use this option to set or determine the

translation to ASCII data option. When

SO_ASCII is set, data is translated to ASCII.

When SO_ASCII is not set, data is not

translated to or from ASCII.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned and

is optionally followed by the name

of the translation table that is used

if translation is applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is

returned and is optionally

followed by the name of the

translation table that is used

if translation is applied to the

data.

SO_BROADCAST

Use this option to set or determine whether a

program can send broadcast messages over the

socket to destinations that can receive datagram

messages. The default is disabled.

Note: This option has no meaning for stream

sockets.

A 4-byte binary field.

To enable, set to 1 or a positive

value.

To disable, set to 0.

A 4-byte field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_DEBUG

Use SO_DEBUG to set or determine the status

of the debug option. The default is disabled. The

debug option controls the recording of debug

information.

Notes:

1. This is a REXX-only socket option.

2. This option has meaning only for stream

sockets.

To enable, set to ON.

To disable, set to OFF.

If enabled, contains ON.

If disabled, contains OFF.

SO_EBCDIC

Use this option to set or determine the

translation to EBCDIC data option. When

SO_EBCDIC is set, data is translated to

EBCDIC. When SO_EBCDIC is not set, data is

not translated to or from EBCDIC. This option

is ignored by EBCDIC hosts.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned and

is optionally followed by the name

of the translation table that is used

if translation is applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is

returned and is optionally

followed by the name of the

translation table that is used

if translation is applied to the

data.

SO_ERROR

Use this option to request pending errors on the

socket or to check for asynchronous errors on

connected datagram sockets or for other errors

that are not explicitly returned by one of the

socket calls. The error status is clear afterwards.

N/A A 4-byte binary field

containing the most recent

ERRNO for the socket.

270 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

SO_KEEPALIVE

Use this option to set or determine whether the

keep alive mechanism periodically sends a

packet on an otherwise idle connection for a

stream socket.

The default is disabled.

When activated, the keep alive mechanism

periodically sends a packet on an otherwise idle

connection. If the remote TCP does not respond

to the packet or to retransmissions of the

packet, the connection is terminated with the

error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive

value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_LINGER

Use this option to control or determine how

TCP/IP processes data that has not been

transmitted when a CLOSE is issued for the

socket. The default is disabled.

Notes:

1. This option has meaning only for stream

sockets.

2. If you set a zero linger time, the connection

cannot close in an orderly manner, but

stops, resulting in a RESET segment being

sent to the connection partner. Also, if the

aborting socket is in nonblocking mode, the

close call is treated as though no linger

option had been set.

When SO_LINGER is set and CLOSE is called,

the calling program is blocked until the data is

successfully transmitted or the connection has

timed out.

When SO_LINGER is not set, the CLOSE

returns without blocking the caller, and TCP/IP

continues to attempt to send data for a

specified time. This usually allows sufficient

time to complete the data transfer.

Use of the SO_LINGER option does not

guarantee successful completion because

TCP/IP only waits the amount of time specified

in OPTVAL for SO_LINGER.

Contains an 8-byte field containing

two 4-byte binary fields.

Assembler coding:

ONOFF DS F

LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.

LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to

enable and set to 0 to disable this

option. Set LINGER to the number

of seconds that TCP/IP lingers after

the CLOSE is issued.

Contains an 8-byte field

containing two 4-byte binary

fields.

Assembler coding:

ONOFF DS F

LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.

LINGER PIC 9(8) BINARY.

A nonzero value returned in

ONOFF indicates enabled, a 0

indicates disabled. LINGER

indicates the number of

seconds that TCP/IP will try

to send data after the CLOSE

is issued.

Chapter 8. Sockets extended API 271

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

SO_OOBINLINE

Use this option to control or determine whether

out-of-band data is received.

Note: This option has meaning only for stream

sockets.

When this option is set, out-of-band data is

placed in the normal data input queue as it is

received and is available to a RECV or a

RECVFROM even if the OOB flag is not set in

the RECV or the RECVFROM.

When this option is disabled, out-of-band data

is placed in the priority data input queue as it

is received and is available to a RECV or a

RECVFROM only when the OOB flag is set in

the RECV or the RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive

value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_RCVBUF

Use this option to control or determine the size

of the data portion of the TCP/IP receive buffer.

The size of the data portion of the receive

buffer is protocol-specific, based on the

following values prior to any SETSOCKOPT

call:

v TCPRCVBufrsize keyword on the

TCPCONFIG statement in the

PROFILE.TCPIP data set for a TCP Socket

v UDPRCVBufrsize keyword on the

UDPCONFIG statement in the

PROFILE.TCPIP data set for a UDP Socket

v The default of 65 535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value

specifying the size of the data

portion of the TCP/IP receive

buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive

value indicating the size of

the data portion of the

TCP/IP receive buffer.

If disabled, contains a 0.

272 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

SO_REUSEADDR

Use this option to control or determine whether

local addresses are reused. The default is

disabled. This alters the normal algorithm used

with BIND. The normal BIND algorithm allows

each Internet address and port combination to

be bound only once. If the address and port

have been already bound, then a subsequent

BIND will fail and result error will be

EADDRINUSE.

When this option is enabled, the following

situations are supported:

v A server can BIND the same port multiple

times as long as every invocation uses a

different local IP address and the wildcard

address INADDR_ANY is used only one time

per port.

v A server with active client connections can be

restarted and can bind to its port without

having to close all of the client connections.

v For datagram sockets, multicasting is

supported so multiple bind() calls can be

made to the same class D address and port

number.

v If you require multiple servers to BIND to

the same port and listen on INADDR_ANY,

refer to the SHAREPORT option on the PORT

statement in TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to 1 or a positive

value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_SNDBUF

Use this option to control or determine the size

of the data portion of the TCP/IP send buffer.

The size is of the TCP/IP send buffer is

protocol specific and is based on the following:

v The TCPSENDBufrsize keyword on the

TCPCONFIG statement in the

PROFILE.TCPIP data set for a TCP socket

v The UDPSENDBufrsize keyword on the

UDPCONFIG statement in the

PROFILE.TCPIP data set for a UDP socket

v The default of 65 535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value

specifying the size of the data

portion of the TCP/IP send buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive

value indicating the size of

the data portion of the

TCP/IP send buffer.

If disabled, contains a 0.

SO_TYPE

Use this option to return the socket type.

N/A A 4-byte binary field

indicating the socket type:

X’1’ indicates

SOCK_STREAM.

X’2’ indicates

SOCK_DGRAM.

X’3’ indicates SOCK_RAW.

Chapter 8. Sockets extended API 273

Table 20. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

TCP_KEEPALIVE

Use this option to set or determine whether a

socket-specific timeout value (in seconds) is to

be used in place of a configuration-specific

value whenever keep alive timing is active for

that socket.

When activated, the socket-specified timer value

remains in effect until respecified by

SETSOCKOPT or until the socket is closed.

Refer to the z/OS Communications Server: IP

Programmer’s Guide and Reference for more

information on the socket option parameters.

A 4-byte binary field.

To enable, set to a value in the

range of 1 – 2 147 460.

To disable, set to a value of 0.

A 4-byte binary field.

If enabled, contains the

specific timer value (in

seconds) that is in effect for

the given socket.

If disabled, contains a 0

indicating keep alive timing

is not active.

TCP_NODELAY

Use this option to set or determine whether

data sent over the socket is subject to the Nagle

algorithm (RFC 896).

Under most circumstances, TCP sends data

when it is presented. When this option is

enabled, TCP will wait to send small amounts

of data until the acknowledgment for the

previous data sent is received. When this option

is disabled, TCP will send small amounts of

data even before the acknowledgment for the

previous data sent is received.

Note: Use the following to set TCP_NODELAY

OPTNAME value for COBOL programs:

01 TCP-NODELAY-VAL PIC 9(10) COMP

 VALUE 2147483649.

01 TCP-NODELAY-REDEF REDEFINES

 TCP-NODELAY-VAL.

 05 FILLER PIC 9(6) BINARY.

 05 TCP-NODELAY PIC 9(8) BINARY.

A 4-byte binary field.

To enable, set to a 0.

To disable, set to a 1 or nonzero.

A 4-byte binary field.

If enabled, contains a 0.

If disabled, contains a 1.

GIVESOCKET

The GIVESOCKET call is used to pass a socket from one process to another.

UNIX-based platforms use a command called FORK to create a new child process

that has the same descriptors as the parent process. You can use this new child

process in the same way that you used the parent process.

TCP/IP normally uses GETCLIENTID, GIVESOCKET, and TAKESOCKET calls in

the following sequence:

1. A process issues a GETCLIENTID call to get the job name of its region and its

MVS subtask identifier. This information is used in a GIVESOCKET call.

2. The process issues a GIVESOCKET call to prepare a socket for use by a child

process.

3. The child process issues a TAKESOCKET call to get the socket. The socket now

belongs to the child process, and can be used by TCP/IP to communicate with

another process.

274 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Note: The TAKESOCKET call returns a new socket descriptor in RETCODE.

The child process must use this new socket descriptor for all calls that

use this socket. The socket descriptor that was passed to the

TAKESOCKET call must not be used.

4. After issuing the GIVESOCKET command, the parent process issues a SELECT

command that waits for the child to get the socket.

5. When the child gets the socket, the parent receives an exception condition that

releases the SELECT command.

6. The parent process closes the socket.

The original socket descriptor can now be reused by the parent.

Sockets which have been given, but not taken for a period of four days, are closed

and are no longer be available for taking. If a select for the socket is outstanding, it

is posted.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 137 shows an example of GIVESOCKET call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing 'GIVESOCKET'. The field is

left-aligned and padded on the right with blanks.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’GIVESOCKET’.

 01 S PIC 9(4) BINARY.

 01 CLIENT.

 03 DOMAIN PIC 9(8) BINARY.

 03 NAME PIC X(8).

 03 TASK PIC X(8).

 03 RESERVED PIC X(20).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S CLIENT ERRNO RETCODE.

Figure 137. GIVESOCKET call instruction example

Chapter 8. Sockets extended API 275

S A halfword binary number set to the socket descriptor of the socket to be

given.

CLIENT

A structure containing the identifier of the application to which the socket

should be given.

DOMAIN

A fullword binary number that must be set to a decimal 2,

indicating AF_INET, or a decimal 19, indicating AF_INET6.

 Rule: A socket given by GIVESOCKET can only be taken by a

TAKESOCKET with the same DOMAIN, address family (such as,

AF_INET or AF_INET6).

NAME

Specifies an 8-character field, left-aligned, padded to the right with

blanks, that can be set to the name of the MVS address space that

contains the application that is going to take the socket.

v If the socket-taking application is in the same address space as

the socket-giving application (as in CICS), NAME can be

specified. The socket-giving application can determine its own

address space name by issuing the GETCLIENTID call.

v If the socket-taking application is in a different MVS address

space this field should be set to blanks. When this is done, any

MVS address space that requests the socket can have it.

TASK Specifies an eight-character field that can be set to blanks, or to the

identifier of the socket-taking MVS subtask. If this field is set to

blanks, any subtask in the address space specified in the NAME

field can take the socket.

v If used by CICS IP sockets, the field should be set to blanks.

v If TASK identifier is nonblank, the socket-receiving task should

already be in execution when the GIVESOCKET is issued.

RESERVED

A 20-byte reserved field. This field is required, but not used.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

INITAPI and INITAPIX

The INITAPI and INITAPIX calls connect an application to the TCP/IP interface.

The sole difference between INITAPI and INITAPIX is explained in the description

of the IDENT parameter. INITAPI is preferred over INITAPIX unless there is a

specific need to connect applications to alternate TCP/IP stacks. CICS sockets

276 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

programs that are written in COBOL, PL/I, or assembler language should issue the

INITAPI or INITAPIX macro before they issue other calls to the CICS sockets

interface.

If a CICS task’s first call to the CICS socket interface is not an INITAPI or

INITAPIX, then the CICS socket interface generates a default INITAPI call.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 138 shows an example of INITAPI call instructions. The same example can

be used for the INITAPIX call by simply changing the SOC-FUNCTION value to

’INITAPIX’.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing INITAPI or INITAPIX. The field is left

justified and padded on the right with blanks.

MAXSOC

A halfword binary field set to the maximum number of sockets this

application ever has open at one time. The maximum number is 65535 and

the minimum number is 50. This value is used to determine the amount of

memory that is allocated for socket control blocks and buffers. If less than

50 are requested, MAXSOC defaults to 50.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’INITAPI’.

 01 MAXSOC-FWD PIC 9(8) BINARY.

 01 MAXSOC-RDF REDEFINES MAXSOC-FWD.

 02 FILLER PIC X(2).

 02 MAXSOC PIC 9(4) BINARY.

 01 IDENT.

 02 TCPNAME PIC X(8).

 02 ADSNAME PIC X(8).

 01 SUBTASK PIC X(8).

 01 MAXSNO PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC IDENT SUBTASK

 MAXSNO ERRNO RETCODE.

Figure 138. INITAPI call instruction example

Chapter 8. Sockets extended API 277

IDENT

A 16-byte structure containing the name of the TCP/IP address space

(TCPNAME) and the name of calling program’s address space

(ADSNAME).

 The way that the CICS socket interface handles the TCPNAME part of the

structure differs between INITAPI and INITAPIX (as explained in the

following description of TCPNAME).

TCPNAME

An 8-byte character field which should be set to the MVS jobname

of the TCP/IP address space with which you are connecting.

 If the function is INITAPI, then the CICS socket interface always

overrides this with the value in the TCPADDR configuration

parameter. In OS/390® V2R8 and earlier, the INITAPIX functions

the same way. In z/OS V1R1 and higher, the TCPNAME passed by

the application program on an INITAPIX call overrides the

TCPADDR value.

ADSNAME

An 8-byte character field set to the identity of the calling program’s

address space. It is the name of the CICS startup job. The CICS

socket interface always overrides this value with VTAM APPLID of

the CICS address space.

SUBTASK

Indicates an 8-byte field containing a unique subtask identifier that is used

to distinguish between multiple subtasks within a single address space. For

your subtask name, use the zoned decimal value of the CICS task ID

(EIBTASKN), plus a unique displayable character. In CICS, if no value is

specified, the zoned-decimal value of the CICS task ID appended with the

letter C is used.

 Result: Using the letter L as the last character in the subtask parameter

causes the tasking mechanism to assume the CICS transaction is a listener

and schedule it using a non-reusable subtask by way of MVS attach

processing when OTE=NO. This has no effect when OTE=YES.

Parameter values returned to the application

MAXSNO

A fullword binary field that contains the highest socket number assigned

to this application. The lowest socket number is zero. If you have 50

sockets, they are numbered from 0 to 49. If MAXSNO is not specified, the

value for MAXSNO is 49.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

IOCTL

The IOCTL call is used to control certain operating characteristics for a socket.

278 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|

Before you issue an IOCTL call, you must load a value representing the

characteristic that you want to control into the COMMAND field.

The variable length parameters REQARG and RETARG are arguments that are

passed to and returned from IOCTL. The length of REQARG and RETARG is

determined by the value that you specify in COMMAND. See Table 21 on page 287

for information about REQARG and RETARG.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”

under “Environmental restrictions and programming

requirements” on page 223.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 139 on page 280 shows an example of IOCTL call instructions.

Chapter 8. Sockets extended API 279

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing IOCTL. The field is left-aligned and

padded to the right with blanks.

S A halfword binary number set to the descriptor of the socket to be

controlled.

COMMAND

To control an operating characteristic, set this field to one of the following

symbolic names. A value in a bit mask is associated with each symbolic

name. By specifying one of these names, you are turning on a bit in a

mask that communicates the requested operating characteristic to TCP/IP.

FIONBIO

Sets or clears blocking status.

FIONREAD

Returns the number of immediately readable bytes for the socket.

SIOCGHOMEIF6

Requests all IPv6 home interfaces. When the SIOCGHOMEIF6

IOCTL is issued, the REQARG must contain a Network

 WORKING-STORAGE SECTION.

 01 SOKET-FUNCTION PIC X(16) VALUE ’IOCTL’.

 01 S PIC 9(4) BINARY.

 01 COMMAND PIC 9(4) BINARY.

 01 IFREQ.

 05 NAME PIC X(16).

 05 FAMILY PIC 9(4) BINARY.

 05 PORT PIC 9(4) BINARY.

 05 ADDRESS PIC 9(8) BINARY.

 05 FILLER PIC X(8).

 01 IFREQOUT.

 05 NAME PIC X(16).

 05 FAMILY PIC 9(4) BINARY.

 05 PORT PIC 9(4) BINARY.

 05 ADDRESS PIC 9(8) BINARY.

 05 FILLER PIC X(8).

 01 GRP-IOCTL-TABLE.

 05 IOCTL-ENTRY OCCURS 1 TO max TIMES DEPENDING ON count.

 10 NAME PIC X(16).

 10 FAMILY PIC 9(4) BINARY.

 10 PORT PIC 9(4) BINARY.

 10 ADDRESS PIC 9(8) BINARY.

 10 FILLER PIC X(8).

 01 IOCTL-REQARG USAGE IS POINTER.

 01 IOCTL-RETARG USAGE IS POINTER.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC 9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S COMMAND REQARG

 RETARG ERRNO RETCODE.

Figure 139. IOCTL call instruction example

280 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Configuration Header. The NETCONFHDR is defined in

SYS1.MACLIB(BPXYIOC6) for Assembler programs.

 Requirement: The following input fields must be filled out:

NchEyeCatcher

Contains eye catcher ’6NCH’.

NchIoctl

Contains the command code.

NchBufferLength

Buffer length large enough to contain all the IPv6 interface

records. Each interface record is length of

HOME-IF-ADDRESS. If buffer is not large enough, then

errno is set to ERANGE and the NchNumEntryRet is set to

number of interfaces. Based on NchNumEntryRet and size

of HOME-IF-ADDRESS, calculate the necessary storage to

contain the entire list.

NchBufferPtr

This is a pointer to an array of HOME-IF structures

returned on a successful call. The size depends on the

number of qualifying interfaces returned.

NchNumEntryRet

If return code is zero, this is set to number of

HOME-IF-ADDRESS returned. If errno is ERANGE, then

this is set to number of qualifying interfaces. No interfaces

are returned. Recalculate the NchBufferLength based on

this value times the size of HOME-IF-ADDRESS.

Chapter 8. Sockets extended API 281

REQARG and RETARG

Point to the arguments that are passed between the calling

program and IOCTL. The length of the argument is

determined by the COMMAND request. REQARG is an

input parameter and is used to pass arguments to IOCTL.

RETARG is an output parameter and is used for arguments

returned by IOCTL. For the lengths and meanings of

REQARG and RETARG for each COMMAND type, see

Table 21 on page 287.

SIOCATMARK

Determines whether the current location in the data input is

pointing to out-of-band data.

SIOCGIFADDR

Requests the network interface address for a given interface name.

See the NAME field in Figure 141 on page 283 for the address

format.

SIOCGIFBRDADDR

Requests the network interface broadcast address for a given

interface name. See the NAME field in Figure 141 on page 283 for

the address format.

SIOCGIFCONF

Requests the network interface configuration. The configuration is

a variable number of 32-byte structures formatted as shown in

Figure 141.

 Working-Storage Section.

 01 SIOCGHOMEIF6 PIC X(4) VALUE X’C014F608’.

 Linkage Section.

 01 L1.

 03 NetConfHdr.

 05 NchEyeCatcher pic x(4).

 05 NchIoctl pic 9(8) binary.

 05 NchBufferLength pic 9(8) binary.

 05 NchBufferPtr usage is pointer.

 05 NchNumEntryRet pic 9(8) binary.

 * Allocate storage based on your need.

 03 Allocated-Storage pic x(nn).

 Procedure Division using L1.

 move ’6NCH’ to NchEyeCatcher.

 set NchBufferPtr to address of Allocated-Storage.

 *

 * Set NchBufferLength to the length of your allocated storage.

 *

 move nn to NchBufferLength.

 move SIOCGHOMEIF6 to NchIoctl.

 Call ’EZASOKET’ using soket-ioctl socket-descriptor

 SIOCGHOMEIF6

 NETCONFHDR NETCONFHDR

 errno retcode.

Figure 140. COBOL language example for SIOCGHOMEIF6

282 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

v When IOCTL is issued, REQARG must contain the length of the

array to be returned. To determine the length of REQARG,

multiply the structure length (array element) by the number of

interfaces requested. The maximum number of array elements

that TCP/IP can return is 100.

v When IOCTL is issued, RETARG must be set to the beginning of

the storage area that you have defined in your program for the

array to be returned.

Interface request structure (IFREQ) for the IOCTL call

SIOCGIFDSTADDR

Requests the network interface destination address for a given

interface name. (See IFREQ NAME field, Figure 141 for format.)

SIOCGIFNAMEINDEX

Requests all interface names and indexes including local loopback

but excluding VIPAs. Information is returned for both IPv4 and

IPv6 interfaces whether they are active or inactive. For IPv6

interfaces, information is only returned for an interface if it has at

least one available IP address. The configuration consists of the

IF_NAMEINDEX structure [defined in SYS1.MACLIB(BPX1IOCC)

for assembler programs].

v When the SIOCGIFNAMEINDEX IOCTL is issued, the first word

in REQARG must contain the length (in bytes) to contain an

IF-NAME-INDEX structure to return the interfaces. The

following steps describe how to compute this length is as

follows:

1. Determine the number of interfaces expected to be returned

upon successful completion of this command.

2. Multiply the number of interfaces by the array element (size

of IF-NIINDEX, IF-NINAME, and IF-NIEXT) to get the size

of the array element.

3. To the size of the array, add the size of IF-NITOTALIF and

IF-NIENTRIES to get the total number of bytes needed to

accommodate the name and index information returned.
v When IOCTL is issued, RETARG must be set to the address of

the beginning of the area in your program’s storage that is

reserved for the IF-NAMEINDEX structure that IOCTL returns.

v The ’SIOCGIFNAMEINDEX’ command returns a variable

number of all the qualifying network interfaces.

 03 NAME PIC X(16).

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

Figure 141. Interface request structure (IFREQ) for the IOCTL call

Chapter 8. Sockets extended API 283

SIOCGIPMSFILTER

Requests a list of the IPv4 source addresses that comprise the source filter

along with the current mode on a given interface and a multicast group for

a socket. The source filter can include or exclude the set of source

addresses, depending on the filter mode (MCAST_INCLUDE or

MCAST_EXCLUDE).

 When the SIOCGIPMSFILTER IOCTL is issued, the REQARG parameter

must contain a IP_MSFILTER structure; this structure is defined in

SYS1.MACLIB(BPXYIOCC) for assembler, in SEZAINST(CBLOCK) for

PL/I, and in SEZAINST(EZACOBOL) for COBOL. The IP_MSFILTER

structure must include an interface address (input), a multicast address

(input), filter mode (output), the number of source addresses in the

following array (input and output), and an array of source addresses

(output). On input, the number of source addresses contains the number of

source addresses that fit in the input array. On output, the number of

source addresses contains the total number of source filters in the output

array. If the application does not know the size of the source list prior to

processing, it can make a reasonable guess (for example, 0). When the

process completes, if the number of source addresses contains a larger

value, the IOCTL can be repeated with a larger buffer. That is, on output,

the number of source addresses is always updated to be the total number

of sources in the filter; the array holds as many source addresses as fit, up

to the minimum of the array size passed in as the input number.

 The size of the IP_MSFILTER value is calculated as follows:

1. Determine the number of source addresses that is expected.

WORKING-STORAGE SECTION.

 01 SIOCGIFNAMEINDEX PIC X(4) VALUE X’4000F603’.

 01 reqarg pic 9(8) binary.

 01 reqarg-header-only pic 9(8) binary.

 01 IF-NIHEADER.

 05 IF-NITOTALIF PIC 9(8) BINARY.

 05 IF-NIENTRIES PIC 9(8) BINARY.

 01 IF-NAME-INDEX-ENTRY.

 05 IF-NIINDEX PIC 9(8) BINARY.

 05 IF-NINAME PIC X(16).

 05 IF-NINAMETERM PIC X(1).

 05 IF-NIRESV1 PIC X(3).

 01 OUTPUT-STORAGE PIC X(500).

 Procedure Division.

 move 8 to reqarg-header-only.

 Call ’EZASOKET’ using soket-ioctl socket-descriptor

 SIOCGIFNAMEINDEX

 REQARG-HEADER-ONLY IF-NIHEADER

 errno retcode.

 move 500 to reqarg.

 Call ’EZASOKET’ using soket-ioctl socket-descriptor

 SIOCGIFNAMEINDEX

 REQARG OUTPUT-STORAGE

 errno retcode.

Figure 142. COBOL language example for SIOCGIFNAMEINDEX

284 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

2. Multiply the number of source addresses by the array element (size of

IMSF_SrcEntry) to get the size of all array elements.

3. Add the size of all array elements with the size of the IMSF_Header

structure to get the total number of bytes needed to accommodate the

source address information that is returned.

SIOCGMSFILTER

Requests a list of the IPv4 or IPv6 source addresses that comprise the

source filter, along with the current mode on a given interface index and a

multicast group for a socket. The source filter can include or exclude the

set of source address, depending on the filter mode (MCAST_INCLUDE or

MCAST_EXCLUDE).

 When the SIOCGMSFILTER IOCTL is issued, the REQARG parameter

must contain a GROUP_FILTER structure; this structure is defined in

SYS1.MACLIB(BPXYIOCC) for assembler, in SEZAINST(CBLOCK) for

PL/I, and in SEZAINST(EZACOBOL) for COBOL. The GROUP_FILTER

structure must include an interface index (input), a socket address

structure of the multicast address (input), filter mode (output), the number

of source addresses in the following array (output), and an array of the

socket address structure of source addresses (input and output). On input,

the number of source addresses contains the number of source addresses

that fit in the input array. On output, the number of source addresses

contains the total number of source filters in the output array.

 If the application does not know the size of the source list before

processing, it can make a reasonable guess (for example, 0). When the

process completes, if the number of source addresses holds a larger value,

the IOCTL can be repeated with a larger buffer. That is, on output, the

number of source addresses is always updated to be the total number of

sources in the filter, and the array holds as many source addresses as fit,

up to the minimum of the array size that is passed in as the input number.

 The application calculates the size of the GROUP_FILTER value as follows:

1. Determine the number of source addresses expected.

2. Multiply the number of source addresses by the array element (size of

GF_SrcEntry) to get the size of all array elements.

3. Add the size of all array elements to the size of the GF_Header

structure to get the total number of bytes needed to accommodate the

source addresses information returned.

SIOCSAPPLDATA

Enables an application to associate 40 bytes of user-specified application

data with a socket endpoint. This application data can be used to identify

TCP connections in interfaces such as Netstat, SMF, or network

management applications.

 Requirement: When you issue the SIOCSAPPLDATA IOCTL, ensure that

the REQARG parameter contains a SetApplData structure as defined by

the EZBYAPPL macro in the SEZANMAC dataset. See the CBLOCK and

the EZACOBOL samples for the equivalent SetApplData and

SetADcontainer structure definitions for PL/I and COBOL programming

environments. See z/OS Communications Server: IP Programmer’s Guide and

Reference for more information about programming the SIOCSAPPLDATA

IOCTL.

SetAD_buffer

User-defined application data that comprises 40 bytes of data that

Chapter 8. Sockets extended API 285

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

is used to identify the TCP connection with the IP CICS socket API

sockets application. The application data can be displayed in the

following ways:

v By requesting Netstat reports. The information is displayed

conditionally by using the modifier APPLDATA on the ALLC/-a

and COnn /-c reports, and unconditionally on the ALL/-A

report. See the Netstat ALL/-A report, the Netstat ALLConn/-a

report, and the Netstat COnn/-c report information in z/OS

Communications Server: IP System Administrator’s Commands for

more information about Netstat reports.

v In the SMF 119 TCP connection termination record. See z/OS

Communications Server: IP Configuration Reference for more

information about the application data written on the SMF 119

record.

v By network management applications. See the information in the

z/OS Communications Server: IP Programmer’s Guide and Reference

for more information about application data.

 Applications using this ioctl need to consider the following guidelines:

v The application is responsible for documenting the content, format, and

meaning of the ApplData strings it associates with sockets that it owns.

v The application should uniquely identify itself with printable EBCDIC

characters at the beginning of the string. Strings beginning with

3-character IBM product identifiers, such as EZA or EZB, are reserved

for IBM use. IBM product identifiers begin with a letter in the range A -

I.

v Printable EBCDIC characters should be use for the entire string to enable

searching with Netstat filters.

Tip: Separate application data elements with a blank for easier reading.

SIOCSIPMSFILTER

Sets a list of the IPv4 source addresses that comprise the source filter along

with the current mode on a given interface and a multicast group for a

socket. The source filter can either include or exclude the set of source

address, depending on the filter mode (MCAST_INCLUDE or

MCAST_EXCLUDE). A maximum of 64 source addresses can be specified.

When the SIOCSIPMSFILTER IOCTL is issued, the REQARG parameter

must contain a IP_MSFILTER structure; this structure is defined in

SYS1.MACLIB(BPXYIOCC) for assembler, in SEZAINST(CBLOCK) for PL/I

and in SEZAINST(EZACOBOL) for COBOL. The IP_MSFILTER structure

must include an interface address, a multicast address, filter mode, the

number of source addresses in the following array, and an array of source

addresses.

 The application program calculates the size of the IP_MSFILTER value as

follows:

1. Determine the number of source addresses expected.

2. Multiply the number of source addresses by the array element (size of

the IMSF_SrcEntry structure) to get the size of all array elements.

3. Add the size of all array elements to the size of IMSF_Header to get the

total number of bytes needed to accommodate the source addresses

information returned.

286 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|
|

SIOCSMSFILTER

Sets a list of the IPv4 or IPv6 source addresses that comprise the source

filter, along with the current mode on a given interface index and a

multicast group for a socket. The source filter can include or exclude the

set of source address, depending on the filter mode (INCLUDE or

EXCLUDE). A maximum of 64 source addresses can be specified. When the

SIOCSMSFILTER IOCTL is issued, the REQARG parameter must contain a

GROUP_FILTER structure; this structure is defined in

SYS1.MACLIB(BPXYIOCC) for assembler, in SEZAINST(CBLOCK) for

PL/I, and in SEZAINST(EZACOBOL) for COBOL. The GROUP_FILTER

must include an interface index, a socket address structure of the multicast

address, filter mode, the number of source addresses in the following array,

an array of the socket address structure of source addresses.

 Calculate the size of the GROUP_FILTER value as follows:

1. Determine the number of source addresses expected.

2. Multiply the number of source addresses by the array element (size of

GF_SrcEntry) to get the size of all array elements.

3. Add the size of all array elements to the size of GF_Header to get the

total number of bytes needed to accommodate the source addresses

information returned.

SIOCTTLSCTL

Controls Application Transparent Transport Layer Security (AT-TLS) for the

connection. REQARG and RETARG must contain a TTLS-IOCTL structure.

If a partner certificate is requested, the TTLS-IOCTL must include a pointer

to additional buffer space and the length of that buffer. Information is

returned in the TTLS-IOCTL structure. If a partner certificate is requested

and one is available, it is returned in the additional buffer space. The

TTLS-IOCTL structure is defined in the control block structures in

SEZANMAC. EZBZTLS1 defines the PL/I layout, EZBZTLSP defines the

assembler layout, and EZBZTLSB defines the COBOL layout. For more

usage information and samples, see z/OS Communications Server: IP

Programmer’s Guide and Reference.

REQARG and RETARG

REQARG is used to pass arguments to IOCTL and RETARG receives

arguments from IOCTL. The REQARG and RETARG parameters are

described in Table 21.

 Table 21. IOCTL call arguments

COMMAND/CODE SIZE REQARG SIZE RETARG

FIONBIO X'8004A77E' 4 Set socket mode to one of

the following:

X'00'=blocking;

X'01'=nonblocking

0 Not used

FIONREAD X'4004A77F' 0 Not used 4 Number of characters available for read

SIOCATMARK X'4004A707' 0 Not used 4 X'00' = at OOB dataX'01' = not at OOB data

SIOCGHOMEIF6

X'C014F608'

20 NetConfHdr See Figure 140 on page 282.

SIOCGIFADDR

X'C020A70D'

32 First 16 bytes is the

interface name. Last 16

bytes—not used

32 Network interface address (see Figure 141 on page 283

for format.)

SIOCGIFBRDADDR

X'C020A712'

32 First 16 bytes is the

interface name. Last 16

bytes—not used

32 Network interface address (see Figure 141 on page 283

for format.)

Chapter 8. Sockets extended API 287

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
|
|

||

|||||

|||
|
|
|

||

|||||

|||||

|
|
||||

|
|
||
|
|

||
|

|
|
||
|
|

||
|

Table 21. IOCTL call arguments (continued)

COMMAND/CODE SIZE REQARG SIZE RETARG

SIOCGIFCONF X'C008A714' 8 Size of RETARG When you call the IOCTL with the SIOCGIFCONF

command set, the REQARG parameter should contain

the length in bytes of RETARG. Each interface is

assigned a 32-byte array element; the REQARG

parameter should be set to the number of interfaces

multiplied by 32. TCP/IP for z/OS can return up to 100

array elements.

SIOCGIFDSTADDR

X'C020A70F'

32 First 16 bytes is the

interface name. Last 16

bytes are not used.

32 Destination interface address (See Figure 141 on page

283 for format.)

SIOCGIFNAMEINDEX

X'4000F603'

4 First 4 bytes of return the

buffer

See Figure 142 on page 284.

SIOCGIPMSFILTER

X'C000A724'

– See the IP_MSFILTER

structure in macro

BPXYIOCC. See note 1.

0 Not used.

SIOCGMSFILTER

X'C000F610'

– See the GROUP_FILTER

structure in macro

BPXYIOCC. See note 2.

0 Not used.

SIOCSAPPLDATA

X'8018D90C'

– See the SETAPPLDATA

structure in macro

EZBYAPPL

0 Not used.

SIOCSIPMSFILTER

X'8000A725'

– See the IP_MSFILTER

structure in macro

BPXYIOCC. See note 1.

0 Not used.

SIOCSMSFILTER

X'8000F611'

– See the GROUP_FILTER

structure in macro

BPXYIOCC. See note 2.

SIOCTTLSCTLX'C038D90B' 56 For the IOCTL structure

layout, see

SEZANMAC(EZBZTLS1)

for PL/I,

SEZANMAC(EZBZTLSP)

for assembler, and

SEZANMAC(EZBZTLSB)

for COBOL

56 For the IOCTL structure layout, see

SEZANMAC(EZBZTLS1) for PL/I,

SEZANMAC(EZBZTLSP) for assembler, and

SEZANMAC(EZBZTLSB) for COBOL.

Notes:

1. The size of IP_MSFILTER structure must be equal to or greater than the size of the IMSF_Header stucture.

2. The size of GROUP_FILTER structure must be equal to or greater than the size of the GF_Header structure.

Parameter values returned to the application

RETARG

Returns an array whose size is based on the value in COMMAND. See

Table 21 for information about REQARG and RETARG.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

288 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|||||

|||||
|
|
|
|
|
|

|
|
||
|
|

||
|

|
|
||
|
||

|

|

||
|
|

||

|

|

||
|
|

||

|

|

||
|
|

||

|

|

||
|
|

||

|

|

||
|
|

||

|||
|
|
|
|
|
|
|

||
|
|
|

|
|
|
|

The COMMAND SIOGIFCONF returns a variable number of network interface

configurations. Figure 143 contains an example of a COBOL II routine that can be

used to work with such a structure.

Note: This call can only be programmed in languages that support address

pointers. Figure 143 shows a COBOL II example for SIOCGIFCONF.

LISTEN

The LISTEN call:

v Completes the bind, if BIND has not already been called for the socket.

v Creates a connection-request queue of a specified length for incoming connection

requests.

Note: The LISTEN call is not supported for datagram sockets or raw sockets.

The LISTEN call is typically used by a server to receive connection requests from

clients. When a connection request is received, a new socket is created by a

subsequent ACCEPT call, and the original socket continues to listen for additional

connection requests. The LISTEN call converts an active socket to a passive socket

and conditions it to accept connection requests from clients. After a socket becomes

passive, it cannot initiate connection requests.

Note: The BACKLOG value specified on the LISTEN command cannot be greater

than the value configured by the SOMAXCONN statement in the stack’s

TCPIP PROFILE (default=10); no error is returned if a larger backlog is

requested. If you want a larger backlog, update the SOMAXCONN

statement. See the z/OS Communications Server: IP Configuration Reference for

details.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

 WORKING-STORAGE SECTION.

 77 REQARG PIC 9(8) COMP.

 77 COUNT PIC 9(8) COMP VALUE max number of interfaces.

 LINKAGE SECTION.

 01 RETARG.

 05 IOCTL-TABLE OCCURS 1 TO max TIMES DEPENDING ON COUNT.

 10 NAME PIC X(16).

 10 FAMILY PIC 9(4) BINARY.

 10 PORT PIC 9(4) BINARY.

 10 ADDR PIC 9(8) BINARY.

 10 NULLS PIC X(8).

 PROCEDURE DIVISION.

 MULTIPLY COUNT BY 32 GIVING REQARQ.

 CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND

 REQARG RETARG ERRNO RETCODE.

Figure 143. COBOL II example for SIOCGIFCONF

Chapter 8. Sockets extended API 289

|
|
|
|
|
|

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 144 shows an example of LISTEN call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing LISTEN. The field is left-aligned and

padded to the right with blanks.

S A halfword binary number set to the socket descriptor.

BACKLOG

A fullword binary number set to the number of communication requests to

be queued.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

NTOP

NTOP converts an IP address from its numeric binary form into a standard text

presentation form. On successful completion, NTOP returns the converted IP

address in the buffer provided.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’LISTEN’.

 01 S PIC 9(4) BINARY.

 01 BACKLOG PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S BACKLOG ERRNO RETCODE.

Figure 144. LISTEN call instruction example

290 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 145 shows an example of NTOP call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing ’NTOP’. The field is left-justified and

padded on the right with blanks.

FAMILY

The addressing family for the IP address being converted. The value of

decimal 2 must be specified for AF_INET and 19 for AF_INET6.

IP-ADDRESS

A field containing the numeric binary form of the IPv4 or IPv6 address

being converted. For an IPv4 address this field must be a fullword and for

an IPv6 address this field must be 16 bytes. The address must be in

network byte order.

 WORKING-STORAGE SECTION.

 01 SOC-NTOP-FUNCTION PIC X(16) VALUE IS ’NTOP’.

 01 S PIC 9(4) BINARY.

 * IPv4 socket structure.

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 * IPv6 socket structure.

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 FLOWINFO PIC 9(8) BINARY.

 03 IP-ADDRESS.

 10 FILLER PIC 9(16) BINARY.

 10 FILLER PIC 9(16) BINARY.

 03 SCOPE-ID PIC 9(8) BINARY.

 01 NTOP-FAMILY PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 01 PRESENTABLE-ADDRESS PIC X(45).

 01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-NTOP-FUNCTION NTOP-FAMILY

 IP-ADDRESS

 PRESENTABLE-ADDRESS

 PRESENTABLE-ADDRESS-LEN

 ERRNO RETURN-CODE.

Figure 145. NTOP call instruction example

Chapter 8. Sockets extended API 291

Parameter values returned to the application

PRESENTABLE-ADDRESS

A field used to receive the standard text presentation form of the IPv4 or

IPv6 address being converted. For IPv4, the address is in dotted-decimal

format and for IPv6 the address is in colon-hexadecimal format. The size of

the IPv4 address is a maximum of 15 bytes and the size of the converted

IPv6 address is a maximum of 45 bytes. Consult the value returned in

PRESENTABLE-ADDRESS-LEN for the actual length of the value in

PRESENTABLE-ADDRESS.

PRESENTABLE-ADDRESS-LEN

Initially, an input parameter. The address of a binary halfword field (that is

used to specify the length of DSTADDR field on input and on a successful

return) contains the length of converted IP address.

ERRNO

A fullword binary field. If RETCODE is negative, ERRNO contains an error

number. See Appendix B. Return codes on page 397 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

PTON

PTON converts an IP address in its standard text presentation form to its numeric

binary form. On successful completion, PTON returns the converted IP address in

the buffer provided.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 146 on page 293 shows an example of PTON call instructions.

292 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

 WORKING-STORAGE SECTION.

 01 SOC-NTOP-FUNCTION PIC X(16) VALUE IS ’PTON’.

 01 S PIC 9(4) BINARY.

 * IPv4 socket structure.

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 * IPv6 socket structure.

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 FLOWINFO PIC 9(8) BINARY.

 03 IP-ADDRESS.

 10 FILLER PIC 9(16) BINARY.

 10 FILLER PIC 9(16) BINARY.

 03 SCOPE-ID PIC 9(8) BINARY.

 01 AF-INET PIC 9(8) BINARY VALUE 2.

 01 AF-INET6 PIC 9(8) BINARY VALUE 19.

 * IPv4 address.

 01 PRESENTABLE-ADDRESS PIC X(45).

 01 PRESENTABLE-ADDRESS-IPV4 REDEFINES PRESENTABLE-ADDRESS.

 05 PRESENTABLE-IPV4-ADDRESS PIC X(15)

 VALUE ’192.26.5.19’.

 05 FILLER PIC X(30).

 01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 11.

 * IPv6 address.

 01 PRESENTABLE-ADDRESS PIC X(45)

 VALUE ’12f9:0:0:c30:123:457:9cb:1112’.

 01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 29.

 * IPv4-mapped IPv6 address.

 01 PRESENTABLE-ADDRESS PIC X(45)

 VALUE ’12f9:0:0:c30:123:457:192.26.5.19’.

 01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 32.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 01 PRESENTABLE-ADDRESS PIC X(45).

 01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY.

 PROCEDURE DIVISION.

 * IPv4 address.

 CALL ’EZASOKET’ USING SOC-PTON-FUNCTION AF-INET

 PRESENTABLE-ADDRESS

 PRESENTABLE-ADDRESS-LEN

 IP-ADDRESS

 ERRNO RETURN-CODE.

 * IPv6 address.

 CALL ’EZASOKET’ USING SOC-PTON-FUNCTION AF-INET6

 PRESENTABLE-ADDRESS

 PRESENTABLE-ADDRESS-LEN

 IP-ADDRESS

 ERRNO RETURN-CODE.

Figure 146. PTON call instruction example

Chapter 8. Sockets extended API 293

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing ’PTON’. The field is left-justified and

padded on the right with blanks.

FAMILY

The addressing family for the IP address being converted. The value of

decimal 2 must be specified for AF_INET and 19 for AF_INET6.

PRESENTABLE-ADDRESS

A field containing the standard text presentation form of the IPv4 or IPv6

address being converted. For IPv4, the address is in dotted-decimal format

and for IPv6 the address is in colon-hexadecimal format.

PRESENTABLE-ADDRESS-LEN

An input parameter. The address of a binary halfword field that must

contain the length of IP address to be converted.

Parameter values returned to the application

IP-ADDRESS

A field containing the numeric binary form of the IPv4 or IPv6 address

being converted. For an IPv4 address this field must be a fullword and for

an IPv6 address this field must be 16 bytes. The address in network byte

order.

ERRNO

A fullword binary field. If RETCODE is negative, ERRNO contains an error

number. See Appendix B. Return codes on page 397 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

READ

The READ call reads the data on sockets. This is the conventional TCP/IP read

data operation. If a datagram packet is too long to fit in the supplied buffer,

datagram sockets discard extra bytes.

For stream sockets, data is processed as streams of information with no boundaries

separating the data. For example, if programs A and B are connected with a stream

socket and program A sends 1000 bytes, each call to this function can return any

number of bytes up to the entire 1000 bytes. The number of bytes returned is

contained in RETCODE. Therefore, programs using stream sockets should place

this call in a loop that repeats until all data has been received.

Note: See “EZACIC05” on page 352 for a subroutine that translates ASCII input

data to EBCDIC.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

294 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”

under “Environmental restrictions and programming

requirements” on page 223.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 147 shows an example of READ call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing READ. The field is left-aligned and

padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket that is

going to read the data.

NBYTE

A fullword binary number set to the size of BUF. READ does not return

more than the number of bytes of data in NBYTE even if more data is

available.

Parameter values returned to the application

BUF On input, a buffer to be filled by completion of the call. The length of BUF

must be at least as long as the value of NBYTE.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 A 0 return code indicates that the connection is closed and no data

is available.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’READ’.

 01 S PIC 9(4) BINARY.

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S NBYTE BUF

 ERRNO RETCODE.

Figure 147. READ call instruction example

Chapter 8. Sockets extended API 295

>0 A positive value indicates the number of bytes copied into the

buffer.

−1 Check ERRNO for an error code.

READV

The READV function reads data on a socket and stores it in a set of buffers. If a

datagram packet is too long to fit in the supplied buffers, datagram sockets discard

extra bytes.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 148 shows an example of READV call instructions.

 Parameter values set by the application

S A value or the address of a halfword binary number specifying the

descriptor of the socket into which the data is to be read.

 WORKING-STORAGE SECTION.

 01 SOKET-FUNCTION PIC X(16) VALUE ’READV’.

 01 S PIC 9(4) BINARY.

 01 IOVCNT PIC 9(8) BINARY.

 01 IOV.

 03 BUFFER-ENTRY OCCURS N TIMES.

 05 BUFFER-POINTER USAGE IS POINTER.

 05 RESERVED PIC X(4).

 05 BUFFER-LENGTH PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC 9(8) BINARY.

 PROCEDURE DIVISION.

 SET BUFFER-POINTER(1) TO ADDRESS OF BUFFER1.

 SET BUFFER-LENGTH(1) TO LENGTH OF BUFFER1.

 SET BUFFER-POINTER(2) TO ADDRESS OF BUFFER2.

 SET BUFFER-LENGTH(2) TO LENGTH OF BUFFER2.

 " " " " "

 " " " " "

 SET BUFFER-POINTER(n) TO ADDRESS OF BUFFERn.

 SET BUFFER-LENGTH(n) TO LENGTH OF BUFFERn.

 CALL ’EZASOKET’ USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

Figure 148. READV call instruction example

296 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

IOV An array of tripleword structures with the number of structures equal to

the value in IOVCNT and the format of the structures as follows:

Fullword 1

Pointer to the address of a data buffer, which is filled in on

completion of the call.

Fullword 2

Reserved.

Fullword 3

The length of the data buffer referenced in fullword one.

IOVCNT

A fullword binary field specifying the number of data buffers provided for

this call.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, this contains an error

number. See Appendix B. Return codes on page 397 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 A 0 return code indicates that the connection is closed and no data

is available.

>0 A positive value indicates the number of bytes copied into the

buffer.

−1 Check ERRNO for an error code.

RECV

The RECV call, like READ, receives data on a socket with descriptor S. RECV

applies only to connected sockets. If a datagram packet is too long to fit in the

supplied buffers, datagram sockets discard extra bytes.

For additional control of the incoming data, RECV can:

v Peek at the incoming message without having it removed from the buffer.

v Read out-of-band data.

For stream sockets, data is processed as streams of information with no boundaries

separating the data. For example, if programs A and B are connected with a stream

socket and program A sends 1000 bytes, each call to this function can return any

number of bytes up to the entire 1000 bytes. The number of bytes returned are

contained in RETCODE. Therefore, programs using stream sockets should place

RECV in a loop that repeats until all data has been received.

If data is not available for the socket, and the socket is in blocking mode, RECV

blocks the caller until data arrives. If data is not available and the socket is in

nonblocking mode, RECV returns a −1 and sets ERRNO to 35 (EWOULDBLOCK).

See “FCNTL” on page 236 or “IOCTL” on page 278 for a description of how to set

nonblocking mode.

For raw sockets, RECV adds a 20-byte header.

Chapter 8. Sockets extended API 297

Note: See “EZACIC05” on page 352 for a subroutine that translates ASCII input

data to EBCDIC.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 149 shows an example of RECV call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing RECV. The field is left-aligned and

padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to

receive the data.

FLAGS

A fullword binary field with values as follows:

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’RECV’.

 01 S PIC 9(4) BINARY.

 01 FLAGS PIC 9(8) BINARY.

 01 NO-FLAG PIC 9(8) BINARY VALUE IS 0.

 01 OOB PIC 9(8) BINARY VALUE IS 1.

 01 PEEK PIC 9(8) BINARY VALUE IS 2.

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS NBYTE BUF

 ERRNO RETCODE.

Figure 149. RECV call instruction example

298 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Literal value Binary value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data (stream sockets

only). Even if the OOB flag is not set,

out-of-band data can be read if the

SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If

the peek flag is set, the next RECV call reads

the same data.

NBYTE

A value or the address of a fullword binary number set to the size of BUF.

RECV does not receive more than the number of bytes of data in NBYTE

even if more data is available.

Parameter values returned to the application

BUF The input buffer to receive the data.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 The socket is closed

>0 A positive return code indicates the number of bytes copied into

the buffer.

−1 Check ERRNO for an error code

RECVFROM

The RECVFROM call receives data on a socket with descriptor S and stores it in a

buffer. The RECVFROM call applies to both connected and unconnected sockets.

The IPv4 or IPv6 socket address is returned in the NAME structure. If a datagram

packet is too long to fit in the supplied buffers, datagram sockets discard extra

bytes.

For datagram protocols, the RECVFROM call returns the source address associated

with each incoming datagram. For connection-oriented protocols like TCP, the

GETPEERNAME call returns the address associated with the other end of the

connection.

On return, NBYTE contains the number of data bytes received.

For stream sockets, data is processed as streams of information with no boundaries

separating the data. For example, if programs A and B are connected with a stream

socket and program A sends 1000 bytes, each call to this function can return any

number of bytes, up to the entire 1000 bytes. The number of bytes returned are

contained in RETCODE. Therefore, programs using stream sockets should place

RECVFROM in a loop that repeats until all data has been received.

For raw sockets, RECVFROM adds a 20-byte header.

Chapter 8. Sockets extended API 299

If data is not available for the socket, and the socket is in blocking mode,

RECVFROM blocks the caller until data arrives. If data is not available and the

socket is in nonblocking mode, RECVFROM returns a −1 and sets ERRNO to 35

(EWOULDBLOCK). See “FCNTL” on page 236 or “IOCTL” on page 278 for a

description of how to set nonblocking mode.

Note: See “EZACIC05” on page 352 for a subroutine that translates ASCII input

data to EBCDIC.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 150 on page 301 shows an example of RECVFROM call instructions.

300 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing RECVFROM. The field is left-aligned

and padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to

receive the data.

FLAGS

A fullword binary field containing flag values as follows:

 Literal value Binary value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data (stream sockets

only). Even if the OOB flag is not set,

out-of-band data can be read if the

SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If

the peek flag is set, the next RECVFROM

call reads the same data.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’RECVFROM’.

 01 S PIC 9(4) BINARY.

 01 FLAGS PIC 9(8) BINARY.

 01 NO-FLAG PIC 9(8) BINARY VALUE IS 0.

 01 OOB PIC 9(8) BINARY VALUE IS 1.

 01 PEEK PIC 9(8) BINARY VALUE IS 2.

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 *

 * IPv4 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 *

 * IPv6 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 FLOW-INFO PIC 9(8) BINARY.

 03 IP-ADDRESS.

 05 FILLER PIC 9(16) BINARY.

 05 FILLER PIC 9(16) BINARY.

 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS

 NBYTE BUF NAME ERRNO RETCODE.

Figure 150. RECVFROM call instruction example

Chapter 8. Sockets extended API 301

NBYTE

A fullword binary number specifying the length of the input buffer.

Parameter values returned to the application

BUF Defines an input buffer to receive the input data.

NAME

 An IPv4 socket structure containing the address of the socket that sent the

data. The structure is:

FAMILY

A halfword binary number specifying the addressing family. The

value is a decimal 2, indicating AF_INET.

PORT A halfword binary number specifying the port number of the

sending socket.

IP-ADDRESS

A fullword binary number specifying the 32-bit IPv4 Internet

address of the sending socket.

RESERVED

An 8-byte reserved field. This field is required, but is not used.

 An IPv6 socket structure containing the address of the socket that sent the

data. The structure is:

FAMILY

A halfword binary number specifying the addressing family. The

value is a decimal 19, indicating AF_INET6.

PORT A halfword binary number specifying the port number of the

sending socket.

FLOW-INFO

A fullword binary field specifying the traffic class and flow label.

The value of this field is undefined.

IP-ADDRESS

A 16-byte binary number specifying the 128-bit IPv6 Internet

address of the sending socket.

SCOPE-ID

A fullword binary field that identifies a set of interfaces as

appropriate for the scope of the address carried in the

IP-ADDRESS field. For a link scope IP-ADDRESS, SCOPE-ID

contains the link index for the IP-ADDRESS. For all other address

scopes, SCOPE-ID is undefined.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 The socket is closed.

>0 A positive return code indicates the number of bytes of data

transferred by the read call.

−1 Check ERRNO for an error code.

302 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

RECVMSG

The RECVMSG call receives messages on a socket with descriptor S and stores

them in an array of message headers. If a datagram packet is too long to fit in the

supplied buffers, datagram sockets discard extra bytes.

For datagram protocols, the RECVMSG call returns the source address associated

with each incoming datagram. For connection-oriented protocols like TCP, the

GETPEERNAME call returns the address associated with the other end of the

connection.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 151 on page 304 shows an example of RECVMSG call instructions.

Chapter 8. Sockets extended API 303

WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’RECVMSG’.

 01 S PIC 9(4) BINARY.

 01 MSG.

 03 NAME USAGE IS POINTER.

 03 NAME-LEN USAGE IS POINTER.

 03 IOV USAGE IS POINTER.

 03 IOVCNT USAGE IS POINTER.

 03 ACCRIGHTS USAGE IS POINTER.

 03 ACCRLEN USAGE IS POINTER.

 01 FLAGS PIC 9(8) BINARY.

 01 NO-FLAG PIC 9(8) BINARY VALUE IS 0.

 01 OOB PIC 9(8) BINARY VALUE IS 1.

 01 PEEK PIC 9(8) BINARY VALUE IS 2.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 LINKAGE SECTION.

 01 L1.

 03 RECVMSG-IOVECTOR.

 05 IOV1A USAGE IS POINTER.

 05 IOV1AL PIC 9(8) COMP.

 05 IOV1L PIC 9(8) COMP.

 05 IOV2A USAGE IS POINTER.

 05 IOV2AL PIC 9(8) COMP.

 05 IOV2L PIC 9(8) COMP.

 05 IOV3A USAGE IS POINTER.

 05 IOV3AL PIC 9(8) COMP.

 05 IOV3L PIC 9(8) COMP.

 03 RECVMSG-BUFFER1 PIC X(16).

 03 RECVMSG-BUFFER2 PIC X(16).

 03 RECVMSG-BUFFER3 PIC X(16).

 03 RECVMSG-BUFNO PIC 9(8) COMP.

 *

 * IPv4 Socket Address Structure.

 *

 03 RECVMSG-NAME.

 05 FAMILY PIC 9(4) BINARY.

 05 PORT PIC 9(4) BINARY.

 05 IP-ADDRESS PIC 9(8) BINARY.

 05 RESERVED PIC X(8).

 *

 * IPv6 Socket Address Structure.

 *

 03 RECVMSG-NAME.

 05 FAMILY PIC 9(4) BINARY.

 05 PORT PIC 9(4) BINARY.

 05 FLOW-INFO PIC 9(8) BINARY.

 05 IP-ADDRESS.

 10 FILLER PIC 9(16) BINARY.

 10 FILLER PIC 9(16) BINARY.

 05 SCOPE-ID PIC 9(8) BINARY.

Figure 151. RECVMSG call instruction example (Part 1 of 2)

304 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

S A value or the address of a halfword binary number specifying the socket

descriptor.

MSG On input, a pointer to a message header into which the message is

received upon completion of the call.

Field Description

NAME

On input, a pointer to a buffer where the sender address is stored

upon completion of the call. The storage being pointed to should

be for an IPv4 socket address or an IPv6 socket address.

 The IPv4 socket address structure contains the following fields:

Field Description

FAMILY Output parameter. A halfword binary number

specifying the IPv4 addressing family. The value

for IPv4 socket descriptor (for example, S

parameter) is a decimal 2, indicating AF_INET.

PORT Output parameter. A halfword binary number

specifying the port number of the sending socket.

IP-ADDRESS

Output parameter. A fullword binary number

specifying the 32-bit IPv4 Internet address of the

sending socket.

RESERVED Output parameter. An eight-byte reserved field.

This field is required, but is not used.

 The IPv6 socket address structure contains the following fields:

PROCEDURE DIVISION USING L1.

 SET NAME TO ADDRESS OF RECVMSG-NAME.

 MOVE LENGTH OF RECVMSG-NAME TO NAME-LEN.

 SET IOV TO ADDRESS OF RECVMSG-IOVECTOR.

 MOVE 3 TO RECVMSG-BUFNO.

 SET IOVCNT TO ADDRESS OF RECVMSG-BUFNO.

 SET IOV1A TO ADDRESS OF RECVMSG-BUFFER1.

 MOVE 0 TO MSG-IOV1AL.

 MOVE LENGTH OF RECVMSG-BUFFER1 TO IOV1L.

 SET IOV2A TO ADDRESS OF RECVMSG-BUFFER2.

 MOVE 0 TO IOV2AL.

 MOVE LENGTH OF RECVMSG-BUFFER2 TO IOV2L.

 SET IOV3A TO ADDRESS OF RECVMSG-BUFFER3.

 MOVE 0 TO IOV3AL.

 MOVE LENGTH OF RECVMSG-BUFFER3 TO IOV3L.

 SET ACCRIGHTS TO NULLS.

 SET ACCRLEN TO NULLS.

 MOVE 0 TO FLAGS.

 MOVE SPACES TO RECVMSG-BUFFER1.

 MOVE SPACES TO RECVMSG-BUFFER2.

 MOVE SPACES TO RECVMSG-BUFFER3.

 CALL ’EZASOKET’ USING SOC-FUNCTION S MSG FLAGS ERRNO RETCODE.

Figure 151. RECVMSG call instruction example (Part 2 of 2)

Chapter 8. Sockets extended API 305

Field Description

FAMILY Output parameter. A halfword binary field

specifying the IPv6 addressing family. The value

for IPv6 socket descriptor (for example, S

parameter) is a decimal 19, indicating AF_INET6.

PORT Output parameter. A halfword binary number

specifying the port number of the sending socket.

FLOW-INFO Output parameter. A fullword binary field

specifying the traffic class and flow label. The

value of this field is undefined.

IP-ADDRESS

Output parameter. A two doubleword, 16-byte

binary field specifying the 128-bit IPv6 Internet

address, in network byte order, of the sending

socket.

SCOPE-ID A fullword binary field which identifies a set of

interfaces as appropriate for the scope of the

address carried in the IP-ADDRESS field. For a link

scope IP-ADDRESS, SCOPE-ID contains the link

index for the IP-ADDRESS. For all other address

scopes, SCOPE-ID is undefined.

NAME-LEN

On input, a pointer to the size of the NAME buffer that is filled in

on completion of the call.

IOV On input, a pointer to an array of tripleword structures with the

number of structures equal to the value in IOVCNT and the format

of the structures as follows:

Fullword 1

A pointer to the address of a data buffer. The data buffer

must be in the home address space.

Fullword 2

Reserved. This storage is cleared.

Fullword 3

A pointer to the length of the data buffer referenced in

fullword 1.

In COBOL, the IOV structure must be defined separately in the

Linkage portion, as shown in the example.

IOVCNT

On input, a pointer to a fullword binary field specifying the

number of data buffers provided for this call.

ACCRIGHTS

On input, a pointer to the access rights received. This field is

ignored.

ACCRLEN

On input, a pointer to the length of the access rights received. This

field is ignored.

FLAGS

A fullword binary field with values as follows:

306 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Literal value Binary value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data (stream sockets

only). Even if the OOB flag is not set,

out-of-band data can be read if the

SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If

the peek flag is set, the next RECVMSG call

reads the same data.

Parameter values returned by the application

ERRNO

A fullword binary field. If RETCODE is negative, this contains an error

number. See Appendix B. Return codes on page 397 for information about

ERRNO return codes.

RETCODE

A fullword binary field with the following values:

Value Description

<0 Call returned error. See ERRNO field.

0 Connection partner has closed connection.

>0 Number of bytes read.

SELECT

In a process where multiple I/O operations can occur, it is necessary for the

program to be able to wait on one or several of the operations to complete.

For example, consider a program that issues a READ to multiple sockets whose

blocking mode is set. Because the socket would block on a READ call, only one

socket could be read at a time. Setting the sockets nonblocking would solve this

problem, but would require polling each socket repeatedly until data became

available. The SELECT call allows you to test several sockets and to execute a

subsequent I/O call only when one of the tested sockets is ready, thereby ensuring

that the I/O call does not block.

To use the SELECT call as a timer in your program, do one of the following:

v Set the read, write, and except arrays to zeros.

v Specify MAXSOC <= 0.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Chapter 8. Sockets extended API 307

Defining which sockets to test

The SELECT call monitors for read operations, write operations, and exception

operations:

v When a socket is ready to read, one of the following has occurred:

– A buffer for the specified sockets contains input data. If input data is

available for a given socket, a read operation on that socket does not block.

– A connection has been requested on that socket.
v When a socket is ready to write, TCP/IP stacks can accommodate additional

output data. If TCP/IP stacks can accept additional output for a given socket, a

write operation on that socket does not block.

v When an exception condition has occurred on a specified socket it is an

indication that a TAKESOCKET has occurred for that socket.

Each socket descriptor is represented by a bit in a bit string. The bit strings are

contained in 32-bit fullwords, numbered from right to left. The rightmost bit of the

first fullword represents socket descriptor 0 and the leftmost bit of the first

fullword represents socket descriptor 31. If your process uses 32 or fewer sockets,

the bit string is one fullword. If your process uses 33 sockets, the bit string is two

fullwords. The rightmost bit of the second fullword represents socket descriptor 32,

and the leftmost bit of the second fullword represents socket descriptor 63. This

pattern repeats itself for each subsequent fullword. That is, the leftmost bit of

fullword n represents socket 32n-1 and the rightmost bit represents socket 32(n-1).

You define the sockets that you want to test by turning on bits in the string.

Although the bits in the fullwords are numbered from right to left, the fullwords

are numbered from left to right with the leftmost fullword representing socket

descriptor 0–31. For example:

First fullword Second fullword Third fullword

socket descriptor 31...0 socket descriptor 63...32 socket descriptor 95...64

Note: To simplify string processing in COBOL, you can use the program

EZACIC06 to convert each bit in the string to a character. For more

information, see “EZACIC06” on page 354.

Read operations

Read operations include ACCEPT, READ, READV, RECV, RECVFROM, or

RECVMSG calls. A socket is ready to be read when data has been received for it,

or when a connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits

in RSNDMSK to one before issuing the SELECT call. When the SELECT call

returns, the corresponding bits in the RRETMSK indicate sockets ready for reading.

Write operations

A socket is selected for writing (ready to be written) when:

v TCP/IP stacks can accept additional outgoing data.

v The socket is marked nonblocking and a previous CONNECT did not complete

immediately. In this case, CONNECT returned an ERRNO with a value of 36

(EINPROGRESS). This socket is selected for write when the CONNECT

completes.

A call to SEND, SENDTO, WRITE, or WRITEV blocks when the amount of data to

be sent exceeds the amount of data TCP/IP stacks can accept. To avoid this, you

308 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

can precede the write operation with a SELECT call to ensure that the socket is

ready for writing. After a socket is selected for WRITE, the program can determine

the amount of TCP/IP stacks buffer space available by issuing the GETSOCKOPT

call with the SO-SNDBUF option.

To test whether any of several sockets is ready for writing, set the WSNDMSK bits

representing those sockets to one before issuing the SELECT call. When the

SELECT call returns, the corresponding bits in the WRETMSK indicate sockets

ready for writing.

Exception operations

For each socket to be tested, the SELECT call can check for an existing exception

condition. Two exception conditions are supported:

v The calling program (concurrent server) has issued a GIVESOCKET command

and the target child server has successfully issued the TAKESOCKET call. When

this condition is selected, the calling program (concurrent server) should issue

CLOSE to dissociate itself from the socket.

v A socket has received out-of-band data. On this condition, a READ returns the

out-of-band data ahead of program data.

To test whether any of several sockets have an exception condition, set the

ESNDMSK bits representing those sockets to one. When the SELECT call returns,

the corresponding bits in the ERETMSK indicate sockets with exception conditions.

MAXSOC parameter

The SELECT call must test each bit in each string before the call returns any

results. For efficiency, the MAXSOC parameter can be used to specify the largest

socket descriptor number that needs to be tested for any event type. The SELECT

call tests only bits in the range 0 up to the MAXSOC value minus 1. For example,

if the MAXSOC parameter is set to 50, the range is 0-49.

TIMEOUT parameter

If the time specified in the TIMEOUT parameter elapses before any event is

detected, the SELECT call returns and RETCODE is set to 0.

Figure 152 on page 310 shows an example of SELECT call instructions.

Chapter 8. Sockets extended API 309

|
|
|
|
|
|

Bit masks are 32-bit fullwords with one bit for each socket. Up to 32 sockets fit into

one 32-bit mask [PIC X(4)]. If you have 33 sockets, you must allocate two 32-bit

masks [PIC X(8)].

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing SELECT. The field is left-aligned and

padded on the right with blanks.

MAXSOC

A fullword binary field specifying the largest socket descriptor number

that is being checked.

 Guideline: For the INITAPI call, the MAXSOC field is a halfword binary

field. Therefore, do not reuse this field for the SELECT and INITAPI calls.

TIMEOUT

If TIMEOUT is a positive value, it specifies the maximum interval to wait

for the selection to complete. If TIMEOUT-SECONDS is a negative value,

the SELECT call blocks until a socket becomes ready or an ECB in a list is

posted. To poll the sockets and return immediately, specify the TIMEOUT

value to be 0.

 TIMEOUT is specified in the two-word TIMEOUT as follows:

v TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds

component of the timeout value.

v TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the

microseconds component of the timeout value (0—999999).

 For example, if you want SELECT to timeout after 3.5 seconds, set

TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SELECT’.

 01 MAXSOC PIC 9(8) BINARY.

 01 TIMEOUT.

 03 TIMEOUT-SECONDS PIC 9(8) BINARY.

 03 TIMEOUT-MICROSEC PIC 9(8) BINARY.

 01 RSNDMSK PIC X(*).

 01 WSNDMSK PIC X(*).

 01 ESNDMSK PIC X(*).

 01 RRETMSK PIC X(*).

 01 WRETMSK PIC X(*).

 01 ERETMSK PIC X(*).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC TIMEOUT

 RSNDMSK WSNDMSK ESNDMSK

 RRETMSK WRETMSK ERETMSK

 ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:

((maximum socket number +32)/32 (drop the remainder))*4

Figure 152. SELECT call instruction example

310 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|

|
|

|
|

RSNDMSK

A bit string sent to request read event status.

v For each socket to be checked for pending read events, the

corresponding bit in the string should be set to 1.

v For sockets to be ignored, the value of the corresponding bit should be

set to 0.

If this parameter is set to all zeros, the SELECT does not check for read

events.

WSNDMSK

A bit string sent to request write event status.

v For each socket to be checked for pending write events, the

corresponding bit in the string should be set to set.

v For sockets to be ignored, the value of the corresponding bit should be

set to 0.

If this parameter is set to all zeros, the SELECT does not check for write

events.

ESNDMSK

A bit string sent to request exception event status.

v For each socket to be checked for pending exception events, the

corresponding bit in the string should be set to set.

v For each socket to be ignored, the corresponding bit should be set to 0.

If this parameter is set to all zeros, the SELECT does not check for

exception events.

Parameter values returned to the application

RRETMSK

A bit string returned with the status of read events. The length of the

string should be equal to the maximum number of sockets to be checked.

For each socket that is ready to read, the corresponding bit in the string is

set to 1; bits that represent sockets that are not ready to read are set to 0.

WRETMSK

A bit string returned with the status of write events. The length of the

string should be equal to the maximum number of sockets to be checked.

For each socket that is ready to write, the corresponding bit in the string is

set to 1; bits that represent sockets that are not ready to be written are set

to 0.

ERETMSK

A bit string returned with the status of exception events. The length of the

string should be equal to the maximum number of sockets to be checked.

For each socket that has an exception status, the corresponding bit is set to

1; bits that represent sockets that do not have exception status are set to 0.

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

>0 Indicates the sum of all ready sockets in the three masks

Chapter 8. Sockets extended API 311

0 Indicates that the SELECT time limit has expired

−1 Check ERRNO for an error code

SELECTEX

The SELECTEX call monitors a set of sockets, a time value and an ECB or list of

ECBs. It completes when either one of the sockets has activity, the time value

expires, or one of the ECBs is posted.

To use the SELECTEX call as a timer in your program, do either of the following:

v Set the read, write, and except arrays to zeros

v Specify MAXSOC <= 0

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Defining which sockets to test

The SELECTEX call monitors for read operations, write operations, and exception

operations:

v When a socket is ready to read, one of the following has occurred:

– A buffer for the specified sockets contains input data. If input data is

available for a given socket, a read operation on that socket does not block.

– A connection has been requested on that socket.
v When a socket is ready to write, TCP/IP stacks can accommodate additional

output data. If TCP/IP stacks can accept additional output for a given socket, a

write operation on that socket does not block.

v When an exception condition has occurred on a specified socket it is an

indication that a TAKESOCKET has occurred for that socket.

Each socket descriptor is represented by a bit in a bit string. The bit strings are

contained in 32-bit fullwords, numbered from right to left. The rightmost bit of the

first fullword represents socket descriptor 0 and the leftmost bit of the first

fullword represents socket descriptor 31. If your process uses 32 or fewer sockets,

the bit string is one fullword. If your process uses 33 sockets, the bit string is two

fullwords. The rightmost bit of the second fullword represents socket descriptor 32,

and the leftmost bit of the second fullword represents socket descriptor 63. This

pattern repeats itself for each subsequent fullword. That is, the leftmost bit of

fullword n represents socket 32n-1 and the rightmost bit represents socket 32(n-1).

You define the sockets that you want to test by turning on bits in the string.

Although the bits in the fullwords are numbered from right to left, the fullwords

are numbered from left to right with the leftmost fullword representing socket

descriptor 0-31. For example:

312 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

First fullword Second fullword Third fullword

socket descriptor 31...0 socket descriptor 63...32 socket descriptor 95...64

Note: To simplify string processing in COBOL, you can use the program

EZACIC06 to convert each bit in the string to a character. For more

information, see the EZACIC06 topic.

Read operations

Read operations include ACCEPT, READ, READV, RECV, RECVFROM, or

RECVMSG calls. A socket is ready to be read when data has been received for it,

or when a connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits

in RSNDMSK to one before issuing the SELECTEX call. When the SELECTEX call

returns, the corresponding bits in the RRETMSK indicate sockets ready for reading.

Write operations

A socket is selected for writing (ready to be written) when:

v TCP/IP stacks can accept additional outgoing data.

v The socket is marked nonblocking and a previous CONNECT did not complete

immediately. In this case, CONNECT returned an ERRNO with a value of 36

(EINPROGRESS). This socket is selected for write when the CONNECT

completes.

A call to SEND, SENDTO, WRITE, or WRITEV blocks when the amount of data to

be sent exceeds the amount of data TCP/IP stacks can accept. To avoid this, you

can precede the write operation with a SELECTEX call to ensure that the socket is

ready for writing. After a socket is selected for WRITE, the program can determine

the amount of TCP/IP stacks buffer space available by issuing the GETSOCKOPT

call with the SO-SNDBUF option.

To test whether any of several sockets is ready for writing, set the WSNDMSK bits

representing those sockets to one before issuing the SELECTEX call. When the

SELECTEX call returns, the corresponding bits in the WRETMSK indicate sockets

ready for writing.

Exception operations

For each socket to be tested, the SELECTEX call can check for an existing exception

condition. Two exception conditions are supported:

v The calling program (concurrent server) has issued a GIVESOCKET command

and the target child server has successfully issued the TAKESOCKET call. When

this condition is selected, the calling program (concurrent server) should issue

CLOSE to dissociate itself from the socket.

v A socket has received out-of-band data. On this condition, a READ returns the

out-of-band data ahead of program data.

To test whether any of several sockets have an exception condition, set the

ESNDMSK bits representing those sockets to one. When the SELECTEX call

returns, the corresponding bits in the ERETMSK indicate sockets with exception

conditions.

MAXSOC parameter

The SELECTEX call must test each bit in each string before the returns any results.

For efficiency, the MAXSOC parameter can be used to specify the largest socket

Chapter 8. Sockets extended API 313

|
|
|

descriptor number that needs to be tested for any event type. The SELECTEX call

tests only bits in the range 0 up to the MAXSOC value minus 1. For example, if

MAXSOC is set to 50, the range is 0-49.

TIMEOUT parameter

If the time specified in the TIMEOUT parameter elapses before any event is

detected, the SELECTEX call returns and RETCODE is set to 0.

 Figure 153 on page 315 shows an example of SELECTEX call instructions.

314 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|

If an application intends to pass a single ECB on the SELECTEX call, then the corresponding

working storage definitions and CALL instruction should be coded as follows:

WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SELECTEX’.

 01 MAXSOC PIC 9(8) BINARY.

 01 TIMEOUT.

 03 TIMEOUT-SECONDS PIC 9(8) BINARY.

 03 TIMEOUT-MINUTES PIC 9(8) BINARY.

 01 RSNDMSK PIC X(*).

 01 WSNDMSK PIC X(*).

 01 ESNDMSK PIC X(*).

 01 RRETMSK PIC X(*).

 01 WRETMSK PIC X(*).

 01 ERETMSK PIC X(*).

 01 SELECB PIC X(4).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

Where * is the size of the select mask

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC TIMEOUT

 RSNDMSK WSNDMSK ESNDMSK

 RRETMSK WRETMSK ERETMSK

 SELECB ERRNO RETCODE.

Where * is the size of the select mask.

PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC TIMEOUT

 RSNDMSK WSNDMSK ESNDMSK

 RRETMSK WRETMSK ERETMSK

 SELECB ERRNO RETCODE.

However, if the application intends to pass the address of an ECB list on the SELECTEX

call, then the application must set the high-order bit in the ECB list address and pass that

address using the BY VALUE option as in the following example. The remaining parameters

must be reset to the default value by specifying BY REFERENCE before the ERRNO value:

WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SELECTEX’.

 01 MAXSOC PIC 9(8) BINARY.

 01 TIMEOUT.

 03 TIMEOUT-SECONDS PIC 9(8) BINARY.

 03 TIMEOUT-MINUTES PIC 9(8) BINARY.

 01 RSNDMSK PIC X(*).

 01 WSNDMSK PIC X(*).

 01 ESNDMSK PIC X(*).

 01 RRETMSK PIC X(*).

 01 WRETMSK PIC X(*).

 01 ERETMSK PIC X(*).

 01 ECBLIST-PTR USAGE IS POINTER.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

An asterisk (*) represents the size of the select mask.

PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC TIMEOUT

 RSNDMSK WSNDMSK ESNDMSK

 RRETMSK WRETMSK ERETMSK

 BY VALUE ECBLIST-PTR

 BY REFERENCE ERRNO RETCODE.

Figure 153. SELECTEX call instruction example

Chapter 8. Sockets extended API 315

Parameter values set by the application

MAXSOC

Input parameter. A fullword binary field specifying the largest socket

descriptor number that is being checked.

TIMEOUT

If TIMEOUT is a positive value, it specifies a maximum interval to wait for

the selection to complete. If TIMEOUT-SECONDS is a negative value, the

SELECT call blocks until a socket becomes ready. To poll the sockets and

return immediately, set TIMEOUT to be zeros.

 TIMEOUT is specified in the two-word TIMEOUT as follows:

v TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds

component of the timeout value.

v TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the

microseconds component of the timeout value (0—999999).

 For example, if you want SELECTEX to timeout after 3.5 seconds, set

TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK

The bit-mask array to control checking for read interrupts. If this

parameter is not specified or the specified bit-mask is zeros, the SELECT

does not check for read interrupts. The length of this bit-mask array is

dependent on the value in MAXSOC.

WSNDMSK

The bit-mask array to control checking for write interrupts. If this

parameter is not specified or the specified bit-mask is zeros, the SELECT

does not check for write interrupts. The length of this bit-mask array is

dependent on the value in MAXSOC.

ESNDMSK

The bit-mask array to control checking for exception interrupts. If this

parameter is not specified or the specified bit-mask is zeros, the SELECT

does not check for exception interrupts. The length of this bit-mask array is

dependent on the value in MAXSOC.

SELECB

An ECB which, if posted, causes completion of the SELECTEX.

 If the application intends to pass the address of an ECB list on the

SELECTEX call, then the application must set the high order bit in the ECB

list address and pass that address using the ″BY VALUE″ option as

documented in the following example. The remaining parameters must be

set back to the default by specifying ″BY REFERENCE″ before ERRNO:

WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SELECTEX’.

 01 MAXSOC PIC 9(8) BINARY.

 01 TIMEOUT.

 03 TIMEOUT-SECONDS PIC 9(8) BINARY.

 03 TIMEOUT-MINUTES PIC 9(8) BINARY.

 01 RSNDMSK PIC X(*).

 01 WSNDMSK PIC X(*).

 01 ESNDMSK PIC X(*).

 01 RRETMSK PIC X(*).

 01 WRETMSK PIC X(*).

 01 ERETMSK PIC X(*).

 01 ECBLIST-PTR USAGE IS POINTER.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

316 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|

Where * is the size of the select mask

PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC TIMEOUT

 RSNDMSK WSNDMSK ESNDMSK

 RRETMSK WRETMSK ERETMSK

 BY VALUE ECBLIST-PTR

 BY REFERENCE ERRNO RETCODE.

Notes:

1. The maximum number of ECBs that can be specified in a list is 63

2. Perform an MVS POST (not a CICS POST) to post the ECB.

Parameter values returned by the application

ERRNO

A fullword binary field; if RETCODE is negative, this contains an error

number. See Appendix B. Return codes on page 397 for information about

ERRNO return codes.

RETCODE

A fullword binary field

Value Meaning

>0 The number of ready sockets.

0 Either the SELECTEX time limit has expired (ECB value is 0) or

one of the caller’s ECBs has been posted (ECB value is nonzero

and the caller’s descriptor sets are set to 0). The caller must

initialize the ECB values to 0 before issuing the SELECTEX call.

-1 Error; check ERRNO.

RRETMSK

The bit-mask array returned by the SELECT if RSNDMSK is specified. The

length of this bit-mask array is dependent on the value in MAXSOC.

WRETMSK

The bit-mask array returned by the SELECT if WSNDMSK is specified. The

length of this bit-mask array is dependent on the value in MAXSOC.

ERETMSK

The bit-mask array returned by the SELECT if ESNDMSK is specified. The

length of this bit-mask array is dependent on the value in MAXSOC.

Note: See EZACIC06 for information about bits mask conversion.

Note: See Appendix E, “Sample programs,” on page 463 for sample programs.

SEND

The SEND call sends data on a specified connected socket.

The FLAGS field allows you to:

v Send out-of-band data, for example, interrupts, aborts, and data marked urgent.

Only stream sockets created in the AF_INET or AF_INET6 address family

support out-of-band data.

v Suppress use of local routing tables. This implies that the caller takes control of

routing and writing network software.

Chapter 8. Sockets extended API 317

|

|

For datagram sockets, SEND transmits the entire datagram if it fits into the

receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries

separating the data. For example, if a program is required to send 1000 bytes, each

call to this function can send any number of bytes, up to the entire 1000 bytes,

with the number of bytes sent returned in RETCODE. Therefore, programs using

stream sockets should place this call in a loop, reissuing the call until all data has

been sent.

Note: See “EZACIC04” on page 350 for a subroutine that translates EBCDIC input

data to ASCII.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 154 shows an example of SEND call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing SEND. The field is left-aligned and

padded on the right with blanks.

S A halfword binary number specifying the socket descriptor of the socket

that is sending data.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SEND’.

 01 S PIC 9(4) BINARY.

 01 FLAGS PIC 9(8) BINARY.

 01 NO-FLAG PIC 9(8) BINARY VALUE IS 0.

 01 OOB PIC 9(8) BINARY VALUE IS 1.

 01 DONT-ROUTE PIC 9(8) BINARY VALUE IS 4.

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS NBYTE

 BUF ERRNO RETCODE.

Figure 154. SEND call instruction example

318 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

FLAGS

A fullword binary field with values as follows:

 Literal value Binary value Description

NO-FLAG 0 No flag is set. The command behaves like a

WRITE call.

OOB 1 Send out-of-band data (stream sockets only).

Even if the OOB flag is not set, out-of-band

data can be read if the SO-OOBINLINE

option is set for the socket.

DONT-ROUTE 4 Do not route. Routing is provided by the

calling program.

NBYTE

A fullword binary number set to the number of bytes of data to be

transferred.

BUF The buffer containing the data to be transmitted. BUF should be the size

specified in NBYTE.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. The value is set to the number of bytes

transmitted.

−1 Check ERRNO for an error code

SENDMSG

The SENDMSG call sends messages on a socket with descriptor S passed in an

array of messages.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 155 on page 320 shows an example of SENDMSG call instructions.

Chapter 8. Sockets extended API 319

WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SENDMSG’.

 01 S PIC 9(4) BINARY.

 01 MSG.

 03 NAME USAGE IS POINTER.

 03 NAME-LEN USAGE IS POINTER.

 03 IOV USAGE IS POINTER.

 03 IOVCNT USAGE IS POINTER.

 03 ACCRIGHTS USAGE IS POINTER.

 03 ACCRLEN USAGE IS POINTER.

 01 FLAGS PIC 9(8) BINARY.

 01 NO-FLAG PIC 9(8) BINARY VALUE IS 0.

 01 OOB PIC 9(8) BINARY VALUE IS 1.

 01 DONTROUTE PIC 9(8) BINARY VALUE IS 4.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 01 SENDMSG-IPV4ADDR PIC 9(8) BINARY.

 01 SENDMSG-IPV6ADDR.

 03 FILLER PIC 9(16) BINARY.

 03 FILLER PIC 9(16) BINARY.

 LINKAGE SECTION.

 01 L1

 03 SENDMSG-IOVECTOR.

 05 IOV1A USAGE IS POINTER.

 05 IOV1AL PIC 9(8) COMP.

 05 IOV1L PIC 9(8) COMP.

 05 IOV2A USAGE IS POINTER.

 05 IOV2AL PIC 9(8) COMP.

 05 IOV2L PIC 9(8) COMP.

 05 IOV3A USAGE IS POINTER.

 05 IOV3AL PIC 9(8) COMP.

 05 IOV3L PIC 9(8) COMP.

 *

 * IPv4 Socket Address Structure.

 *

 03 SENDMSG-NAME.

 05 FAMILY PIC 9(4) BINARY.

 05 PORT PIC 9(4) BINARY.

 05 IP-ADDRESS PIC 9(8) BINARY.

 05 RESERVED PIC X(8).

 *

 * IPv6 Socket Address Structure.

 *

 03 SENDMSG-NAME.

 05 FAMILY PIC 9(4) BINARY.

 05 PORT PIC 9(4) BINARY.

 05 FLOW-INFO PIC 9(8) BINARY.

 05 IP-ADDRESS.

 10 FILLER PIC 9(16) BINARY.

 10 FILLER PIC 9(16) BINARY.

 05 SCOPE-ID PIC 9(8) BINARY.

 03 SENDMSG-BUFFER1 PIC X(16).

 03 SENDMSG-BUFFER2 PIC X(16).

 03 SENDMSG-BUFFER3 PIC X(16).

 03 SENDMSG-BUFNO PIC 9(8) COMP.

Figure 155. SENDMSG call instruction example (Part 1 of 2)

320 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

S A value or the address of a halfword binary number specifying the socket

descriptor.

MSG A pointer to an array of message headers from which messages are sent.

Field Description

NAME

On input, a pointer to a buffer where the sender’s address is stored

upon completion of the call. The storage being pointed to should

be for an IPv4 socket address or an IPv6 socket address.

 The IPv4 socket address structure contains the following fields:

Field Description

FAMILY A halfword binary number specifying the IPv4

addressing family. The value for IPv4 socket

descriptor (that is, S parameter) is a decimal 2,

indicating AF_INET.

PORT A halfword binary number specifying the port

number of the sending socket.

 PROCEDURE DIVISION USING L1.

 * For IPv6

 MOVE 19 TO FAMILY.

 MOVE 1234 TO PORT.

 MOVE 0 TO FLOW-INFO.

 MOVE SENDMSG-IPV6ADDR TO IP-ADDRESS.

 MOVE 0 TO SCOPE-ID.

 * For IPv4

 MOVE 2 TO FAMILY.

 MOVE 1234 TO PORT.

 MOVE SENDMSG-IPV4ADDR TO IP-ADDRESS.

 SET NAME TO ADDRESS OF SENDMSG-NAME.

 SET IOV TO ADDRESS OF SENDMSG-IOVECTOR.

 MOVE LENGTH OF SENDMSG-NAME TO NAME-LEN.

 SET IOVCNT TO ADDRESS OF SENDMSG-BUFNO.

 SET IOV1A TO ADDRESS OF SENDMSG-BUFFER1.

 MOVE 0 TO IOV1AL.

 MOVE LENGTH OF SENDMSG-BUFFER1 TO IOV1L.

 SET IOV2A TO ADDRESS OF SENDMSG-BUFFER2.

 MOVE 0 TO IOV2AL.

 MOVE LENGTH OF SENDMSG-BUFFER2 TO IOV2L.

 SET IOV3A TO ADDRESS OF SENDMSG-BUFFER3.

 MOVE 0 TO IOV3AL.

 MOVE LENGTH OF SENDMSG-BUFFER3 TO IOV3L.

 SET ACCRIGHTS TO NULLS.

 SET ACCRLEN TO NULLS.

 MOVE 0 TO FLAGS.

 MOVE "MESSAGE TEXT 1" TO SENDMSG-BUFFER1.

 MOVE "MESSAGE TEXT 2" TO SENDMSG-BUFFER2.

 MOVE "MESSAGE TEXT 3" TO SENDMSG-BUFFER3.

 CALL ’EZASOKET’ USING SOC-FUNCTION MSG FLAGS ERRNO RETCODE.

Figure 155. SENDMSG call instruction example (Part 2 of 2)

Chapter 8. Sockets extended API 321

IP-ADDRESS

A fullword binary number specifying the 32-bit

IPv4 Internet address of the sending socket.

RESERVED An eight-byte reserved field. This field is required,

but is not used.

 The IPv6 socket address structure contains the following fields:

Field Description

FAMILY A halfword binary field specifying the IPv6

addressing family. The value for IPv6 socket

descriptor (for example, S parameter) is a decimal

19, indicating AF_INET6.

PORT A halfword binary number specifying the port

number of the sending socket.

FLOW-INFO A fullword binary field specifying the traffic class

and flow label. This field must be set to zero.

IP-ADDRESS

A two doubleword, 16-byte binary field specifying

the 128-bit IPv6 Internet address, in network byte

order, of the sending socket.

SCOPE-ID A fullword binary field which identifies a set of

interfaces as appropriate for the scope of the

address carried in the IP-ADDRESS field. A value

of zero indicates the SCOPE-ID field does not

identify the set of interfaces to be used, and can be

specified for any address types and scopes. For a

link scope IP-ADDRESS, SCOPE-ID can specify a

link index which identifies a set of interfaces. For

all other address scopes, SCOPE-ID must be set to

zero.

NAME-LEN

On input, a pointer to the size of the address buffer that is filled in

on completion of the call.

IOV On input, a pointer to an array of three fullword structures with

the number of structures equal to the value in IOVCNT and the

format of the structures as follows:

Fullword 1

A pointer to the address of a data buffer

Fullword 2

Reserved

Fullword 3

A pointer to the length of the data buffer referenced in

Fullword 1.

In COBOL, the IOV structure must be defined separately in the

Linkage portion, as shown in the example.

IOVCNT

On input, a pointer to a fullword binary field specifying the

number of data buffers provided for this call.

322 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

ACCRIGHTS

On input, a pointer to the access rights received. This field is

ignored.

ACCRLEN

On input, a pointer to the length of the access rights received. This

field is ignored.

FLAGS

A fullword field containing the following:

 Literal value Binary value Description

NO-FLAG 0 No flag is set. The command behaves like a

WRITE call.

OOB 1 Send out-of-band data (stream sockets only).

Even if the OOB flag is not set, out-of-band

data can be read if the SO-OOBINLINE

option is set for the socket.

DONT-ROUTE 4 Do not route. Routing is provided by the

calling program.

Parameter values returned by the application

ERRNO

A fullword binary field. If RETCODE is negative, this contains an error

number. See Appendix B. Return codes on page 397 for information about

ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. The value is set to the number of bytes

transmitted.

−1 Check ERRNO for an error code.

SENDTO

SENDTO is similar to SEND, except that it includes the destination address

parameter. The destination address allows you to use the SENDTO call to send

datagrams on a UDP socket, regardless of whether the socket is connected.

The FLAGS parameter allows you to:

v Send out-of-band data such as interrupts, aborts, and data marked as urgent.

v Suppress use of local routing tables. This implies that the caller takes control of

routing, which requires writing network software.

For datagram sockets SENDTO transmits the entire datagram if it fits into the

receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries

separating the data. For example, if a program is required to send 1000 bytes, each

call to this function can send any number of bytes, up to the entire 1000 bytes,

with the number of bytes sent returned in RETCODE. Therefore, programs using

stream sockets should place SENDTO in a loop that repeats the call until all data

has been sent.

Chapter 8. Sockets extended API 323

Note: See “EZACIC04” on page 350 for a subroutine that translates EBCDIC input

data to ASCII.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 156 shows an example of SENDTO call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SENDTO’.

 01 S PIC 9(4) BINARY.

 01 FLAGS. PIC 9(8) BINARY.

 01 NO-FLAG PIC 9(8) BINARY VALUE IS 0.

 01 OOB PIC 9(8) BINARY VALUE IS 1.

 01 DONT-ROUTE PIC 9(8) BINARY VALUE IS 4.

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 *

 * IPv4 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 IP-ADDRESS PIC 9(8) BINARY.

 03 RESERVED PIC X(8).

 *

 * IPv6 Socket Address Structure.

 *

 01 NAME.

 03 FAMILY PIC 9(4) BINARY.

 03 PORT PIC 9(4) BINARY.

 03 FLOW-INFO PIC 9(8) BINARY.

 03 IP-ADDRESS.

 05 FILLER PIC 9(16) BINARY.

 05 FILLER PIC 9(16) BINARY.

 03 SCOPE-ID PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS NBYTE

 BUF NAME ERRNO RETCODE.

Figure 156. SENDTO call instruction example

324 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing SENDTO. The field is left-aligned and

padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket

sending the data.

FLAGS

A fullword field that returns one of the following:

 Literal value Binary value Description

NO-FLAG 0 No flag is set. The command behaves like a

WRITE call.

OOB 1 Send out-of-band data (stream sockets only).

Even if the OOB flag is not set, out-of-band

data can be read if the SO-OOBINLINE

option is set for the socket.

DONT-ROUTE 4 Do not route. Routing is provided by the

calling program.

NBYTE

A fullword binary number set to the number of bytes to transmit.

BUF Specifies the buffer containing the data to be transmitted. BUF should be

the size specified in NBYTE.

NAME

 Specifies the IPv4 socket address structure as follows:

 FAMILY

A halfword binary field containing the addressing family. For

TCP/IP the value must be a decimal 2, indicating AF_INET.

PORT A halfword binary field containing the port number bound to the

socket.

IP-ADDRESS

A fullword binary field containing the socket’s 32-bit IPv4 Internet

address.

RESERVED

Specifies eight-byte reserved field. This field is required, but not

used.

 Specifies the IPv6 socket address structure as follows:

FAMILY

A halfword binary field containing the addressing family. For

TCP/IP stacks the value must be a decimal 19, indicating

AF_INET6.

PORT

A halfword binary field containing the port number bound to the

socket.

FLOW-INFO

A fullword binary field specifying the traffic class and flow label.

This field must be set to zero.

Chapter 8. Sockets extended API 325

IP-ADDRESS

A 16-byte binary field containing the socket’s 128-bit IPv6 Internet

address.

SCOPE-ID

A fullword binary field which identifies a set of interfaces as

appropriate for the scope of the address carried in the

IP-ADDRESS field. A value of zero indicates the SCOPE-ID field

does not identify the set of interfaces to be used, and can be

specified for any address types and scopes. For a link scope

IP-ADDRESS, SCOPE-ID can specify a link index which identifies a

set of interfaces. For all other address scopes, SCOPE-ID must be

set to zero.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. The value is set to the number of bytes

transmitted.

−1 Check ERRNO for an error code

SETSOCKOPT

The SETSOCKOPT call sets the options associated with a socket.

The OPTVAL and OPTLEN parameters are used to pass data used by the

particular set command. The OPTVAL parameter points to a buffer containing the

data needed by the set command. The OPTLEN parameter must be set to the size

of the data pointed to by OPTVAL.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 157 on page 327 shows an example of SETSOCKOPT call instructions.

326 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing 'SETSOCKOPT'. The field is

left-aligned and padded to the right with blanks.

S A halfword binary number set to the socket whose options are to be set.

OPTNAME

Input parameter. See the table below for a list of the options and their

unique requirements. See Appendix C, “GETSOCKOPT/SETSOCKOPT

command values,” on page 415 for the numeric values of OPTNAME.

Note: COBOL programs cannot contain field names with the underscore

character. Fields representing the option name should contain dashes

instead.

OPTVAL

Input parameter. Contains data that further defines the option specified in

OPTNAME. See the table below for a list of the options and their unique

requirements.

OPTLEN

Input parameter. A fullword binary field specifying the length of the data

specified in OPTVAL. See the table below for how to determine the value

of OPTLEN.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B, “Return codes,” on page 397 for

information about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call.

−1 Check ERRNO for an error code.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SETSOCKOPT’.

 01 S PIC 9(4) BINARY.

 01 OPTNAME PIC 9(8) BINARY.

 01 OPTVAL PIC 9(8) BINARY.

 01 OPTLEN PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S OPTNAME

 OPTVAL OPTLEN ERRNO RETCODE.

Figure 157. SETSOCKOPT call instruction example

Chapter 8. Sockets extended API 327

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

IP_ADD_MEMBERSHIP

Use this option to enable an application to join

a multicast group on a specific interface. An

interface has to be specified with this option.

Only applications that want to receive multicast

datagrams need to join multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ structure as

defined in

SYS1.MACLIB(BPXYSOCK). The

IP_MREQ structure contains a

4-byte IPv4 multicast address

followed by a 4-byte IPv4 interface

address.

See SEZAINST(CBLOCK) for the

PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for the

COBOL example of IP-MREQ.

N/A

IP_ADD_SOURCE_MEMBERSHIP

Use this option to enable an application to join

a source multicast group on a specific interface

and a specific source address. You must specify

an interface and a source address with this

option. Applications that want to receive

multicast datagrams need to join source

multicast groups.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE

structure as defined in

SYS1.MACLIB(BPXYSOCK). The

IP_MREQ_SOURCE structure

contains a 4-byte IPv4 multicast

address followed by a 4-byte IPv4

source address and a 4-byte IPv4

interface address.

See SEZAINST(CBLOCK) for the

PL/I example of

IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for the

COBOL example of

IP-MREQ-SOURCE.

N/A

IP_BLOCK_SOURCE

Use this option to enable an application to

block multicast packets that have a source

address that matches the given IPv4 source

address. You must specify an interface and a

source address with this option. The specified

multicast group must have been joined

previously.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE

structure as defined in

SYS1.MACLIB(BPXYSOCK). The

IP_MREQ_SOURCE structure

contains a 4-byte IPv4 multicast

address followed by a 4-byte IPv4

source address and a 4-byte IPv4

interface address.

See SEZAINST(CBLOCK) for the

PL/I example of

IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for the

COBOL example of

IP-MREQ-SOURCE.

N/A

328 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

IP_DROP_MEMBERSHIP

Use this option to enable an application to exit

a multicast group or to exit all sources for a

multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ structure as

defined in

SYS1.MACLIB(BPXYSOCK). The

IP_MREQ structure contains a

4-byte IPv4 multicast address

followed by a 4-byte IPv4 interface

address.

See SEZAINST(CBLOCK) for the

PL/I example of IP_MREQ.

See SEZAINST(EZACOBOL) for the

COBOL example of IP-MREQ.

N/A

IP_DROP_SOURCE_MEMBERSHIP

Use this option to enable an application to exit

a source multicast group.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE

structure as defined in

SYS1.MACLIB(BPXYSOCK). The

IP_MREQ_SOURCE structure

contains a 4-byte IPv4 multicast

address followed by a 4-byte IPv4

source address and a 4-byte IPv4

interface address.

See SEZAINST(CBLOCK) for the

PL/I example of

IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for the

COBOL example of

IP-MREQ-SOURCE.

N/A

IP_MULTICAST_IF

Use this option to set or obtain the IPv4

interface address used for sending outbound

multicast datagrams from the socket

application.

This is an IPv4-only socket option.

Note: Multicast datagrams can be transmitted

only on one interface at a time.

A 4-byte binary field containing an

IPv4 interface address.

A 4-byte binary field

containing an IPv4 interface

address.

IP_MULTICAST_LOOP

Use this option to control or determine whether

a copy of multicast datagrams are looped back

for multicast datagrams sent to a group to

which the sending host itself belongs. The

default is to loop the datagrams back.

This is an IPv4-only socket option.

A 1-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 1-byte binary field.

If enabled, will contain a 1.

If disabled, will contain a 0.

IP_MULTICAST_TTL

Use this option to set or obtain the IP

time-to-live of outgoing multicast datagrams.

The default value is ’01’x meaning that

multicast is available only to the local subnet.

This is an IPv4-only socket option.

A 1-byte binary field containing the

value of ’00’x to ’FF’x.

A 1-byte binary field

containing the value of ’00’x

to ’FF’x.

Chapter 8. Sockets extended API 329

|
|
|

|
|

|

|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

IP_UNBLOCK_SOURCE

Use this option to enable an application to

unblock a previously blocked source for a given

IPv4 multicast group. You must specify an

interface and a source address with this option.

This is an IPv4-only socket option.

Contains the IP_MREQ_SOURCE

structure as defined in

SYS1.MACLIB(BPXYSOCK). The

IP_MREQ_SOURCE structure

contains a 4-byte IPv4 multicast

address followed by a 4-byte IPv4

source address and a 4-byte IPv4

interface address.

See SEZAINST(CBLOCK) for the

PL/I example of

IP_MREQ_SOURCE.

See SEZAINST(EZACOBOL) for the

COBOL example of

IP-MREQ-SOURCE.

IPV6_JOIN_GROUP

Use this option to control the reception of

multicast packets and specify that the socket

join a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ structure

as defined in

SYS1.MACLIB(BPXYSOCK). The

IPV6_MREQ structure contains a

16-byte IPv6 multicast address

followed by a 4-byte IPv6 interface

index number.

If the interface index number is 0,

then the stack chooses the local

interface.

See the SEZAINST(CBLOCK) for

the PL/I example of IPV6_MREQ.

See SEZAINST(EZACOBOL) for the

COBOL example of IPV6-MREQ.

N/A

IPV6_LEAVE_GROUP

Use this option to control the reception of

multicast packets and specify that the socket

leave a multicast group.

This is an IPv6-only socket option.

Contains the IPV6_MREQ structure

as defined in

SYS1.MACLIB(BPXYSOCK). The

IPV6_MREQ structure contains a

16-byte IPv6 multicast address

followed by a 4-byte IPv6 interface

index number.

If the interface index number is 0,

then the stack chooses the local

interface.

See the SEZAINST(CBLOCK) for

the PL/I example of IPV6_MREQ.

See SEZAINST(EZACOBOL) for the

COBOL example of IPV6-MREQ.

N/A

330 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

IPV6_MULTICAST_HOPS

Use to set or obtain the hop limit used for

outgoing multicast packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value

specifying the multicast hops. If not

specified, then the default is 1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit range.

Note: An application must be APF

authorized to enable it to set the

hop limit value above the system

defined hop limit value. CICS

applications cannot execute as APF

authorized.

Contains a 4-byte binary

value in the range 0 – 255

indicating the number of

multicast hops.

IPV6_MULTICAST_IF

Use this option to set or obtain the index of the

IPv6 interface used for sending outbound

multicast datagrams from the socket

application.

This is an IPv6-only socket option.

Contains a 4-byte binary field

containing an IPv6 interface index

number.

Contains a 4-byte binary field

containing an IPv6 interface

index number.

IPV6_MULTICAST_LOOP

Use this option to control or determine whether

a multicast datagram is looped back on the

outgoing interface by the IP layer for local

delivery when datagrams are sent to a group to

which the sending host itself belongs. The

default is to loop multicast datagrams back.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

IPV6_UNICAST_HOPS

Use this option to set or obtain the hop limit

used for outgoing unicast IPv6 packets.

This is an IPv6-only socket option.

Contains a 4-byte binary value

specifying the unicast hops. If not

specified, then the default is 1 hop.

-1 indicates use stack default.

0 – 255 is the valid hop limit range.

Note: APF authorized applications

are permitted to set a hop limit that

exceeds the system configured

default. CICS applications cannot

execute as APF authorized.

Contains a 4-byte binary

value in the range 0 – 255

indicating the number of

unicast hops.

IPV6_V6ONLY

Use this option to set or determine whether the

socket is restricted to send and receive only

IPv6 packets. The default is to not restrict the

sending and receiving of only IPv6 packets.

This is an IPv6-only socket option.

A 4-byte binary field.

To enable, set to 1.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

Chapter 8. Sockets extended API 331

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

MCAST_BLOCK_SOURCE

Use this option to enable an application to

block multicast packets that have a source

address that matches the given source address.

You must specify an interface index and a

source address with this option. The specified

multicast group must have been joined

previously.

Contains the

GROUP_SOURCE_REQ structure as

defined in

SYS1.MACLIB(BPXYSOCK). The

GROUP_SOURCE_REQ structure

contains a 4-byte interface index

number followed by a socket

address structure of the multicast

address and a socket address

structure of the source address.

See SEZAINST(CBLOCK) for the

PL/I example of

GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for the

COBOL example of

GROUP-SOURCE-REQ.

N/A

MCAST_JOIN_GROUP

Use this option to enable an application to join

a multicast group on a specific interface. You

must specify an interface index. Applications

that want to receive multicast datagrams must

join multicast groups.

Contains the GROUP_REQ structure

as defined in

SYS1.MACLIB(BPXYSOCK). The

GROUP_REQ structure contains a

4-byte interface index number

followed by a socket address

structure of the multicast address.

See SEZAINST(CBLOCK) for the

PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for the

COBOL example of GROUP-REQ.

N/A

MCAST_JOIN_SOURCE_GROUP

Use this option to enable an application to join

a source multicast group on a specific interface

and a source address. You must specify an

interface index and the source address.

Applications that want to receive multicast

datagrams only from specific source addresses

need to join source multicast groups.

Contains the

GROUP_SOURCE_REQ structure as

defined in

SYS1.MACLIB(BPXYSOCK). The

GROUP_SOURCE_REQ structure

contains a 4-byte interface index

number followed by a socket

address structure of the multicast

address and a socket address

structure of the source address.

See SEZAINST(CBLOCK) for the

PL/I example of

GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for the

COBOL example of

GROUP-SOURCE-REQ.

N/A

332 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

MCAST_LEAVE_GROUP

Use this option to enable an application to exit

a multicast group or exit all sources for a given

multicast groups.

Contains the GROUP_REQ structure

as defined in

SYS1.MACLIB(BPXYSOCK). The

GROUP_REQ structure contains a

4-byte interface index number

followed by a socket address

structure of the multicast address.

See SEZAINST(CBLOCK) for the

PL/I example of GROUP_REQ.

See SEZAINST(EZACOBOL) for the

COBOL example of GROUP-REQ.

N/A

MCAST_LEAVE_SOURCE_GROUP

Use this option to enable an application to exit

a source multicast group.

Contains the

GROUP_SOURCE_REQ structure as

defined in

SYS1.MACLIB(BPXYSOCK). The

GROUP_SOURCE_REQ structure

contains a 4-byte interface index

number followed by a socket

address structure of the multicast

address and a socket address

structure of the source address.

See SEZAINST(CBLOCK) for the

PL/I example of

GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for the

COBOL example of

GROUP-SOURCE-REQ.

N/A

MCAST_UNBLOCK_SOURCE

Use this option to enable an application to

unblock a previously blocked source for a given

multicast group. You must specify an interface

index and a source address with this option.

Contains the

GROUP_SOURCE_REQ structure as

defined in

SYS1.MACLIB(BPXYSOCK). The

GROUP_SOURCE_REQ structure

contains a 4-byte interface index

number followed by a socket

address structure of the multicast

address and a socket address

structure of the source address.

See SEZAINST(CBLOCK) for the

PL/I example of

GROUP_SOURCE_REQ.

See SEZAINST(EZACOBOL) for the

COBOL example of

GROUP-SOURCE-REQ.

N/A

Chapter 8. Sockets extended API 333

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

||
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

SO_ASCII

Use this option to set or determine the

translation to ASCII data option. When

SO_ASCII is set, data is translated to ASCII.

When SO_ASCII is not set, data is not

translated to or from ASCII.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned and

is optionally followed by the name

of the translation table that is used

if translation is applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is

returned and is optionally

followed by the name of the

translation table that is used

if translation is applied to the

data.

SO_BROADCAST

Use this option to set or determine whether a

program can send broadcast messages over the

socket to destinations that can receive datagram

messages. The default is disabled.

Note: This option has no meaning for stream

sockets.

A 4-byte binary field.

To enable, set to 1 or a positive

value.

To disable, set to 0.

A 4-byte field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_DEBUG

Use SO_DEBUG to set or determine the status

of the debug option. The default is disabled. The

debug option controls the recording of debug

information.

Notes:

1. This is a REXX-only socket option.

2. This option has meaning only for stream

sockets.

To enable, set to ON.

To disable, set to OFF.

If enabled, contains ON.

If disabled, contains OFF.

SO_EBCDIC

Use this option to set or determine the

translation to EBCDIC data option. When

SO_EBCDIC is set, data is translated to

EBCDIC. When SO_EBCDIC is not set, data is

not translated to or from EBCDIC. This option

is ignored by EBCDIC hosts.

Note: This is a REXX-only socket option.

To enable, set to ON.

To disable, set to OFF.

Note: The optvalue is returned and

is optionally followed by the name

of the translation table that is used

if translation is applied to the data.

If enabled, contains ON.

If disabled, contains OFF.

Note: The optvalue is

returned and is optionally

followed by the name of the

translation table that is used

if translation is applied to the

data.

SO_ERROR

Use this option to request pending errors on the

socket or to check for asynchronous errors on

connected datagram sockets or for other errors

that are not explicitly returned by one of the

socket calls. The error status is clear afterwards.

N/A A 4-byte binary field

containing the most recent

ERRNO for the socket.

334 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

SO_KEEPALIVE

Use this option to set or determine whether the

keep alive mechanism periodically sends a

packet on an otherwise idle connection for a

stream socket.

The default is disabled.

When activated, the keep alive mechanism

periodically sends a packet on an otherwise idle

connection. If the remote TCP does not respond

to the packet or to retransmissions of the

packet, the connection is terminated with the

error ETIMEDOUT.

A 4-byte binary field.

To enable, set to 1 or a positive

value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_LINGER

Use this option to control or determine how

TCP/IP processes data that has not been

transmitted when a CLOSE is issued for the

socket. The default is disabled.

Notes:

1. This option has meaning only for stream

sockets.

2. If you set a zero linger time, the connection

cannot close in an orderly manner, but

stops, resulting in a RESET segment being

sent to the connection partner. Also, if the

aborting socket is in nonblocking mode, the

close call is treated as though no linger

option had been set.

When SO_LINGER is set and CLOSE is called,

the calling program is blocked until the data is

successfully transmitted or the connection has

timed out.

When SO_LINGER is not set, the CLOSE

returns without blocking the caller, and TCP/IP

continues to attempt to send data for a

specified time. This usually allows sufficient

time to complete the data transfer.

Use of the SO_LINGER option does not

guarantee successful completion because

TCP/IP only waits the amount of time specified

in OPTVAL for SO_LINGER.

Contains an 8-byte field containing

two 4-byte binary fields.

Assembler coding:

ONOFF DS F

LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.

LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to

enable and set to 0 to disable this

option. Set LINGER to the number

of seconds that TCP/IP lingers after

the CLOSE is issued.

Contains an 8-byte field

containing two 4-byte binary

fields.

Assembler coding:

ONOFF DS F

LINGER DS F

COBOL coding:

ONOFF PIC 9(8) BINARY.

LINGER PIC 9(8) BINARY.

A nonzero value returned in

ONOFF indicates enabled, a 0

indicates disabled. LINGER

indicates the number of

seconds that TCP/IP will try

to send data after the CLOSE

is issued.

Chapter 8. Sockets extended API 335

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

SO_OOBINLINE

Use this option to control or determine whether

out-of-band data is received.

Note: This option has meaning only for stream

sockets.

When this option is set, out-of-band data is

placed in the normal data input queue as it is

received and is available to a RECV or a

RECVFROM even if the OOB flag is not set in

the RECV or the RECVFROM.

When this option is disabled, out-of-band data

is placed in the priority data input queue as it

is received and is available to a RECV or a

RECVFROM only when the OOB flag is set in

the RECV or the RECVFROM.

A 4-byte binary field.

To enable, set to 1 or a positive

value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_RCVBUF

Use this option to control or determine the size

of the data portion of the TCP/IP receive buffer.

The size of the data portion of the receive

buffer is protocol-specific, based on the

following values prior to any SETSOCKOPT

call:

v TCPRCVBufrsize keyword on the

TCPCONFIG statement in the

PROFILE.TCPIP data set for a TCP Socket

v UDPRCVBufrsize keyword on the

UDPCONFIG statement in the

PROFILE.TCPIP data set for a UDP Socket

v The default of 65 535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value

specifying the size of the data

portion of the TCP/IP receive

buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive

value indicating the size of

the data portion of the

TCP/IP receive buffer.

If disabled, contains a 0.

336 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

SO_REUSEADDR

Use this option to control or determine whether

local addresses are reused. The default is

disabled. This alters the normal algorithm used

with BIND. The normal BIND algorithm allows

each Internet address and port combination to

be bound only once. If the address and port

have been already bound, then a subsequent

BIND will fail and result error will be

EADDRINUSE.

When this option is enabled, the following

situations are supported:

v A server can BIND the same port multiple

times as long as every invocation uses a

different local IP address and the wildcard

address INADDR_ANY is used only one time

per port.

v A server with active client connections can be

restarted and can bind to its port without

having to close all of the client connections.

v For datagram sockets, multicasting is

supported so multiple bind() calls can be

made to the same class D address and port

number.

v If you require multiple servers to BIND to

the same port and listen on INADDR_ANY,

refer to the SHAREPORT option on the PORT

statement in TCPIP.PROFILE.

A 4-byte binary field.

To enable, set to 1 or a positive

value.

To disable, set to 0.

A 4-byte binary field.

If enabled, contains a 1.

If disabled, contains a 0.

SO_SNDBUF

Use this option to control or determine the size

of the data portion of the TCP/IP send buffer.

The size is of the TCP/IP send buffer is

protocol specific and is based on the following:

v The TCPSENDBufrsize keyword on the

TCPCONFIG statement in the

PROFILE.TCPIP data set for a TCP socket

v The UDPSENDBufrsize keyword on the

UDPCONFIG statement in the

PROFILE.TCPIP data set for a UDP socket

v The default of 65 535 for a raw socket

A 4-byte binary field.

To enable, set to a positive value

specifying the size of the data

portion of the TCP/IP send buffer.

To disable, set to a 0.

A 4-byte binary field.

If enabled, contains a positive

value indicating the size of

the data portion of the

TCP/IP send buffer.

If disabled, contains a 0.

SO_TYPE

Use this option to return the socket type.

N/A A 4-byte binary field

indicating the socket type:

X’1’ indicates

SOCK_STREAM.

X’2’ indicates

SOCK_DGRAM.

X’3’ indicates SOCK_RAW.

Chapter 8. Sockets extended API 337

Table 22. OPTNAME options for GETSOCKOPT and SETSOCKOPT (continued)

OPTNAME options (input) SETSOCKOPT, OPTVAL (input) GETSOCKOPT, OPTVAL

(output)

TCP_KEEPALIVE

Use this option to set or determine whether a

socket-specific timeout value (in seconds) is to

be used in place of a configuration-specific

value whenever keep alive timing is active for

that socket.

When activated, the socket-specified timer value

remains in effect until respecified by

SETSOCKOPT or until the socket is closed.

Refer to the z/OS Communications Server: IP

Programmer’s Guide and Reference for more

information on the socket option parameters.

A 4-byte binary field.

To enable, set to a value in the

range of 1 – 2 147 460.

To disable, set to a value of 0.

A 4-byte binary field.

If enabled, contains the

specific timer value (in

seconds) that is in effect for

the given socket.

If disabled, contains a 0

indicating keep alive timing

is not active.

TCP_NODELAY

Use this option to set or determine whether

data sent over the socket is subject to the Nagle

algorithm (RFC 896).

Under most circumstances, TCP sends data

when it is presented. When this option is

enabled, TCP will wait to send small amounts

of data until the acknowledgment for the

previous data sent is received. When this option

is disabled, TCP will send small amounts of

data even before the acknowledgment for the

previous data sent is received.

Note: Use the following to set TCP_NODELAY

OPTNAME value for COBOL programs:

01 TCP-NODELAY-VAL PIC 9(10) COMP

 VALUE 2147483649.

01 TCP-NODELAY-REDEF REDEFINES

 TCP-NODELAY-VAL.

 05 FILLER PIC 9(6) BINARY.

 05 TCP-NODELAY PIC 9(8) BINARY.

A 4-byte binary field.

To enable, set to a 0.

To disable, set to a 1 or nonzero.

A 4-byte binary field.

If enabled, contains a 0.

If disabled, contains a 1.

SHUTDOWN

One way to terminate a network connection is to issue the CLOSE call which

attempts to complete all outstanding data transmission requests prior to breaking

the connection. The SHUTDOWN call can be used to close one-way traffic while

completing data transfer in the other direction. The HOW parameter determines

the direction of traffic to shutdown.

When the CLOSE call is used, the SETSOCKOPT OPTVAL LINGER parameter

determines the amount of time the system waits before releasing the connection.

For example, with a LINGER value of 30 seconds, system resources (including the

IMS or CICS transaction) remain in the system for up to 30 seconds after the

CLOSE call is issued. In high volume, transaction-based systems like CICS and

IMS, this can impact performance severely.

If the SHUTDOWN call is issued, when the CLOSE call is received, the connection

can be closed immediately, rather than waiting for the 30-second delay.

338 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

If you issue SHUTDOWN for a socket that currently has outstanding socket calls

pending, see Table 23 to determine the effects of this operation on the outstanding

socket calls.

 Table 23. Effect of SHUTDOWN socket call

Socket calls in

local program

Local program Remote program

SHUTDOWN

SEND

SHUTDOWN

RECEIVE

SHUTDOWN

RECEIVE

SHUTDOWN

SEND

Write calls Error number

EPIPE on first

call

Error number

EPIPE on second

call*

Read calls Zero length

return code

Zero length

return code

* If you issue two write calls immediately, both might be successful, and an EPIPE error

number might not be returned until a third write call is issued.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 158 shows an example of SHUTDOWN call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing SHUTDOWN. The field is left-aligned

and padded on the right with blanks.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SHUTDOWN’.

 01 S PIC 9(4) BINARY.

 01 HOW PIC 9(8) BINARY.

 01 END-FROM PIC 9(8) BINARY VALUE 0.

 01 END-TO PIC 9(8) BINARY VALUE 1.

 01 END-BOTH PIC 9(8) BINARY VALUE 2.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S HOW ERRNO RETCODE.

Figure 158. SHUTDOWN call instruction example

Chapter 8. Sockets extended API 339

S A halfword binary number set to the socket descriptor of the socket to be

shutdown.

HOW A fullword binary field. Set to specify whether all or part of a connection is

to be shut down. The following values can be set:

Value Description

0 (END-FROM)

Ends further receive operations.

1 (END-TO) Ends further send operations.

2 (END-BOTH)

Ends further send and receive operations.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

SOCKET

The SOCKET call creates an endpoint for communication and returns a socket

descriptor representing the endpoint.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 159 on page 341 shows an example of SOCKET call instructions.

340 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing 'SOCKET'. The field is left-aligned and

padded on the right with blanks.

AF A fullword binary field set to the addressing family. For TCP/IP the value

is set to a decimal 2 for AF_INET, or a decimal 19, indicating AF_INET6.

SOCTYPE

A fullword binary field set to the type of socket required. The types are:

Value Description

1 Stream sockets provide sequenced, two-way byte streams that are

reliable and connection-oriented. They support a mechanism for

out-of-band data.

2 Datagram sockets provide datagrams, which are connectionless

messages of a fixed maximum length whose reliability is not

guaranteed. Datagrams can be corrupted, received out of order,

lost, or delivered multiple times.

PROTO

A fullword binary field set to the protocol to be used for the socket. If this

field is set to 0, the default protocol is used. For streams, the default is

TCP; for datagrams, the default is UDP.

 PROTO numbers are found in the hlq.etc.proto data set.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’SOCKET’.

 * For AF_INET

 01 AF PIC 9(8) COMP VALUE 2.

 * For AF_INET6

 01 AF PIC 9(8) BINARY VALUE 19.

 01 SOCTYPE PIC 9(8) BINARY.

 01 STREAM PIC 9(8) BINARY VALUE 1.

 01 DATAGRAM PIC 9(8) BINARY VALUE 2.

 01 PROTO PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION AF SOCTYPE

 PROTO ERRNO RETCODE.

Figure 159. SOCKET call instruction example

Chapter 8. Sockets extended API 341

> or = 0

Contains the new socket descriptor

−1 Check ERRNO for an error code

TAKESOCKET

The TAKESOCKET call acquires a socket from another program and creates a new

socket. Typically, a child server issues this call using client ID and socket descriptor

data that it obtained from the concurrent server. See “GIVESOCKET” on page 274

for a discussion of the use of GETSOCKET and TAKESOCKET calls.

Note: When TAKESOCKET is issued, a new socket descriptor is returned in

RETCODE. You should use this new socket descriptor in subsequent calls

such as GETSOCKOPT, which require the S (socket descriptor) parameter.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 160 shows an example of TAKESOCKET call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing TAKESOCKET. The field is left-aligned

and padded to the right with blanks.

SOCRECV

A halfword binary field set to the descriptor of the socket to be taken. The

socket to be taken is passed by the concurrent server.

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’TAKESOCKET’.

 01 SOCRECV PIC 9(4) BINARY.

 01 CLIENT.

 03 DOMAIN PIC 9(8) BINARY.

 03 NAME PIC X(8).

 03 TASK PIC X(8).

 03 RESERVED PIC X(20).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION SOCRECV CLIENT

 ERRNO RETCODE.

Figure 160. TAKESOCKET call instruction example

342 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

CLIENT

Specifies the client ID of the program that is giving the socket. In CICS,

these parameters are passed by the listener program to the program that

issues the TAKESOCKET call. The information is obtained using EXEC

CICS RETRIEVE.

DOMAIN

A fullword binary field set to the domain of the program giving

the socket. It is always a decimal 2, indicating AF_INET, or a

decimal 19, indicating AF_INET6.

 Rule: The TAKESOCKET can only acquire a socket of the same

address family from a GIVESOCKET.

NAME

Specifies an 8-byte character field set to the MVS address space

identifier of the program that gave the socket.

TASK Specifies an 8-byte character field set to the task identifier of the

task that gave the socket.

RESERVED

A 20-byte reserved field. This field is required, but not used.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

> or = 0

Contains the new socket descriptor

−1 Check ERRNO for an error code

TERMAPI

This call terminates the session created by INITAPI. All TCP/IP stacks resources

allocated to the task are cleaned up. This includes any outstanding open sockets or

sockets that have been given away with the GIVESOCKET call but have not been

taken with a TAKESOCKET call.

In the CICS environment, the use of TERMAPI is not recommended. CICS task

termination processing automatically performs the functions of TERMAPI. A CICS

application program should only issue TERMAPI if there is a particular need to

terminate the session before task termination.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Chapter 8. Sockets extended API 343

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 161 shows an example of TERMAPI call instructions.

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing TERMAPI. The field is left-aligned and

padded to the right with blanks.

WRITE

The WRITE call writes data on a connected socket. This call is similar to SEND,

except that it lacks the control flags available with SEND.

For datagram sockets the WRITE call writes the entire datagram if it fits into the

receiving buffer.

Stream sockets act like streams of information with no boundaries separating data.

For example, if a program wishes to send 1000 bytes, each call to this function can

send any number of bytes, up to the entire 1000 bytes. The number of bytes sent

are returned in RETCODE. Therefore, programs using stream sockets should place

this call in a loop, calling this function until all data has been sent.

See “EZACIC04” on page 350 for a subroutine that translates EBCDIC output data

to ASCII.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

Note: See “Addressability mode (Amode) considerations”

under “Environmental restrictions and programming

requirements” on page 223.

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’TERMAPI’.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION.

Figure 161. TERMAPI call instruction example

344 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Figure 162 shows an example of WRITE call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

SOC-FUNCTION

A 16-byte character field containing WRITE. The field is left-aligned and

padded on the right with blanks.

S A halfword binary field set to the socket descriptor.

NBYTE

A fullword binary field set to the number of bytes of data to be

transmitted.

BUF Specifies the buffer containing the data to be transmitted.

Parameter values returned to the application

ERRNO

A fullword binary field. If RETCODE is negative, the field contains an

error number. See Appendix B. Return codes on page 397 for information

about ERRNO return codes.

RETCODE

A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. A return code greater than zero indicates the

number of bytes of data written.

−1 Check ERRNO for an error code.

WRITEV

The WRITEV function writes data on a socket from a set of buffers.

The following requirements apply to this call:

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

Amode: 31-bit or 24-bit

ASC mode: Primary address space control (ASC) mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

 WORKING-STORAGE SECTION.

 01 SOC-FUNCTION PIC X(16) VALUE IS ’WRITE’.

 01 S PIC 9(4) BINARY.

 01 NBYTE PIC 9(8) BINARY.

 01 BUF PIC X(length of buffer).

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC S9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING SOC-FUNCTION S NBYTE BUF

 ERRNO RETCODE.

Figure 162. WRITE call instruction example

Chapter 8. Sockets extended API 345

Control parameters: All parameters must be addressable by the caller and in the

primary address space

Figure 163 shows an example of WRITEV call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

S A value or the address of a halfword binary number specifying the

descriptor of the socket from which the data is to be written.

IOV An array of tripleword structures with the number of structures equal to

the value in IOVCNT and the format of the structures as follows:

Fullword 1

The address of a data buffer.

Fullword 2

Reserved.

Fullword 3

The length of the data buffer referenced in Fullword 1.

IOVCNT

A fullword binary field specifying the number of data buffers provided for

this call.

Parameters Returned by the Application

ERRNO

A fullword binary field. If RETCODE is negative, this contains an error

number. See Appendix B. Return codes on page 397 for information about

ERRNO return codes.

 WORKING-STORAGE SECTION.

 01 SOKET-FUNCTION PIC X(16) VALUE ’WRITEV’.

 01 S PIC 9(4) BINARY.

 01 IOVCNT PIC 9(8) BINARY.

 01 IOV.

 03 BUFFER-ENTRY OCCURS N TIMES.

 05 BUFFER-POINTER USAGE IS POINTER.

 05 RESERVED PIC X(4).

 05 BUFFER-LENGTH PIC 9(8) BINARY.

 01 ERRNO PIC 9(8) BINARY.

 01 RETCODE PIC 9(8) BINARY.

 PROCEDURE DIVISION.

 SET BUFFER-POINTER(1) TO ADDRESS OF BUFFER1.

 SET BUFFER-LENGTH(1) TO LENGTH OF BUFFER1.

 SET BUFFER-POINTER(2) TO ADDRESS OF BUFFER2.

 SET BUFFER-LENGTH(2) TO LENGTH OF BUFFER2.

 " " " " "

 " " " " "

 SET BUFFER-POINTER(n) TO ADDRESS OF BUFFERn.

 SET BUFFER-LENGTH(n) TO LENGTH OF BUFFERn.

 CALL ’EZASOKET’ USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

Figure 163. WRITEV call instruction example

346 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

RETCODE

A fullword binary field.

Value Meaning

<0 Error. Check ERRNO.

0 Connection partner has closed connection.

>0 Number of bytes sent.

Using data translation programs for socket call interface

In addition to the socket calls, you can use the following utility programs to

translate data:

Data translation

TCP/IP hosts and networks use ASCII data notation; MVS TCP/IP and its

subsystems use EBCDIC data notation. In situations where data must be translated

from one notation to the other, you can use the following utility programs:

EZACIC04

Translates EBCDIC data to ASCII data using an EBCDIC-to-ASCII translation

table as described inz/OS Communications Server: IP Configuration Reference.

EZACIC05

Translates ASCII data to EBCDIC data using an ASCII-to-EBCDIC translation

table as described in z/OS Communications Server: IP Configuration Reference.

EZACIC14

An alternative to EZACIC04 that translates EBCDIC data to ASCII data using

the translation table listed in “EZACIC14” on page 363.

EZACIC15

An alternative to EZACIC05 that translates ASCII data to EBCDIC data using

the translation table listed in “EZACIC15” on page 365.

A sample program that performs these translations is also available; you can

modify them to perform any translations not provided by these routines. See the

EZACICTR member in the SEZAINST data set for more information.

It is not necessary to define these programs to CICS. If your application

dynamically links these programs, then you must define them to CICS as follows:

DEFINE PROGRAM(EZACIC04)

DESCRIPTION(TRANSLATE EBCDIC-8 BIT TO ASCII-8 BIT)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(NORMAL)

CONCURRENCY(THREADSAFE)

DEFINE PROGRAM(EZACIC05)

DESCRIPTION(TRANSLATE ASCII-8 BIT TO EBCDIC-8 BIT)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(NORMAL)

CONCURRENCY(THREADSAFE)

DEFINE PROGRAM(EZACIC14)

DESCRIPTION(TRANSLATE EBCDIC-8 BIT TO ASCII-8 BIT)

GROUP(SOCKETS)

Chapter 8. Sockets extended API 347

|
|
|

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(NORMAL)

CONCURRENCY(THREADSAFE)

DEFINE PROGRAM(EZACIC15)

DESCRIPTION(TRANSLATE ASCII-8 BIT TO EBCDIC-8 BIT)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(NORMAL)

CONCURRENCY(THREADSAFE)

For more information about specifying the key that CICS uses to give control to

the program, see the CICS Transaction Server information in CICS Resource

Definition Guide for details about RDO resource types and their attributes, Program

Definition Attributes, and the EXECKEY attribute.

Bit string processing

In C-language, bit strings are often used to convey flags, switch settings, and so

on; TCP/IP stacks makes frequent uses of bit strings. However, because bit strings

are difficult to decode in COBOL, TCP/IP includes:

EZACIC06

Translates bit-masks into character arrays and character arrays into bit-masks.

EZACIC08

Interprets the variable length address list in the HOSTENT structure returned

by GETHOSTBYNAME or GETHOSTBYADDR.

EZACIC09

Interprets the ADDRINFO structure returned by GETADDRINFO.

It is not necessary to define these programs to CICS. If your application

dynamically links these programs, then you must define them to CICS as follows:

DEFINE PROGRAM(EZACIC06)

DESCRIPTION(TRANSLATE EBCDIC-8 BIT TO ASCII-8 BIT)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(NORMAL)

CONCURRENCY(THREADSAFE)

DEFINE PROGRAM(EZACIC08)

DESCRIPTION(INTERPRET HOSTENT)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(NORMAL)

CONCURRENCY(THREADSAFE)

DEFINE PROGRAM(EZACIC09)

DESCRIPTION(INTERPRET ADDRINFO)

GROUP(SOCKETS)

CEDF(YES) DATALOCATION(ANY) EXECKEY(USER)

RELOAD(NO) RESIDENT(NO) USELPACOPY(NO)

LANGUAGE(ASSEMBLER) STATUS(ENABLED) USAGE(NORMAL)

CONCURRENCY(THREADSAFE)

For more information about specifying the key that CICS uses to give control to

the program, see CICS Resource Definition Guide .

348 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|

|
|

CALL instruction utility programs

This topic describes the CALL instruction API for TCP/IP application programs

written in the COBOL, PL/I, or High Level Assembler language. The format and

parameters are described for each utility call.

Note: For a PL/I program, include the following statement before your first call

instruction:

DCL EZASOKET ENTRY OPTIONS(RETCODE,ASM,INTER) EXT;

Understanding COBOL, assembler, and PL/I call formats: These utility programs

are invoked by calling the EZACICnn program. The parameters look differently

due to the differences in the programming languages.

COBOL language call format: The following sample illustrates the utility

program call format for COBOL language programs:

>>-- CALL ‘EZACICnn’ USING parm1, parm2, --><

parm n

A variable number of parameters that depends on the type call.

See the utility programs in this topic for an explanation of the parameters.

Assembler language call format: The following sample illustrates the utility

program call format for assembler language programs. Because DATAREG is used

to access the application’s working storage, applications using the assembler

language format should not code DATAREG but should let it default to the CICS

data register.

>>-- CALL EZACICnn,(parm1, parm2, ...),VL,MF=(E, PARMLIST) --><

PARMLIST is a remote parameter list defined in dynamic storage DFHEISTG. This

list contains addresses of 30 parameters that can be referenced by all execute forms

of the CALL.

Note: This form of CALL is necessary to meet the CICS requirement for

quasi-reentrant programming

parm n

A variable number of parameters that depends on the type call.

 See the utility programs in this topic for an explanation of the parameters.

PL/I language call format: The following sample illustrates the utility program

call format for PL/I language programs:

>>-- CALL EZACICnn (parm1, parm2, ...); --><

parm n

parm n

A variable number of parameters that depends on the type call.

 See the utility programs in this topic for an explanation of the parameters.

Chapter 8. Sockets extended API 349

|
|
|
|

|
|

|

|
|
|

|
|

|

|
|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|

|
|

|

|

|
|

|

EZACIC04

 The EZACIC04 program is used to translate EBCDIC data to ASCII data.

Figure 164 shows an example of how EZACIC04 translates a byte of EBCDIC data

to ASCII data.

 Figure 165 shows an example of EZACIC04 call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

OUT-BUFFER

A buffer that contains the following:

v When called – EBCDIC data

v Upon return – ASCII data

 --

 | ASCII | second hex digit of byte of EBCDIC data |

 | output by |---|

 | EZACIC04 | 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F|

 |------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 0 |00|01|02|03|1A|09|1A|7F|1A|1A|1A|0B|0C|0D|0E|0F|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 1 |10|11|12|13|1A|0A|08|1A|18|19|1A|1A|1C|1D|1E|1F|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 2 |1A|1A|1C|1A|1A|0A|17|1B|1A|1A|1A|1A|1A|05|06|07|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 3 |1A|1A|16|1A|1A|1E|1A|04|1A|1A|1A|1A|14|15|1A|1A|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 4 |20|A6|E1|80|EB|90|9F|E2|AB|8B|9B|2E|3C|28|2B|7C|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 5 |26|A9|AA|9C|DB|A5|99|E3|A8|9E|21|24|2A|29|3B|5E|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | first | 6 |2D|2F|DF|DC|9A|DD|DE|98|9D|AC|BA|2C|25|5F|3E|3F|

 | hex |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | digit | 7 |D7|88|94|B0|B1|B2|FC|D6|FB|60|3A|23|40|27|3D|22|

 | of |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | byte | 8 |F8|61|62|63|64|65|66|67|68|69|96|A4|F3|AF|AE|C5|

 | of |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | EBCDIC | 9 |8C|6A|6B|6C|6D|6E|6F|70|71|72|97|87|CE|93|F1|FE|

 | data |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | A |C8|7E|73|74|75|76|77|78|79|7A|EF|C0|DA|5B|F2|AE|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | B |B5|B6|FD|B7|B8|B9|E6|BB|BC|BD|8D|D9|BF|5D|D8|C4|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | C |7B|41|42|43|44|45|46|47|48|49|CB|CA|BE|E8|EC|ED|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | D |7D|4A|4B|4C|4D|4E|4F|50|51|52|A1|AD|F5|F4|A3|8F|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | E |5C|E7|53|54|55|56|57|58|59|5A|A0|85|8E|E9|E4|D1|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | F |30|31|32|33|34|35|36|37|38|39|B3|F7|F0|FA|A7|FF|

 --

Figure 164. EZACIC04 EBCDIC-to-ASCII table

 WORKING-STORAGE SECTION.

 01 OUT-BUFFER PIC X(length of output).

 01 LENGTH PIC 9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZACIC04’ USING OUT-BUFFER LENGTH.

Figure 165. EZACIC04 call instruction example

350 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

LENGTH

Specifies the length of the data to be translated.

Chapter 8. Sockets extended API 351

EZACIC05

 The EZACIC05 program is used to translate ASCII data to EBCDIC data. EBCDIC

data is required by COBOL, PL/I, and assembler language programs.

Figure 166 shows an example of how EZACIC05 translates a byte of ASCII data to

EBCDIC data.

 Figure 167 shows an example of EZACIC05 call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

IN-BUFFER

A buffer that contains the following:

v When called – ASCII data

--

 | EBCDIC | second hex digit of byte of ASCII data |

 | output by |---|

 | EZACIC05 | 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F|

 |------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 0 |00|01|02|03|37|2D|2E|2F|16|05|25|0B|0C|0D|0E|0F|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 1 |10|11|12|13|3C|3D|32|26|18|19|3F|27|22|1D|35|1F|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 2 |40|5A|7F|7B|5B|6C|50|7D|4D|5D|5C|4E|6B|60|4B|61|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 3 |F0|F1|F2|F3|F4|F5|F6|F7|F8|F9|7A|5E|4C|7E|6E|6F|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 4 |7C|C1|C2|C3|C4|C5|C6|C7|C8|C9|D1|D2|D3|D4|D5|D6|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 5 |D7|D8|D9|E2|E3|E4|E5|E6|E7|E8|E9|AD|E0|BD|5F|6D|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | first | 6 |79|81|82|83|84|85|86|87|88|89|91|92|93|94|95|96|

 | hex |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | digit | 7 |97|98|99|A2|A3|A4|A5|A6|A7|A8|A9|C0|4F|D0|A1|07|

 | of |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | byte | 8 |00|01|02|03|37|2D|2E|2F|16|05|25|0B|0C|0D|0E|0F|

 | of |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | ASCII | 9 |10|11|12|13|3C|3D|32|26|18|19|3F|27|22|1D|35|1F|

 | data |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | A |40|5A|7F|7B|5B|6C|50|7D|4D|5D|5C|4E|6B|60|AF|61|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | B |F0|F1|F2|F3|F4|F5|F6|F7|F8|F9|7A|5E|4C|7E|6E|6F|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | C |7C|C1|C2|C3|C4|C5|C6|C7|C8|C9|D1|D2|D3|D4|D5|D6|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | D |D7|D8|D9|E2|E3|E4|E5|E6|E7|E8|E9|AD|E0|BD|5F|6D|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | E |79|81|82|83|84|85|86|87|88|89|91|92|93|94|95|96|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | F |97|98|99|A2|A3|A4|A5|A6|A7|A8|A9|C0|4F|D0|A1|07|

 --

Figure 166. EZACIC05 ASCII-to-EBCDIC

 WORKING-STORAGE SECTION.

 01 IN-BUFFER PIC X(length of output)

 01 LENGTH PIC 9(8) BINARY VALUE

 PROCEDURE DIVISION.

 CALL ’EZACIC05’ USING IN-BUFFER LENGTH.

Figure 167. EZACIC05 call instruction example

352 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

v Upon return – EBCDIC data

LENGTH

Specifies the length of the data to be translated.

Chapter 8. Sockets extended API 353

EZACIC06

 The SELECT call uses bit strings to specify the sockets to test and to return the

results of the test. Because bit strings are difficult to manage in COBOL, use the

assembler language program EZACIC06 to translate them to character strings to be

used with the SELECT call.

Figure 168 shows an example of EZACIC06 call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

TOKEN

Specifies a 16-character identifier. This identifier is required and it must be

the first parameter in the list.

CHAR-MASK

Specifies the character array where nn is the maximum number of sockets

in the array. The first character in the array represents socket 0, the second

represents socket 1, and so on. Keep in mind that the index is 1 greater

than the socket number. That is, CHAR-ENTRY(1) represents socket 0,

CHAR-ENTRY(2) represents socket 1, and so on.

BIT-MASK

Specifies the bit string to be translated for the SELECT call. Within each

fullword of the bit string, the bits are ordered right to left. The rightmost

bit in the first fullword represents socket 0 and the leftmost bit represents

socket 31. The rightmost bit in the second fullword represents socket 32

and the leftmost bit represents socket 63. The number of fullwords in the

bit string should be calculated by dividing the sum of 31 and the character

array length by 32 (truncate the remainder).

WORKING STORAGE

 01 CHAR-MASK.

 05 CHAR-STRING PIC X(nn).

 01 CHAR-ARRAY REDEFINES CHAR-MASK.

 05 CHAR-ENTRY-TABLE OCCURS nn TIMES.

 10 CHAR-ENTRY PIC X(1).

 01 BIT-MASK.

 05 BIT-ARRAY-FWDS OCCURS (nn+31)/32 TIMES.

 10 BIT_ARRAY_WORD PIC 9(8) COMP.

 01 BIT-FUNCTION-CODES.

 05 CTOB PIC X(4) VALUE ’CTOB’.

 05 BTOC PIC X(4) VALUE ’BTOC’.

 01 CHAR-MASK-LENGTH PIC 9(8) COMP VALUE nn.

 PROCEDURE CALL (to convert from character to binary)

 CALL ’EZACIC06’ USING CTOB

 BIT-MASK

 CHAR-MASK

 CHAR-MASK-LENGTH

 RETCODE.

 PROCEDURE CALL (to convert from binary to character)

 CALL ’EZACIC06’ USING BTOC

 BIT-MASK

 CHAR-MASK

 CHAR-MASK-LENGTH

 RETCODE.

Figure 168. EZACIC06 call instruction example

354 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

COMMAND

BTOC—Specifies bit string to character array translation.

 CTOB—Specifies character array to bit string translation.

CHAR-MASK-LENGTH

Specifies the length of the character array. This field should be no greater

than 1 plus the MAXSNO value returned on the INITAPI (which is usually

the same as the MAXSOC value specified on the INITAPI).

RETCODE

A binary field that returns one of the following:

Value Description

0 Successful call

−1 Check ERRNO for an error code

Examples: If you want to use the SELECT call to test sockets 0, 5, and 32, and

you are using a character array to represent the sockets, you must set the

appropriate characters in the character array to 1. In the following example, index

position 1, 6, and 33 in the character array are set to 1. Then you can call

EZACIC06 with the COMMAND parameter set to CTOB.

When EZACIC06 returns, the first fullword of BIT-MASK contains

B’00000000000000000000000000100001’ to indicate that sockets 0 and 5 are checked.

The second word of BIT-MASK contains B’00000000000000000000000000000001’ to

indicate that socket 32 is checked. These instructions process the bit string shown

in the following example:

MOVE ZEROS TO CHAR-STRING.

 MOVE ’1’ TO CHAR-ENTRY(1), CHAR-ENTRY(6), CHAR-ENTRY(33).

 CALL ’EZACIC06’ USING TOKEN CTOB BIT-MASK CH-MASK

 CHAR-MASK-LENGTH RETCODE.

 MOVE BIT-MASK TO

When the select call returns and you want to check the bit-mask string for socket

activity, enter the following instructions.

MOVE TO BIT-MASK.

 CALL ’EZACIC06’ USING TOKEN BTOC BIT-MASK CH-MASK

 CHAR-MASK-LENGTH RETCODE.

 PERFORM TEST-SOCKET THRU TEST-SOCKET-EXIT VARYING IDX

 FROM 1 BY 1 UNTIL IDX EQUAL CHAR-MASK-LENGTH.

 TEST-SOCKET.

 IF CHAR-ENTRY(IDX) EQUAL ’1’

 THEN PERFORM SOCKET-RESPONSE THRU

 SOCKET-RESPONSE-EXIT

 ELSE NEXT SENTENCE.

 TEST-SOCKET-EXIT.

 EXIT.

Chapter 8. Sockets extended API 355

EZACIC08

 The GETHOSTBYNAME and GETHOSTBYADDR calls were derived from C socket

calls that return a structure known as HOSTENT. A given TCP/IP stacks host can

have multiple alias names and host Internet addresses.

TCP/IP stacks uses indirect addressing to connect the variable number of alias

names and Internet addresses in the HOSTENT structure that is returned by the

GETHOSTBYADDR AND GETHOSTBYNAME calls.

If you are coding in PL/I or Assembler language, the HOSTENT structure can be

processed in a relatively straightforward manner. However, if you are coding in

COBOL, HOSTENT can be more difficult to process and you should use the

EZACIC08 subroutine to process it for you.

It works as follows:

v GETHOSTBYADDR or GETHOSTBYNAME returns a HOSTENT structure that

indirectly addresses the lists of alias names and Internet addresses.

v Upon return from GETHOSTBYADDR or GETHOSTBYNAME your program

calls EZACIC08 and passes it the address of the HOSTENT structure. EZACIC08

processes the structure and returns the following:

 1. The length of host name, if present

 2. The host name

 3. The number of alias names for the host

 4. The alias name sequence number

 5. The length of the alias name

 6. The alias name

 7. The host Internet address type, always 2 for AF_INET

 8. The host Internet address length, always 4 for AF_INET

 9. The number of host Internet addresses for this host

10. The host Internet address sequence number

11. The host Internet address
v If the GETHOSTBYADDR or GETHOSTBYNAME call returns more than one

alias name or host Internet address (steps 3 and 9 above), the application

program should repeat the call to EZACIC08 until all alias names and host

Internet addresses have been retrieved.

Figure 169 on page 357 shows an example of EZACIC08 call instructions.

356 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

HOSTENT-ADDR

This fullword binary field must contain the address of the HOSTENT

structure (as returned by the GETHOSTBYxxxx call). This variable is the

same as the variable HOSTENT in the GETHOSTBYADDR and

GETHOSTBYNAME socket calls.

HOSTALIAS-SEQ

This halfword field is used by EZACIC08 to index the list of alias names.

When EZACIC08 is called, it adds one to the current value of

HOSTALIAS-SEQ and uses the resulting value to index into the table of

alias names. Therefore, for a given instance of GETHOSTBYxxxx, this field

should be set to 0 for the initial call to EZACIC08. For all subsequent calls

to EZACIC08, this field should contain the HOSTALIAS-SEQ number

returned by the previous invocation.

HOSTADDR-SEQ

This halfword field is used by EZACIC08 to index the list of IP addresses.

When EZACIC08 is called, it adds one to the current value of

HOSTADDR-SEQ and uses the resulting value to index into the table of IP

addresses. Therefore, for a given instance of GETHOSTBYxxxx, this field

should be set to 0 for the initial call to EZACIC08. For all subsequent calls

to EZACIC08, this field should contain the HOSTADDR-SEQ number

returned by the previous call.

 WORKING-STORAGE SECTION.

 01 HOSTENT-ADDR PIC 9(8) BINARY.

 01 HOSTNAME-LENGTH PIC 9(4) BINARY.

 01 HOSTNAME-VALUE PIC X(255).

 01 HOSTALIAS-COUNT PIC 9(4) BINARY.

 01 HOSTALIAS-SEQ PIC 9(4) BINARY.

 01 HOSTALIAS-LENGTH PIC 9(4) BINARY.

 01 HOSTALIAS-VALUE PIC X(255).

 01 HOSTADDR-TYPE PIC 9(4) BINARY.

 01 HOSTADDR-LENGTH PIC 9(4) BINARY.

 01 HOSTADDR-COUNT PIC 9(4) BINARY.

 01 HOSTADDR-SEQ PIC 9(4) BINARY.

 01 HOSTADDR-VALUE PIC 9(8) BINARY.

 01 RETURN-CODE PIC 9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZASOKET’ USING ’GETHOSTBYADDR’

 HOSTADDR HOSTENT-ADDR

 RETCODE.

 CALL ’EZASOKET’ USING ’GETHOSTBYNAME’

 NAMELEN NAME HOSTENT-ADDR

 RETCODE.

 CALL ’EZACIC08’ USING HOSTENT-ADDR HOSTNAME-LENGTH

 HOSTNAME-VALUE HOSTALIAS-COUNT HOSTALIAS-SEQ

 HOSTALIAS-LENGTH HOSTALIAS-VALUE

 HOSTADDR-TYPE HOSTADDR-LENGTH HOSTADDR-COUNT

 HOSTADDR-SEQ HOSTADDR-VALUE RETURN-CODE

Figure 169. EZAZIC08 call instruction example

Chapter 8. Sockets extended API 357

Parameter values returned to the application

HOSTNAME-LENGTH

This halfword binary field contains the length of the host name (if host

name was returned).

HOSTNAME-VALUE

This 255-byte character string contains the host name (if host name was

returned).

HOSTALIAS-COUNT

This halfword binary field contains the number of alias names returned.

HOSTALIAS-SEQ

This halfword binary field is the sequence number of the alias name

currently found in HOSTALIAS-VALUE.

HOSTALIAS-LENGTH

This halfword binary field contains the length of the alias name currently

found in HOSTALIAS-VALUE.

HOSTALIAS-VALUE

This 255-byte character string contains the alias name returned by this

instance of the call. The length of the alias name is contained in

HOSTALIAS-LENGTH.

HOSTADDR-TYPE

This halfword binary field contains the type of host address. For FAMILY

type AF_INET, HOSTADDR-TYPE is always 2.

HOSTADDR-LENGTH

This halfword binary field contains the length of the host Internet address

currently found in HOSTADDR-VALUE. For FAMILY type AF_INET,

HOSTADDR-LENGTH is always set to 4.

HOSTADDR-COUNT

This halfword binary field contains the number of host Internet addresses

returned by this instance of the call.

HOSTADDR-SEQ

This halfword binary field contains the sequence number of the host

Internet address currently found in HOSTADDR-VALUE.

HOSTADDR-VALUE

This fullword binary field contains a host Internet address.

RETURN-CODE

This fullword binary field contains the EZACIC08 return code:

Value Description

0 Successful completion

-1 Invalid HOSTENT address

-2 Invalid HOSTALIAS-SEQ value

-3 Invalid HOSTADDR-SEQ value

358 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||
||

EZACIC09

 The GETADDRINFO call was derived from the C socket call that returns a

structure known as RES. A given TCP/IP stacks host can have multiple sets of

NAMES. TCP/IP stacks uses indirect addressing to connect the variable number of

NAMES in the RES structure that the GETADDRINFO call returns. If you are

coding in PL/I or Assembler language, the RES structure can be processed in a

relatively straightforward manner. However, if you are coding in COBOL, RES can

be more difficult to process and you should use the EZACIC09 subroutine to

process it for you. It works as follows:

v GETADDRINFO returns a RES structure that indirectly addresses the lists of

socket address structures.

v Upon return from GETADDRINFO, your program calls EZACIC09 and passes it

the address of the next address information structure as referenced by the NEXT

argument. EZACIC09 processes the structure and returns the following:

1. The socket address structure

2. The next address information structure
v If the GETADDRINFO call returns more than one socket address structure, the

application program should repeat the call to EZACIC09 until all socket address

structures have been retrieved.

Figure 170 on page 360 shows an example of EZACIC09 call instructions.

Chapter 8. Sockets extended API 359

WORKING-STORAGE SECTION.

 *

 * Variables used for the GETADDRINFO call

 *

 01 getaddrinfo-parms.

 02 node-name pic x(255).

 02 node-name-len pic 9(8) binary.

 02 service-name pic x(32).

 02 service-name-len pic 9(8) binary.

 02 canonical-name-len pic 9(8) binary.

 02 ai-passive pic 9(8) binary value 1.

 02 ai-canonnameok pic 9(8) binary value 2.

 02 ai-numerichost pic 9(8) binary value 4.

 02 ai-numericserv pic 9(8) binary value 8.

 02 ai-v4mapped pic 9(8) binary value 16.

 02 ai-all pic 9(8) binary value 32.

 02 ai-addrconfig pic 9(8) binary value 64.

 *

 * Variables used for the EZACIC09 call

 *

 01 ezacic09-parms.

 02 res usage is pointer.

 02 res-name-len pic 9(8) binary.

 02 res-canonical-name pic x(256).

 02 res-name usage is pointer.

 02 res-next-addrinfo usage is pointer.

 *

 * Socket address structure

 *

 01 server-socket-address.

 05 server-family pic 9(4) Binary Value 19.

 05 server-port pic 9(4) Binary Value 9997.

 05 server-flowinfo pic 9(8) Binary Value 0.

 05 server-ipaddr.

 10 filler pic 9(16) binary value 0.

 10 filler pic 9(16) binary value 0.

 05 server-scopeid pic 9(8) Binary Value 0.

 LINKAGE SECTION.

 01 L1.

 03 HINTS-ADDRINFO.

 05 HINTS-AI-FLAGS PIC 9(8) BINARY.

 05 HINTS-AI-FAMILY PIC 9(8) BINARY.

 05 HINTS-AI-SOCKTYPE PIC 9(8) BINARY.

 05 HINTS-AI-PROTOCOL PIC 9(8) BINARY.

 05 FILLER PIC 9(8) BINARY.

 05 FILLER PIC 9(8) BINARY.

 05 FILLER PIC 9(8) BINARY.

 05 FILLER PIC 9(8) BINARY.

 03 HINTS-ADDRINFO-PTR USAGE IS POINTER.

 03 RES-ADDRINFO-PTR USAGE IS POINTER.

 *

 * RESULTS ADDRESS INFO

 *

 01 RESULTS-ADDRINFO.

 05 RESULTS-AI-FLAGS PIC 9(8) BINARY.

 05 RESULTS-AI-FAMILY PIC 9(8) BINARY.

 05 RESULTS-AI-SOCKTYPE PIC 9(8) BINARY.

 05 RESULTS-AI-PROTOCOL PIC 9(8) BINARY.

 05 RESULTS-AI-ADDR-LEN PIC 9(8) BINARY.

 05 RESULTS-AI-CANONICAL-NAME USAGE IS POINTER.

 05 RESULTS-AI-ADDR-PTR USAGE IS POINTER.

 05 RESULTS-AI-NEXT-PTR USAGE IS POINTER.

Figure 170. EZACIC09 call instruction example (Part 1 of 2)

360 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

Parameter values set by the application

RES This fullword binary field must contain the address of the ADDRINFO

 *

 * SOCKET ADDRESS STRUCTURE FROM EZACIC09.

 *

 01 OUTPUT-NAME-PTR USAGE IS POINTER.

 01 OUTPUT-IP-NAME.

 03 OUTPUT-IP-FAMILY PIC 9(4) BINARY.

 03 OUTPUT-IP-PORT PIC 9(4) BINARY.

 03 OUTPUT-IP-SOCK-DATA PIC X(24).

 03 OUTPUT-IPV4-SOCK-DATA REDEFINES OUTPUT-IP-SOCK-DATA.

 05 OUTPUT-IPV4-IPADDR PIC 9(8) BINARY.

 05 FILLER PIC X(20).

 03 OUTPUT-IPV6-SOCK-DATA REDEFINES OUTPUT-IP-SOCK-DATA.

 05 OUTPUT-IPV6-FLOWINFO PIC 9(8) BINARY.

 05 OUTPUT-IPV6-IPADDR.

 10 FILLER PIC 9(16) BINARY.

 10 FILLER PIC 9(16) BINARY.

 05 OUTPUT-IPV6-SCOPEID PIC 9(8) BINARY.

 PROCEDURE DIVISION USING L1.

 *

 * Get an address from the resolver.

 *

 move ’yournodename’ to node-name.

 move 12 to node-name-len.

 move spaces to service-name.

 move 0 to service-name-len.

 move af-inet6 to hints-ai-family.

 move 49 to hints-ai-flags

 move 0 to hints-ai-socktype.

 move 0 to hints-ai-protocol.

 set address of results-addrinfo to res-addrinfo-ptr.

 set hints-addrinfo-ptr to address of hints-addrinfo.

 call ’EZASOKET’ using soket-getaddrinfo

 node-name node-name-len

 service-name service-name-len

 hints-addrinfo-ptr

 res-addrinfo-ptr

 canonical-name-len

 errno retcode.

 *

 * Use EZACIC09 to extract the IP address

 *

 set address of results-addrinfo to res-addrinfo-ptr.

 set res to address of results-addrinfo.

 move zeros to res-name-len.

 move spaces to res-canonical-name.

 set res-name to nulls.

 set res-next-addrinfo to nulls.

 call ’EZACIC09’ using res

 res-name-len

 res-canonical-name

 res-name

 res-next-addrinfo

 retcode.

 set address of output-ip-name to res-name.

 move output-ipv6-ipaddr to server-ipaddr.

Figure 170. EZACIC09 call instruction example (Part 2 of 2)

Chapter 8. Sockets extended API 361

structure (as returned by the GETADDRINFO call). This variable is the

same as the RES variable in the GETADDRINFO socket call.

RES-NAME-LEN

A fullword binary field that contains the length of the socket address

structure as returned by the GETADDRINFO call.

Parameter values returned to the application

RES-CANONICAL-NAME

A field large enough to hold the canonical name. The maximum field size

is 256 bytes. The canonical name length field indicates the length of the

canonical name as returned by the GETADDRINFO call.

RES-NAME

The address of the subsequent socket address structure.

RES-NEXT

The address of the next address information structure.

RETURN-CODE

This fullword binary field contains the EZACIC09 return code:

Value Description

0 Successful completion

-1 Invalid HOSTENT address

362 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

EZACIC14

 The EZACIC14 program is an alternative to EZACIC04, which is used to translate

EBCDIC data to ASCII data.

Figure 171 shows an example of how EZACIC14 translates a byte of EBCDIC data.

 Figure 172 shows an example of EZACIC14 call instructions.

For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

OUT-BUFFER

A buffer that contains the following:

v When called – EBCDIC data

v Upon return – ASCII data

 --

 | ASCII | second hex digit of byte of EBCDIC data |

 | output by |---|

 | EZACIC14 | 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F|

 |------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 0 |00|01|02|03|9C|09|86|7F|97|8D|8E|0B|0C|0D|0E|0F|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 1 |10|11|12|13|9D|85|08|87|18|19|92|8F|1C|1D|1E|1F|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 2 |80|81|82|83|84|0A|17|1B|88|89|8A|8B|8C|05|06|07|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 3 |90|91|16|93|94|95|96|04|98|99|9A|9B|14|15|9E|1A|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 4 |20|A0|E2|E4|E0|E1|E3|E5|E7|F1|A2|2E|3C|28|2B|7C|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 5 |26|E9|EA|EB|E8|ED|EE|EF|EC|DF|21|24|2A|29|3B|5E|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | first | 6 |2D|2F|C2|C4|C0|C1|C3|C5|C7|D1|A6|2C|25|5F|3E|3F|

 | hex |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | digit | 7 |F8|C9|CA|CB|C8|CD|CE|CF|CC|60|3A|23|40|27|3D|22|

 | of |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | byte | 8 |D8|61|62|63|64|65|66|67|68|69|AB|BB|F0|FD|FE|B1|

 | of |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | EBCDIC | 9 |B0|6A|6B|6C|6D|6E|6F|70|71|72|AA|BA|E6|B8|C6|A4|

 | data |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | A |B5|7E|73|74|75|76|77|78|79|7A|A1|BF|D0|5B|DE|AE|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | B |AC|A3|A5|B7|A9|A7|B6|BC|BD|BE|DD|A8|AF|5D|B4|D7|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | C |7B|41|42|43|44|45|46|47|48|49|AD|F4|F6|F2|F3|F5|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | D |7D|4A|4B|4C|4D|4E|4F|50|51|52|B9|FB|FC|F9|FA|FF|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | E |5C|F7|53|54|55|56|57|58|59|5A|B2|D4|D6|D2|D3|D5|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | F |30|31|32|33|34|35|36|37|38|39|B4|DB|DC|D9|DA|9F|

 --

Figure 171. EZACIC14 EBCDIC-to-ASCII table

 WORKING-STORAGE SECTION.

 01 OUT-BUFFER PIC X(length of output).

 01 LENGTH PIC 9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZACIC14’ USING OUT-BUFFER LENGTH.

Figure 172. EZACIC14 call instruction example

Chapter 8. Sockets extended API 363

LENGTH

Specifies the length of the data to be translated.

364 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

EZACIC15

 The EZACIC15 program is an alternative to EZACIC05 which is used to translate

ASCII data to EBCDIC data.

Figure 173 shows an example of how EZACIC15 translates a byte of ASCII data.

Figure 174 shows an example of EZACIC15 call instructions.

 For equivalent PL/I and assembler language declarations, see “Converting

parameter descriptions” on page 226.

OUT-BUFFER

A buffer that contains the following:

v When called – ASCII data

v Upon return – EBCDIC data

 --

 | EBCDIC | second hex digit of byte of ASCII data |

 | output by |---|

 | EZACIC15 | 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F|

 |------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 0 |00|01|02|03|37|2D|2E|2F|16|05|25|0B|0C|0D|0E|0F|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 1 |10|11|12|13|3C|3D|32|26|18|19|3F|27|1C|1D|1E|1F|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 2 |40|5A|7F|7B|5B|6C|50|7D|4D|5D|5C|4E|6B|60|4B|61|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 3 |F0|F1|F2|F3|F4|F5|F6|F7|F8|F9|7A|5E|4C|7E|6E|6F|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 4 |7C|C1|C2|C3|C4|C5|C6|C7|C8|C9|D1|D2|D3|D4|D5|D6|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | 5 |D7|D8|D9|E2|E3|E4|E5|E6|E7|E8|E9|AD|E0|BD|5F|6D|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | first | 6 |79|81|82|83|84|85|86|87|88|89|91|92|93|94|95|96|

 | hex |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | digit | 7 |97|98|99|A2|A3|A4|A5|A6|A7|A8|A9|C0|4F|D0|A1|07|

 | of |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | byte | 8 |20|21|22|23|24|15|06|17|28|29|2A|2B|2C|09|0A|1B|

 | of |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | ASCII | 9 |30|31|1A|33|34|35|36|08|38|39|3A|3B|04|14|3E|FF|

 | data |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | A |41|AA|4A|B1|9F|B2|6A|B5|BB|B4|9A|8A|B0|CA|AF|BC|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | B |90|8F|EA|FA|BE|A0|B6|B3|9D|DA|9B|8B|B7|B8|B9|A9|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | C |64|65|62|66|63|67|9E|68|74|71|72|73|78|75|76|77|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | D |AC|69|ED|EE|EB|EF|EC|BF|80|FD|FE|FB|FC|BA|AE|59|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | E |44|45|42|46|43|47|9C|48|54|51|52|53|58|55|56|57|

 | |---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 | | F |8C|49|CD|CE|CB|CF|CC|E1|70|DD|DE|DB|DC|8D|8E|DF|

 --

Figure 173. EZACIC15 ASCII-to-EBCDIC table

 WORKING-STORAGE SECTION.

 01 OUT-BUFFER PIC X(length of output).

 01 LENGTH PIC 9(8) BINARY.

 PROCEDURE DIVISION.

 CALL ’EZACIC15’ USING OUT-BUFFER LENGTH.

Figure 174. EZACIC15 call instruction example

Chapter 8. Sockets extended API 365

LENGTH

Specifies the length of the data to be translated.

366 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Appendix A. Original COBOL application programming

interface (EZACICAL)

The EZACICAL does not formally support IPv6 and it is not a recommended API.

This topic describes the first COBOL API provided with TCP/IP Version 2.2.1 for

MVS. It is referred to as the EZACICAL API to distinguish it from the Sockets

Extended API. (EZACICAL is the routine that is called for this API.)

It gives the format of each socket call and describes the call parameters. It starts

with guidance on compiling COBOL programs.

Using the EZACICAL or Sockets Extended API

The EZACICAL API (described in this topic) and the Sockets Extended API

(described in Chapter 8) both provide sockets APIs for COBOL, PL/I, and

Assembler language programs.

The Sockets Extended API is recommended because it has a simpler set of

parameters for each call.

You might want to use the EZACICAL API if you have existing TCP/IP Version

2.2.1. for MVS COBOL/assembler language programs that require maintenance or

modification.

COBOL compilation

The procedure that you use to compile a (non-CICS TCP/IP) source VS COBOL II

CICS program can be used for CICS TCP/IP programs, but it needs some

modification.

The modified JCL procedure is shown in Figure 175 on page 368. The procedure

contains 3 steps:

1. TRN translates the COBOL program

2. COB compiles the translated COBOL program

3. LKED link-edits the final module to a LOADLIB

© Copyright IBM Corp. 1994, 2007 367

//CICSRS2C JOB (999,POK),’CICSRS2’,NOTIFY=CICSRS2,

 // CLASS=A,MSGCLASS=T,TIME=1439,

 // REGION=5000K,MSGLEVEL=(1,1)

 //DFHEITVL PROC SUFFIX=1$,

 // INDEX=’CICS410’,

 // INDEX2=’CICS410’,

 // OUTC=*,

 // REG=2048K,

 // LNKPARM=’LIST,XREF’,

 // WORK=SYSDA

 //TRN EXEC PGM=DFHECP&SUFFIX,

 // PARM=’COBOL2’,

 // REGION=®

 //STEPLIB DD DSN=&INDEX2..SDFHLOAD,DISP=SHR

 //SYSPRINT DD SYSOUT=&OUTC

 //SYSPUNCH DD DSN=&&SYSCIN,

 // DISP=(,PASS),UNIT=&WORK,

 // DCB=BLKSIZE=400,

 // SPACE=(400,(400,100))

 //*

 //COB EXEC PGM=IGYCRCTL,REGION=®,

 // PARM=’NODYNAM,LIB,OBJECT,RENT,RES,APOST,MAP,XREF’

 //STEPLIB DD DSN=COBOL.V1R3M2.COB2COMP,DISP=SHR

 //SYSLIB DD DSN=&INDEX..SDFHCOB,DISP=SHR

 // DD DSN=&INDEX..SDFHMAC,DISP=SHR

 // DD DSN=CICSRS2.MAPA.DATA,DISP=SHR

 //SYSPRINT DD SYSOUT=&OUTC

 //SYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)

 //SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),

 // UNIT=&WORK,SPACE=(80,(250,100))

 //SYSUT1 DD UNIT=&WORK,SPACE=(460,(350,100))

 //SYSUT2 DD UNIT=&WORK,SPACE=(460,(350,100))

 //SYSUT3 DD UNIT=&WORK,SPACE=(460,(350,100))

 //SYSUT4 DD UNIT=&WORK,SPACE=(460,(350,100))

 //SYSUT5 DD UNIT=&WORK,SPACE=(460,(350,100))

 //SYSUT6 DD UNIT=&WORK,SPACE=(460,(350,100))

 //SYSUT7 DD UNIT=&WORK,SPACE=(460,(350,100))

 //* X

 //*

 //LKED EXEC PGM=IEWL,REGION=®,

 // PARM=’&LNKPARM’,COND=(5,LT,COB)

 //SYSLIB DD DSN=&INDEX2..SDFHLOAD,DISP=SHR

 // DD DSN=SYS1.COBOL.V1R3M2.COB2CICS,DISP=SHR

 // DD DSN=COBOL.V1R3M2.COB2LIB,DISP=SHR

 // DD DSN=hlq.SEZATCP,DISP=SHR

 //SYSLMOD DD DSN=CICSRS2.CICS410.PGMLIB,DISP=SHR

 //SYSUT1 DD UNIT=&WORK,DCB=BLKSIZE=1024,

 // SPACE=(1024,(200,20))

 //SYSPRINT DD SYSOUT=&OUTC

 //* X

 //SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

 // DD DDNAME=SYSIN

 // PEND

 //APPLPROG EXEC DFHEITVL

 //TRN.SYSIN DD DISP=SHR,DSN=CICSRS2.JCL.DATA(SISSRR1C)

 //LKED.SYSIN DD *

 INCLUDE SYSLIB(EZACICAL)

 NAME SISSRR1C(R)

 /*

Figure 175. Modified JCL for COBOL compilation

368 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

The EZACICAL API

The EZACICAL API can be used by assembler language, COBOL, or PL/I

programs and is invoked by calling the EZACICAL routine. Although the calls to

this routine perform the same function as the C language calls described in

Chapter 7, the parameters are presented differently because of the differences in the

languages. The equivalent to the return code provided by all C function calls is

found in a decimal value parameter included as the last parameter variable.

COBOL

The following is the ‘EZACICAL’ call format for COBOL:

TOKEN

A 16-character field with the value 'TCPIPIUCVSTREAMS'

COMMAND

A binary halfword of value from 1 to 32, identifying the socket call.

parmn The parameters particular to each socket call. For example, BIND,

described in “BIND” on page 371, has two such parameters: S (socket),

which is a halfword binary, and NAME, which is a structure specifying a

port name.

ERRNO

There is an error number in this field if the RETCODE is negative. This

field is used in most, but not all, of the calls. It corresponds to the global

errno variable in C.

RETCODE

A fullword binary variable containing the code returned by the EZACICAL

call. This value corresponds to the normal return value of a C function.

PL/I

The following is the ‘EZACICAL’ call format for PL/I:

TOKEN

A 16-character field with the value 'TCPIPIUCVSTREAMS'

COMMAND

A binary halfword of value from 1 to 32, identifying the socket call.

parmn The parameters particular to each socket call. For example, BIND,

described in “BIND” on page 371, has two such parameters: S (socket),

which is a halfword binary, and NAME, which is a structure specifying a

port name.

ERRNO

There is an error number in this field if the RETCODE is negative. This

field is used in most, but not all, of the calls. It corresponds to the global

errno variable in C.

�� CALL ‘EZACICAL’ USING TOKEN COMMAND parm1, parm2, ... ERRNO RETCODE. ��

�� CALL EZACICAL (TOKEN COMMAND parm1, parm2, ... ERRNO RETCODE); ��

Appendix A. Original COBOL application programming interface (EZACICAL) 369

RETCODE

A fullword binary variable containing the code returned by the EZACICAL

call. This value corresponds to the normal return value of a C function.

Assembler language

The following is the EZACICAL call format for assembler language:

 The parameter descriptions in this topic are written using the COBOL language

syntax and conventions. For assembler language, use the following conversions:

COBOL PIC

 PIC S9(4) COMP HALFWORD BINARY VALUE

 PIC S9(8) COMP FULLWORD BINARY VALUE

 PIC X(n) CHARACTER FIELD OF N BYTES

ASSEMBLER DECLARATION

 DS H HALFWORD BINARY VALUE

 DS F FULLWORD BINARY VALUE

 DS CLn CHARACTER FIELD OF n BYTES

COBOL and assembler language socket calls

The remainder of this topic describes the EZACICAL API call formats.

The descriptions assume you are using VS COBOL II. If you are using an earlier

version, the picture clauses should read COMP rather than BINARY.

The following abbreviations are used:

H Halfword

F Fullword

D Doubleword

CLn Character format, length n bytes

XLn Hexadecimal format, length n bytes

ACCEPT

This call functions in the same way as the equivalent call described “ACCEPT” on

page 226. The format of the COBOL call for ACCEPT is:

CALL ‘EZACICAL’ USING TOKEN COMMAND S ZERO-FWRD NEW-S NAME ERRNO RETCODE.

In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language”).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

ZERO-FWRD F PIC 9(8) BINARY

NEW-S F PIC S9(8) BINARY

NAME STRUCTURE:

�� CALL EZACICAL,(TOKEN,COMMAND, parm1, parm2, ... ERRNO RETCODE),VL ��

370 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Internet Family H PIC 9(4) BINARY

Port H PIC 9(4) BINARY

Internet Address F PIC 9(8) BINARY

Zeros XL8 PIC X(8)

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 1 for the ACCEPT command

S The descriptor of the local socket on which the connection is accepted

ZERO-FWRD

Set to zeros

NEW-S

Set to −1. The system returns the socket number in the RETCODE field.

Note: Be sure to use only the socket number returned by the system.

Parameter values returned to the application

NAME

Structure giving the name of the port to which the new socket is connected

Internet Family

AF-INET is always returned

Port The port address of the new socket

Internet Address

The IP address of the new socket

Zeros Set to binary zeros or LOW VALUES

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

The socket number for new socket is returned. A RETCODE of −1 indicates

an error.

BIND

This call functions in the same way as the equivalent call described in “BIND” on

page 229. The format of the COBOL call for the BIND function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

CALL ‘EZACICAL’ USING TOKEN COMMAND S NAME ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 371

S H PIC 9(4) BINARY

NAME STRUCTURE:

Internet Family H PIC 9(4) BINARY

Port H PIC 9(4) BINARY

Internet Address F PIC 9(8) BINARY

Zeros XL8 PIC X(8)

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 2 for the BIND command

S The descriptor of the local socket to be bound

NAME

Structure giving the name of the port to which the socket is to be bound,

consisting of:

Internet Family

Must be set to 2 (AF-INET)

Port The local port address to which the socket is to be bound

Internet Address

The local IP address to which the socket is to be bound

Zeros Set to binary zeros or low values

Parameter values returned to the application

NAME (Port)

If Port was set to 0, the system returns an available port.

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A return of 0 indicates a successful call. A return of −1 indicates an error.

CLOSE

This call functions in the same way as the equivalent call described in “CLOSE” on

page 232. The format of the COBOL call for the CLOSE function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

DZERO D PIC X(8)

ERRNO F PIC S9(8) BINARY

CALL ‘EZACICAL’ USING TOKEN COMMAND S DZERO ERRNO RETCODE.

372 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 3 for the CLOSE command

S The descriptor of the socket to be closed

DZERO

Set to binary zeros or low values

Parameter values returned to the application

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A return of 0 indicates a successful call. A return of −1 indicates an error.

CONNECT

This call functions in the same way as the equivalent call described in

“CONNECT” on page 233. The format of the COBOL call for the CONNECT

function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

NAME STRUCTURE:

Internet Family H PIC 9(4) BINARY

Port H PIC 9(4) BINARY

Internet Address F PIC 9(8) BINARY

Zeros XL8 PIC X(8)

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 4 for the CONNECT command

S The descriptor of the local socket to be used to establish a connection

NAME

Structure giving the name of the port to which the socket is to be

connected, consisting of:

CALL ‘EZACICAL’ USING TOKEN COMMAND S NAME ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 373

Internet Family

Must be set to 2 (AF-INET)

Port The remote port number to which the socket is to be connected

Internet Address

The remote IP address to which the socket is to be connected

Zeros Set to binary zeros or low values

Parameter values returned to the application

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A return of 0 indicates a successful call. A return of −1 indicates an error.

FCNTL

This call functions in the same way as the equivalent call described in “FCNTL” on

page 236. The format of the COBOL call for the FCNTL function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

CMD F PIC 9(8) BINARY

ARG F PIC 9(8)

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 5 for the FCNTL command

S The socket descriptor whose FNDELAY flag is to be set or queried

CMD Set a value of 3 to query the FNDELAY flag of socket s. This is equivalent

to setting the cmd parameter to F-GETFL in the fcntl() C call.

 Set a value of 4 to set the FNDELAY flag of socket s. This is equivalent to

setting the cmd parameter to F-SETFL in the fcntl() C call.

ARG If CMD is set to 4, setting ARG to 4 sets the FNDELAY flag; setting ARG

to 3 resets the FNDELAY flag.

Parameter values returned to the application

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

CALL ‘EZACICAL’ USING TOKEN COMMAND S CMD ARG ERRNO RETCODE.

374 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

RETCODE

If CMD was set to 3, a bit mask is returned. If CMD was set to 4, a

successful call is indicated by 0 in this field. In both cases, a RETCODE of

−1 indicates an error.

GETCLIENTID

This call functions in the same way as the equivalent call described in

“GETCLIENTID” on page 247. The format of the COBOL call for the

GETCLIENTID function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

HZERO H PIC 9(4) BINARY

DZERO D PIC X(8)

CLIENTID STRUCTURE:

Domain F PIC 9(8) BINARY

Name CL8 PIC X(8)

Task CL8 PIC X(8)

Reserved XL20 PIC X(20)

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 30 for the GETCLIENTID command

HZERO

Set to binary zeros or LOW VALUES

DZERO

Set to binary zeros or LOW VALUES

CLIENTID

Domain

Must be set to 2 (AF-INET)

Parameter values returned to the application

CLIENTID

Structure identifying the client as follows:

Name Address space identification is returned

Task Task identification is returned

Reserved

Zeros or LOW VALUES are returned

CALL ‘EZACICAL’ USING TOKEN COMMAND HZERO DZERO CLIENTID ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 375

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A return of 0 indicates a successful call. A return of −1 indicates an error.

GETHOSTID

This call functions in the same way as the equivalent call described in

“GETHOSTBYADDR” on page 248. The format of the COBOL call for the

GETHOSTID function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

HZERO H PIC 9(4) BINARY

DZERO D PIC X(8)

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 7 for the GETHOSTID command

HZERO

Set to binary zeros or low values

DZERO

Set to binary zeros or low values

Parameter values returned to the application

ERRNO

This field is not used

RETCODE

Returns a fullword binary field containing the 32-bit Internet address of the

host. A value of -1 is a call failure, probably indicating that an INITAPI call

has not been issued. There is no ERRNO parameter for this call.

GETHOSTNAME

This call functions in the same way as the equivalent call described in

“GETHOSTBYNAME” on page 250.

Result: The host name returned is the host name the TCPIP stack learned at

startup from the TCPIP.DATA file.

The format of the COBOL call for the GETHOSTNAME function is:

CALL ‘EZACICAL’ USING TOKEN COMMAND HZERO DZERO ERRNO RETCODE.

376 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|

In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

HZERO H PIC 9(4) BINARY

DZERO D PIC X(8)

NAMELEN F PIC 9(8) BINARY

NAME NAMELEN

or larger

NAMELEN or larger

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 8 for the GETHOSTNAME command

HZERO

Set to 0

DZERO

Set to binary zeros or low values

NAMELEN

The length of the NAME field. The minimum length of the NAME field is

1 character. The maximum length of the NAME field is 255 characters.

Parameter values returned to the application

NAME

The host name returned from the call. If the host name is shorter than the

NAMELEN value, then the NAME field is filled with binary zeros after the

host name. If the host name is longer than the NAMELEN value, then the

name is truncated.

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A return of 0 indicates a successful call. A return of −1 indicates an error.

GETPEERNAME

This call functions in the same way as the equivalent call described in

“GETPEERNAME” on page 258. The format of the COBOL call for the

GETPEERNAME function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

CALL ‘EZACICAL’ USING TOKEN COMMAND HZERO DZERO NAMELEN NAME ERRNO RETCODE.

CALL ‘EZACICAL’ USING TOKEN COMMAND S DZERO NAME ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 377

|
|
|

|
|
|
|

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

DZERO D PIC X(8)

NAME CL16 PIC X(16)

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 9 for the GETPEERNAME command

S The descriptor of the local socket connected to the requested peer

DZERO

Set to binary zeros or low values

Parameter values returned to the application

NAME

The peer name returned from the call

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A return of 0 indicates a successful call. A return of −1 indicates an error.

GETSOCKNAME

This call functions in the same way as the equivalent call described in

“GETSOCKNAME” on page 260. The format of the COBOL call for the

GETSOCKNAME function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

DZERO D PIC X(8)

NAME STRUCTURE:

Internet Family H PIC 9(4) BINARY

Port H PIC 9(4) BINARY

Internet Address F PIC 9(8) BINARY

Zeros XL8 PIC X(8)

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

CALL ‘EZACICAL’ USING TOKEN COMMAND S DZERO NAME ERRNO RETCODE.

378 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 10 for the GETSOCKNAME command

S The descriptor of the local socket whose address is required

DZERO

Set to binary zeros or low values

NAME

Structure giving the name of the port to which the socket is bound,

consisting of:

Internet Family

Must be set to 2 (AF-INET).

Port The local port address to which the socket is bound

Internet Address

The local IP address to which the socket is bound

Zeros Set to binary zeros or low values

Parameter values returned to the application

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A return of 0 indicates a successful call. A return of −1 indicates an error.

GETSOCKOPT

This call functions in the same way as the equivalent call described in

“GETSOCKOPT” on page 262. The format of the COBOL call for the

GETSOCKOPT function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

LEVEL F PIC X(4)

OPTNAME F PIC X(4)

OPTLEN F PIC 9(8) BINARY

OPTVAL CL4 PIC X(4)

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

CALL ‘EZACICAL’

 USING TOKEN COMMAND S LEVEL OPTNAME OPTLEN OPTVAL ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 379

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 11 for the GETSOCKOPT command

S The descriptor of the socket whose option settings are required

LEVEL

This must be set to X'0000FFFF'.

OPTNAME

Set this field to specify the option to be queried, as shown below. For a

description of these options, see “GETSOCKOPT” on page 262

Value Meaning

X'00000004' SO-REUSEADDR

X'00000020' SO-BROADCAST

X'00001007' SO-ERROR

X'00000080' SO-LINGER

X'00000100' SO-OOBINLINE

X'00001001' SO-SNDBUF

X'00001008' SO-TYPE

X'80000008' TCP_KEEPALIVE

X'80000001' TCP_NODELAY

Parameter values returned to the application

OPTLEN

The length of the option data

OPTVAL

The value of the option. For all options except SO-LINGER, an integer

indicates that the option is enabled, while a 0 indicates it is disabled. For

SO-LINGER, the following structure is returned:

 ONOFF F PIC X(4)

 LINGER F PIC 9(4)

A nonzero value of ONOFF indicates that the option is enabled, and 0, that

it is disabled. The LINGER value indicates the amount of time to linger

after close.

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A return of 0 indicates a successful call. A return of −1 indicates an error.

GIVESOCKET

This call functions in the same way as the equivalent call described in

“GIVESOCKET” on page 274. The format of the COBOL call for the GIVESOCKET

function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

CALL ‘EZACICAL’ USING TOKEN COMMAND S CLIENTID ERRNO RETCODE.

380 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

CLIENTID STRUCTURE:

Domain F PIC 9(8) BINARY

Name CL8 PIC X(8)

Task CL8 PIC X(8)

Reserved XL20 PIC X(20)

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 31 for the GIVESOCKET command

S The socket descriptor of the socket to be given

CLIENTID

Structure identifying the client ID of this application, as follows:

Domain

Must be set to 2 (AF-INET)

Name Set to the address space identifier obtained from GETCLIENTID

Task Set to blanks

Reserved

Set to binary zeros or low values

Parameter values returned to the application

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A return of 0 indicates a successful call. A return of −1 indicates an error.

INITAPI

The format of the COBOL call for the INITAPI function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

MAX-SOCK H PIC 9(4) BINARY

API H PIC 9(4) BINARY

SUBTASK XL8 PIC X(8)

CALL ‘EZACICAL’

 USING TOKEN COMMAND FZERO MAX-SOCK API SUBTASK FZERO ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 381

FZERO F PIC 9(8) BINARY

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 0 for the INITAPI command

MAX-SOCK

The maximum number of sockets to be supported in this application. This

value cannot exceed 65535. The minimum value is 50.

API Must be set to 2, indicating use of the sockets API

SUBTASK

A unique subtask identifier. It should consist of the 7-character CICS task

number and any printable character.

Note: Using the letter L as the last character in the subtask parameter

causes the tasking mechanism to assume the CICS transaction is a

Listener and schedule it using a non-reusable subtask by way of

MVS attach processing when OTE=NO. This has no effect when

OTE=YES.

FZERO

Zeros

Parameter values returned to the application

ERRNO

If RETCODE=0, contains the highest socket number available to this

program.

RETCODE

A return of 0 indicates a successful call. A return of −1 indicates an error.

IOCTL

This call functions in the same way as the equivalent call described in “IOCTL” on

page 278. The format of the COBOL call for the IOCTL function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

IOCTLCMD F PIC 9(8)

REQARG var var

RETARG var var

ERRNO F PIC S9(8) BINARY

CALL ‘EZACICAL’

 USING TOKEN COMMAND S IOCTLCMD REQARG RETARG ERRNO RETCODE.

382 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to ’TCPIPIUCVSTREAMS’

COMMAND

Must be set to 12 for the IOCTL command

S The descriptor of the socket to be controlled

IOCTLCMD

Set to the command value to be passed to IOCTL. See “IOCTL” on page

278 for values and descriptions.

REQARG

The request argument associated with the command. See “IOCTL” on page

278 for a list and description of possible argument values.

Parameter values returned to the application

RETARG

The return argument. See “IOCTL” on page 278 for a description of the

return argument for each command.

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A return value of 0 indicates a successful call. A return value of −1

indicates an error.

LISTEN

This call functions in the same way as the equivalent call described in “LISTEN”

on page 289. The format of the COBOL call for the LISTEN function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

FZERO F PIC 9(8) BINARY

BACKLOG F PIC 9(8) BINARY

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 13 for the LISTEN command

CALL ‘EZACICAL’ USING TOKEN COMMAND S FZERO BACKLOG ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 383

S The descriptor of the socket that is going to listen for incoming connection

requests

FZERO

Set to binary zeros or low values

BACKLOG

Set to the number of connection requests to be queued.

Note: The BACKLOG value specified on the LISTEN command cannot be

greater than the value configured by the SOMAXCONN statement

in the stack’s TCPIP PROFILE (default=10); no error is returned if a

larger backlog is requested. If you want a larger backlog, update the

SOMAXCONN statement. See z/OS Communications Server: IP

Configuration Reference for details.

Parameter values returned to the application

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A return value of 0 indicates a successful call. A return value of −1

indicates an error.

READ

This call functions in the same way as the equivalent call described in “READ” on

page 294. The format of the COBOL call for the READ function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see“Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

DZERO D PIC X(8)

NBYTE F PIC 9(8) BINARY

FILLER CL16 PIC X(16)

BUF NBYTE or

larger

NBYTE or larger

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 14 for the READ command

S The descriptor of the socket that is going to read data

CALL ‘EZACICAL’

 USING TOKEN COMMAND S DZERO NBYTE FILLER BUF ERRNO RETCODE.

384 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|

DZERO

Set to binary zeros or low values

NBYTE

Set to the length of the buffer (maximum 32 767 bytes)

Parameter values returned to the application

FILLER

Your program should ignore this field.

BUF The input buffer.

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A positive value indicates the number of bytes copied into the buffer. A

value of 0 indicates that the socket is closed. A value of −1 indicates an

error.

 See “EZACIC05” on page 352 for a subroutine that translates ASCII data to

EBCDIC.

RECVFROM

This call functions in the same way as the equivalent call described in “RECV” on

page 297. The format of the COBOL call for the RECVFROM function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

FZERO F PIC 9(8) BINARY

FLAGS F PIC 9(8) BINARY

NBYTE F PIC 9(8) BINARY

FROM CL16 PIC X(16)

BUF NBYTE or

larger

NBYTE or larger

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 16 for the RECVFROM command

S The descriptor of the socket receiving data

FZERO

Set to binary zeros or low values

CALL ‘EZACICAL’

 USING TOKEN COMMAND S FZERO FLAGS NBYTE FROM BUF ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 385

FLAGS

Set to 2 to peek at (read) data, but not destroy it, so that any subsequent

RECVFROM calls reads the same data. CICS TCP/IP does not support

out-of-band data.

NBYTE

Set to the length of the input buffer. This length cannot exceed 32 768

bytes.

Parameter values returned to the application

FROM

The socket address structure identifying the from address of the data.

BUF The input buffer.

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A positive value indicates the number of bytes copied into the buffer. A

value of 0 indicates that the socket is closed. A value of −1 indicates an

error.

 See “EZACIC05” on page 352 for a subroutine that translates ASCII data to

EBCDIC.

SELECT

This call functions in the same way as the equivalent call describedin “SELECT”

on page 307. The format of the COBOL call for the SELECT function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

LOM H PIC 9(4) BINARY

NUM-FDS F PIC 9(8) BINARY

TIME-SW F PIC 9(8) BINARY

RD-SW F PIC 9(8) BINARY

WR-SW F PIC 9(8) BINARY

EX-SW F PIC 9(8) BINARY

TIMEOUT STRUCTURE:

Seconds F PIC 9(8) BINARY

Milliseconds F PIC 9(8) BINARY

RD-MASK Length Of Mask* Length Of Mask*

WR-MASK Length of Mask* Length of Mask*

EX-MASK Length of Mask* Length of Mask*

DZERO D PIC X(8)

R-R-MASK Length of Mask* Length of Mask*

CALL ‘EZACICAL’ USING TOKEN COMMAND LOM NUM-FDS

TIME-SW RD-SW WR-SW EX-SW

TIMEOUT RD-MASK WR-MASK EX-MASK

DZERO R-R-MASK R-W-MASK R-E-MASK

ERRNO RETCODE.

386 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

R-W-MASK Length of Mask* Length of Mask*

R-E-MASK Length of Mask* Length of Mask*

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

*How to calculate Length of Mask (LOM):

1. LOM = ((NUM-FDS + 31)/32) * 4, using integer arithmetic.

2. So, for NUM-FDS ≤ 32, LOM = 4 bytes.

3. For 33 ≤ NUM-FDS ≤ 64, LOM = 8 bytes, and so on.

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 19 for the SELECT command

LOM Set to the length of mask. The calculation method is given above.

NUM-FDS

The number of socket descriptors to check. For efficiency, it should be set

to the largest number of socket descriptors plus 1.

TIME-SW

Set to 0 to specify a wait forever on socket descriptor activity. Set to 1 to

specify a timeout value; this blocks the call until the timeout value is

exceeded or until there is socket activity.

RD-SW

Set either 0 (do not check for read interrupts) or 1 (check for read

interrupts).

WR-SW

Set either 0 (do not check for write interrupts) or 1 (check for write

interrupts).

EX-SW

Set either 0 (do not check for exception interrupts) or 1 (check for

exception interrupts).

TIMEOUT

Use this structure to set the timeout value if no activity is detected. Setting

this structure to (0,0) indicates that SELECT should act as a polling

function; that is, as nonblocking.

Seconds

Set to the seconds component of the timeout value.

Milliseconds

Set to the milliseconds component of the timeout value (in the range 0

through 999).

RD-MASK

Set the bit mask array for reads. See z/OS Communications Server: IP

Programmer’s Guide and Reference for more information.

WR-MASK

Set the bit mask array for writes. See z/OS Communications Server: IP

Programmer’s Guide and Reference for more information.

Appendix A. Original COBOL application programming interface (EZACICAL) 387

EX-MASK

Set the bit mask array for exceptions. See z/OS Communications Server: IP

Programmer’s Guide and Reference for more information.

DZERO

Set to binary zeros or low values.

Parameter values returned to the application

R-R-MASK

Returned bit mask array for reads. See z/OS Communications Server: IP

Programmer’s Guide and Reference for more information.

R-W-MASK

Returned bit mask array for writes. See z/OS Communications Server: IP

Programmer’s Guide and Reference for more information.

R-E-MASK

Returned bit mask array for exceptions. See z/OS Communications Server: IP

Programmer’s Guide and Reference for more information.

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A positive value indicates the total number of ready sockets in all bit

masks. A value of 0 indicates an expired time limit. A value of −1 indicates

an error.

SEND

This call functions in the same way as the equivalent call described in “SEND” on

page 317. The format of the COBOL call for the SEND function is:

CALL ‘EZACICAL’ USING TOKEN COMMAND S NBYTE FLAGS DZERO BUF ERRNO RETCODE.

In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

NBYTE F PIC 9(8) BINARY

FLAGS F PIC 9(8) BINARY

DZERO D PIC X(8)

BUF NBYTE or

larger

NBYTE or larger

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 20 for the SEND command

S The descriptor of the socket sending the data

388 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

NBYTE

Set to the number of bytes to be transmitted (maximum 32 768 bytes)

FLAGS

Set to 0 (no flags) or 4 (do not route, routing is provided). CICS TCP/IP

does not support out-of-band data.

DZERO

Set to binary zeros or low values

BUF Buffer from which data is transmitted

Parameter values returned to the application

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A value of −1 indicates an error. Other values have no meaning.

 See “EZACIC04” on page 350 for a subroutine that translates EBCDIC data to

ASCII.

SENDTO

This call functions in the same way as the equivalent call described in “SENDTO”

on page 323. The format of the COBOL call for the SENDTO function is:

CALL ‘EZACICAL’ USING TOKEN COMMAND S LEN FLAGS NAME BUF ERRNO RETCODE.

In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

LEN F PIC 9(8) BINARY

FLAGS F PIC 9(8) BINARY

NAME STRUCTURE:

in-family H PIC 9(4) BINARY

in-port H PIC 9(4) BINARY

in-address F PIC 9(8) BINARY

dzero D PIC X(8)

BUF LEN or

larger

LEN or larger

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 22 for the SENDTO command

S The descriptor of the socket sending the data

LEN The number of bytes to be transmitted (maximum 32 768 bytes)

Appendix A. Original COBOL application programming interface (EZACICAL) 389

FLAGS

Set to 0 (no flags) or 4 (do not route, routing is provided)

NAME

Structure specifying the address to which data is to be sent, as follows:

in-family

Must be set to 2 (AF-INET)

in-port Set to the port number for receiver

in-address

Set to the IP address for receiver

dzero Set to binary zeros or low values

BUF Set to the buffer from which data is transmitted

Parameter values returned to the application

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A value of −1 indicates an error. Other values have no meaning.

 See “EZACIC04” on page 350 for a subroutine that translates EBCDIC data to

ASCII.

SETSOCKOPT

This call functions in the same way as the equivalent call described

“GETSOCKOPT” on page 262. The format of the COBOL call for the

SETSOCKOPT function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

LEN F PIC 9(8) BINARY

LEVEL F PIC X(4)

OPTNAME F PIC 9(8) BINARY

OPTVAL CL4 PIC X(4)

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to ’TCPIPIUCVSTREAMS’

COMMAND

Must be set to 23 for the SETSOCKOPT command

CALL ‘EZACICAL’

 USING TOKEN COMMAND S LEN LEVEL OPTNAME OPTVAL ERRNO RETCODE.

390 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

S The descriptor of the socket whose options are to be set

LEN Set to the length of OPTVAL

LEVEL

This must be set to X'0000FFFF'.

OPTNAME

Set this field to specify the option to be set, as shown below. See

“SETSOCKOPT” on page 326 for a description of these settings.

Value Meaning

X'00000020' SO-BROADCAST

X'00000080' SO-LINGER

X'00000100' SO-OOBINLINE

X'00000004' SO-REUSEADDR

X'80000008' TCP_KEEPALIVE

X'80000001' TCP_NODELAY

OPTVAL

For SO-BROADCAST, SO-OOBINLINE, and SO-REUSEADDR, set to a

nonzero integer to enable the option specified in OPTNAME, and set to 0

to disable the option. For SO-LINGER, see the equivalent OPTVAL

parameter in “SETSOCKOPT” on page 326.

Parameter values returned to the application

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A return value of 0 indicates a successful call. A return value of −1

indicates an error.

SHUTDOWN

This call functions in the same way as the equivalent call described in

“SHUTDOWN” on page 338. The format of the COBOL call for the SHUTDOWN

function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

FZERO F PIC 9(8) BINARY

HOW F PIC 9(8) BINARY

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

CALL ‘EZACICAL’ USING TOKEN COMMAND S FZERO HOW ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 391

||

COMMAND

Must be set to 24 for the SHUTDOWN command

S The descriptor of the socket to be shut down

FZERO

Set to zeros

HOW Set this to specify whether all or part of a connection is to be shut down,

as follows:

Value Meaning

0 Ends communication from the socket

1 Ends communication to the socket

2 Ends communication both to and from the socket

Parameter values returned to the application

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

A return value of 0 indicates a successful call. A return value of −1

indicates an error.

SOCKET

This call functions in the same way as the equivalent call described in “SOCKET”

on page 340. The format of the COBOL call for the SOCKET function is:

CALL ‘EZACICAL’

 USING TOKEN COMMAND HZERO AF TYPE PROTOCOL SOCKNO ERRNO RETCODE.

In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

HZERO H PIC 9(4) BINARY

AF F PIC 9(8) BINARY

TYPE F PIC 9(8) BINARY

PROTOCOL F PIC 9(8) BINARY

SOCKNO F PIC S9(8) BINARY

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to ’TCPIPIUCVSTREAMS’

COMMAND

Must be set to 25 for the SOCKET command

HZERO

Set to binary zeros or low values

AF Must be set to 2 (AF-INET)

TYPE Set to 1 for TCP sockets; 2 for UDP sockets.

392 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

PROTOCOL

Set to 0. (The system selects the appropriate protocol for the TYPE

specified above.)

SOCKNO

Set to −1. The system returns the socket number in the RETCODE field.

Note: Use only the socket number returned by the system.

Parameter values returned to the application

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

The socket number for the new socket is returned. A RETCODE of −1

indicates an error.

TAKESOCKET

This call functions in the same way as the equivalent call described in

“TAKESOCKET” on page 342. The format of the COBOL call for the

TAKESOCKET function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

HZERO H PIC 9(4) BINARY

CLIENTID STRUCTURE:

Domain F PIC 9(8) BINARY

Name CL8 PIC X(8)

Task CL8 PIC X(8)

Reserved CL20 PIC X(20)

L-DESC F PIC 9(8) BINARY

SOCKNO F PIC S9(8) BINARY

ERRNO F PIC 9(8) BINARY

RETCODE F PIC 9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 32 for the TAKESOCKET command

HZERO

Set to zeros

CLIENTID

Structure specifying the client ID of this program:

CALL ‘EZACICAL’

 USING TOKEN COMMAND HZERO CLIENTID L-DESC SOCKNO ERRNO RETCODE.

Appendix A. Original COBOL application programming interface (EZACICAL) 393

Domain

Must be set to 2 (AF-INET)

Name Set to address space identifier, obtained from GETCLIENTID

Task Set to CICS task number with L at the right end

Reserved

Set to binary zeros or LOW VALUES

L-DESC

Set to the descriptor (as used by the socket-giving program) of the socket

being passed.

SOCKNO

Set to −1. The system returns the socket number in the RETCODE field.

Note: Be sure to use only the socket number returned by the system.

Parameter values returned to the application

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

The socket number for the new socket is returned. A RETCODE of −1

indicates an error.

WRITE

This call functions in the same way as the equivalent call described in “WRITE” on

page 344. The format of the COBOL call for the WRITE function is:

 In assembler language, issue the macro call CALL EZACICAL, using standard

assembler call syntax (for the call format, see “Assembler language” on page 370).

Parameter lengths in assembler language and COBOL

 TOKEN CL16 PIC X(16)

COMMAND H PIC 9(4) BINARY

S H PIC 9(4) BINARY

NBYTE F PIC 9(8) BINARY

FZERO F PIC 9(8) BINARY

SZERO XL16 PIC X(16)

BUF NBYTE or larger NBYTE or larger

ERRNO F PIC 9(8) BINARY

RETCODE F PIC S9(8) BINARY

Parameter values to be set by the application

TOKEN

Must be set to 'TCPIPIUCVSTREAMS'

COMMAND

Must be set to 26 for the WRITE command

S The descriptor of the socket from which data is to be transmitted

CALL ‘EZACICAL’ USING TOKEN COMMAND S NBYTE FZERO SZERO BUF ERRNO RETCODE.

394 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

NBYTE

Set to the number of bytes of data to be transmitted. This value cannot

exceed 32 768 bytes.

FZERO

Set to binary zeros or LOW VALUES

SZERO

Set to binary zeros or LOW VALUES

BUF Buffer containing data to be transmitted

Parameter values returned to the application

ERRNO

If RETCODE is negative, this contains an error number. Error numbers are

described in Appendix B, “Return codes,” on page 397.

RETCODE

The number of bytes written is returned. A RETCODE of −1 indicates an

error.

 See “EZACIC04” on page 350 for a subroutine that translates EBCDIC data to

ASCII.

Appendix A. Original COBOL application programming interface (EZACICAL) 395

396 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Appendix B. Return codes

This topic covers the following return codes and error messages:

v Error numbers from z/OS TCP/IP.

v Error codes from the Sockets Extended interface.

Sockets return codes (ERRNOs)

This section provides the system-wide message numbers and codes set by the

system calls. These message numbers and codes are in the TCPERRNO.H include

file supplied with TCP/IP Services.

 Table 24. Sockets ERRNOs

Error

number Message name

Socket

type Error description Programmer’s response

1 EAI_NONAME GETADDRINFO

GETNAMEINFO

NODE or HOST cannot

be found.

Ensure the NODE or

HOST name can be

resolved.

1 EPERM All Permission is denied.

No owner exists.

Check that TPC/IP is

still active; check

protocol value of socket

() call.

1 EPERM IOCTL (SIOCTTLSCTL

requesting both TTLS_INIT_

CONNECTION and

TTLS_RESET_ SESSION or

both TTLS_INIT_

CONNECTION and

TTLS_RESET_ CIPHER)

The combination of

requests specified is not

permitted.

Request

TTLS_RESET_SESSION

and

TTLS_RESET_CIPHER

only when TTLS_INIT_

CONNECTION has

been previously

requested for the

connection.

1 EDOM All Argument too large. Check parameter values

of the function call.

2 EAI_AGAIN FREEADDRINFO

GETADDRINFO

GETNAMEINFO

For GETADDRINFO,

NODE could not be

resolved within the

configured time

interval. For

GETNAMEINFO,

HOST could not be

resolved within the

configured time

interval. The Resolver

address space has not

been started. The

request can be retried

later.

Ensure the Resolver is

active, then retry the

request.

2 ENOENT All The data set or

directory was not

found.

Check files used by the

function call.

2 ERANGE All The result is too large. Check parameter values

of the function call.

© Copyright IBM Corp. 1994, 2007 397

Table 24. Sockets ERRNOs (continued)

Error

number Message name

Socket

type Error description Programmer’s response

3 EAI_FAIL FREEADDRINFO

GETADDRINFO

GETNAMEINFO

This is an

unrecoverable error.

NODELEN, HOSTLEN,

or SERVLEN is

incorrect. For

FREEADDRINFO, the

resolver storage does

not exist.

Correct the NODELEN,

HOSTLEN, or

SERVLEN. Otherwise,

call your system

administrator.

3 ESRCH All The process was not

found. A table entry

was not located.

Check parameter values

and structures pointed

to by the function

parameters.

4 EAI_OVERFLOW GETNAMEINFO The output buffer for

the host name or

service name was too

small.

Increase the size of the

buffer to 255 characters,

which is the maximum

size permitted.

4 EINTR All A system call was

interrupted.

Check that the socket

connection and TCP/IP

are still active.

5 EAI_FAMILY GETADDRINFO

GETNAMEINFO

The AF or the FAMILY

is incorrect.

Correct the AF or the

FAMILY.

5 EIO All An I/O error occurred. Check status and

contents of source

database if this

occurred during a file

access.

6 EAI_MEMORY GETADDRINFO

GETNAMEINFO

The resolver cannot

obtain storage to

process the host name.

Contact your system

administrator.

6 ENXIO All The device or driver

was not found.

Check status of the

device attempting to

access.

7 E2BIG All The argument list is too

long.

Check the number of

function parameters.

7 EAI_BADFLAGS GETADDRINFO

GETNAMEINFO

FLAGS has an incorrect

value.

Correct the FLAGS.

8 EAI_SERVICE GETADDRINFO The SERVICE was not

recognized for the

specified socket type.

Correct the SERVICE.

8 ENOEXEC All An EXEC format error

occurred.

Check that the target

module on an exec call

is a valid executable

module.

9 EAI_SOCKTYPE GETADDRINFO The SOCTYPE was not

recognized.

Correct the SOCTYPE.

9 EBADF All An incorrect socket

descriptor was

specified.

Check socket descriptor

value. It might be

currently not in use or

incorrect.

9 EBADF Givesocket The socket has already

been given. The socket

domain is not AF_INET

or AF_INET6.

Check the validity of

function parameters.

9 EBADF Select One of the specified

descriptor sets is an

incorrect socket

descriptor.

Check the validity of

function parameters.

ERRNOs

398 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||||
|
|
|

|
|
|
|

Table 24. Sockets ERRNOs (continued)

Error

number Message name

Socket

type Error description Programmer’s response

9 EBADF Takesocket The socket has already

been taken.

Check the validity of

function parameters.

9 EAI_SOCKTYPE GETADDRINFO The SOCTYPE was not

recognized.

Correct the SOCTYPE.

10 ECHILD All There are no children. Check if created

subtasks still exist.

11 EAGAIN All There are no more

processes.

Retry the operation.

Data or condition might

not be available at this

time.

12 ENOMEM All There is not enough

storage.

Check the validity of

function parameters.

13 EACCES All Permission denied,

caller not authorized.

Check access authority

of file.

13 EACCES Takesocket The other application

(listener) did not give

the socket to your

application. Permission

denied, caller not

authorized.

Check access authority

of file.

13 EACCES IOCTL (SIOCTTLSCTL) The IOCTL is

requesting a function

that requires that the

socket be mapped to

policy that specifies

ApplicationControlled

On.

Check policy and add

ApplicationControlled

On if the application

should be permitted to

issue the controlled

SIOCTTLSCTL

functions.

14 EFAULT All An incorrect storage

address or length was

specified.

Check the validity of

function parameters.

14 EFAULT IOCTL (SIOCSAPPLDATA) An abend occurred

while attempting to

copy the

SetADcontainer

structure from the

address provided in the

SetAD_ptr field.

Check the validity of

function parameters.

15 ENOTBLK All A block device is

required.

Check device status and

characteristics.

16 EBUSY All Listen has already been

called for this socket.

Device or file to be

accessed is busy.

Check if the device or

file is in use.

17 EEXIST All The data set exists. Remove or rename

existing file.

18 EXDEV All This is a cross-device

link. A link to a file on

another file system was

attempted.

Check file permissions.

19 ENODEV All The specified device

does not exist.

Check file name and if

it exists.

20 ENOTDIR All The specified directory

is not a directory.

Use a valid file that is a

directory.

21 EISDIR All The specified directory

is a directory.

Use a valid file that is

not a directory.

ERRNOs

Appendix B. Return codes 399

||||
|
|
|
|
|
|

|
|

Table 24. Sockets ERRNOs (continued)

Error

number Message name

Socket

type Error description Programmer’s response

22 EINVAL All types An incorrect argument

was specified.

Check the validity of

function parameters.

23 ENFILE All Data set table overflow

occurred.

Reduce the number of

open files.

24 EMFILE All The socket descriptor

table is full.

Check the maximum

sockets specified in

MAXDESC().

25 ENOTTY All An incorrect device call

was specified.

Check specified

IOCTL() values.

26 ETXTBSY All A text data set is busy. Check the current use

of the file.

27 EFBIG All The specified data set is

too large.

Check size of accessed

dataset.

28 ENOSPC All There is no space left

on the device.

Increase the size of

accessed file.

29 ESPIPE All An incorrect seek was

attempted.

Check the offset

parameter for seek

operation.

30 EROFS All The data set system is

Read only.

Access data set for read

only operation.

31 EMLINK All There are too many

links.

Reduce the number of

links to the accessed

file.

32 EPIPE All The connection is

broken. For socket

write/send, peer has

shut down one or both

directions.

Reconnect with the

peer.

33 EDOM All The specified argument

is too large.

Check and correct

function parameters.

34 ERANGE All The result is too large. Check function

parameter values.

35 EWOULDBLOCK Accept The socket is in

nonblocking mode and

connections are not

queued. This is not an

error condition.

Reissue Accept().

35 EWOULDBLOCK Read Recvfrom The socket is in

nonblocking mode and

read data is not

available. This is not an

error condition.

Issue a select on the

socket to determine

when data is available

to be read or reissue the

Read()/Recvfrom().

35 EWOULDBLOCK Send Sendto Write The socket is in

nonblocking mode and

buffers are not

available.

Issue a select on the

socket to determine

when data is available

to be written or reissue

the Send(), Sendto(), or

Write().

35 EWOULDBLOCK IOCTL (SIOCTTLSCTL) The initial handshake is

in progress and the

socket is a non-blocking

socket.

For a non-blocking

socket, you can wait for

the handshake to

complete by issuing

Select or Poll for Socket

Writable.

ERRNOs

400 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 24. Sockets ERRNOs (continued)

Error

number Message name

Socket

type Error description Programmer’s response

36 EINPROGRESS Connect The socket is marked

nonblocking and the

connection cannot be

completed immediately.

This is not an error

condition.

See the Connect()

description for possible

responses.

36 EINPROGRESS IOCTL (SIOCTTLSCTL

requesting TTLS_INIT_

CONNECTION)

The initial handshake is

already in progress and

the socket is a

non-blocking socket.

For a non-blocking

socket, you can wait for

the handshake to

complete by issuing

Select or Poll for Socket

Writable.

37 EALREADY Connect The socket is marked

nonblocking and the

previous connection has

not been completed.

Reissue Connect().

37 EALREADY IOCTL (SIOCTTLSCTL

requesting TTLS_INIT_

CONNECTION)

The socket is already

secure.

Correct application to

issue SIOCTTLSCTL

IOCTL that requests

TTLS_INIT_

CONNECTION only

when the socket is not

already secure.

37 EALREADY Maxdesc A socket has already

been created calling

Maxdesc() or multiple

calls to Maxdesc().

Issue Getablesize() to

query it.

37 EALREADY Setibmopt A connection already

exists to a TCP/IP

image. A call to

SETIBMOPT

(IBMTCP_IMAGE), has

already been made.

Only call Setibmopt()

once.

38 ENOTSOCK All A socket operation was

requested on a

nonsocket connection.

The value for socket

descriptor was not

valid.

Correct the socket

descriptor value and

reissue the function call.

39 EDESTADDRREQ All A destination address is

required.

Fill in the destination

field in the correct

parameter and reissue

the function call.

40 EMSGSIZE Sendto Sendmsg Send Write The message is too

long. It exceeds the IP

limit of 64K or the limit

set by the setsockopt()

call.

Either correct the length

parameter, or send the

message in smaller

pieces.

41 EPROTOTYPE All The specified protocol

type is incorrect for this

socket.

Correct the protocol

type parameter.

41 EPROTOTYPE IOCTL (SIOCTTLSCTL) Socket is not a TCP

socket.

Issue the

SIOCTTLSCTL IOCTL

on TCP sockets only.

41 EPROTOTYPE IOCTL (SIOCSAPPLDATA) The request was not

successful. The socket is

not a stream (TCP)

socket.

Issue the

SIOCSAPPLDATA

IOCTL on TCP sockets

only.

ERRNOs

Appendix B. Return codes 401

||||
|
|
|

|
|
|
|

Table 24. Sockets ERRNOs (continued)

Error

number Message name

Socket

type Error description Programmer’s response

42 ENOPROTOOPT Getsockopt Setsockopt The socket option

specified is incorrect or

the level is not

SOL_SOCKET. Either

the level or the

specified optname is

not supported.

Correct the level or

optname.

42 ENOPROTOOPT Getibmsockopt

Setibmsockopt

Either the level or the

specified optname is

not supported.

Correct the level or

optname.

43 EPROTONOSUPPORT Socket The specified protocol

is not supported.

Correct the protocol

parameter.

44 ESOCKTNOSUPPORT All The specified socket

type is not supported.

Correct the socket type

parameter.

45 EOPNOTSUPP IOCTL The specified IOCTL

command is not

supported by this

socket API.

Correct the IOCTL

COMMAND.

45 EOPNOTSUPP IOCTL (SIOCTTLSCTL

requesting TTLS_INIT_

CONNECTION,

TTLS_RESET_ SESSION, or

TTLS_RESET_ CIPHER)

Mapped policy

indicates that AT-TLS is

not enabled for the

connection.

Modify policy to enable

AT-TLS for the

connection.

45 EOPNOTSUPP RECV, RECVFROM,

RECVMSG, SEND,

SENDTO, SENDMSG

The specified flags are

not supported on this

socket type or protocol.

Correct the FLAG.

45 EOPNOTSUPP Accept Givesocket The selected socket is

not a stream socket.

Use a valid socket.

45 EOPNOTSUPP Listen The socket does not

support the Listen call.

Change the type on the

Socket() call when the

socket was created.

Listen() only supports a

socket type of

SOCK_STREAM.

45 EOPNOTSUPP Getibmopt Setibmopt The socket does not

support this function

call. This command is

not supported for this

function.

Correct the command

parameter. See

Getibmopt() for valid

commands. Correct by

ensuring a Listen() was

not issued before the

Connect().

46 EPFNOSUPPORT All The specified protocol

family is not supported

or the specified domain

for the client identifier

is not AF_INET=2.

Correct the protocol

family.

47 EAFNOSUPPORT Bind Connect Socket The specified address

family is not supported

by this protocol family.

For Socket(), set the

domain parameter to

AF_INET. For Bind()

and Connect(), set

Sin_Family in the

socket address structure

to AF_INET.

47 EAFNOSUPPORT Getclient Givesocket The socket specified by

the socket descriptor

parameter was not

created in the AF_INET

domain.

The Socket() call used

to create the socket

should be changed to

use AF_INET for the

domain parameter.

ERRNOs

402 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 24. Sockets ERRNOs (continued)

Error

number Message name

Socket

type Error description Programmer’s response

48 EADDRINUSE Bind The address is in a

timed wait because a

LINGER delay from a

previous close or

another process is using

the address. This error

can also occur if the

port specified in the

bind call has been

configured as

RESERVED on a port

reservation statement in

the TCP/IP profile.

If you want to reuse the

same address, use

Setsockopt() with

SO_REUSEADDR. Refer

to the section about

Setsockopt() in z/OS

Communications Server:

IP Sockets Application

Programming Interface

Guide and Reference for

more information.

Otherwise, use a

different address or

port in the socket

address structure.

49 EADDRNOTAVAIL Bind The specified address is

incorrect for this host.

Correct the function

address parameter.

49 EADDRNOTAVAIL Connect The calling host cannot

reach the specified

destination.

Correct the function

address parameter.

50 ENETDOWN All The network is down. Retry when the

connection path is up.

51 ENETUNREACH Connect The network cannot be

reached.

Ensure that the target

application is active.

52 ENETRESET All The network dropped a

connection on a reset.

Reestablish the

connection between the

applications.

53 ECONNABORTED All The software caused a

connection abend.

Reestablish the

connection between the

applications.

54 ECONNRESET All The connection to the

destination host is not

available.

N/A

54 ECONNRESET Send Write The connection to the

destination host is not

available.

The socket is closing.

Issue Send() or Write()

before closing the

socket.

55 ENOBUFS All No buffer space is

available.

Check the application

for massive storage

allocation call.

55 ENOBUFS Accept Not enough buffer

space is available to

create the new socket.

Call your system

administrator.

55 ENOBUFS Send Sendto Write Not enough buffer

space is available to

send the new message.

Call your system

administrator.

55 ENOBUFS IOCTL (SIOCTTLSCTL

requesting TTLS_RETURN_

CERTIFICATE)

The buffer size

provided is too small.

Use the returned

certificate length to

allocate a larger buffer

and reissue IOCTL with

the larger buffer.

55 ENOBUFS Takesocket Not enough buffer

space is available to

create the new socket.

Call your system

administrator.

55 ENOBUF IOCTL (SIOCSAPPLDATA) There was no storage

available to store the

associated data.

Call your system

administrator.

ERRNOs

Appendix B. Return codes 403

||||
|
|

|
|

Table 24. Sockets ERRNOs (continued)

Error

number Message name

Socket

type Error description Programmer’s response

56 EISCONN Connect The socket is already

connected.

Correct the socket

descriptor on Connect()

or do not issue a

Connect() twice for the

socket.

57 ENOTCONN All The socket is not

connected.

Connect the socket

before communicating.

57 ENOTCONN IOCTL (SIOCTTLSCTL) The socket is not

connected.

Issue the

SIOCTTLSCTL IOCTL

only after the socket is

connected.

58 ESHUTDOWN All A Send cannot be

processed after socket

shutdown.

Issue read/receive

before shutting down

the read side of the

socket.

59 ETOOMANYREFS All There are too many

references. A splice

cannot be completed.

Call your system

administrator.

60 ETIMEDOUT Connect The connection timed

out before it was

completed.

Ensure the server

application is available.

61 ECONNREFUSED Connect The requested

connection was refused.

Ensure server

application is available

and at specified port.

62 ELOOP All There are too many

symbolic loop levels.

Reduce symbolic links

to specified file.

63 ENAMETOOLONG All The file name is too

long.

Reduce size of specified

file name.

64 EHOSTDOWN All The host is down. Restart specified host.

65 EHOSTUNREACH All There is no route to the

host.

Set up network path to

specified host and

verify that host name is

valid.

66 ENOTEMPTY All The directory is not

empty.

Clear out specified

directory and reissue

call.

67 EPROCLIM All There are too many

processes in the system.

Decrease the number of

processes or increase

the process limit.

68 EUSERS All There are too many

users on the system.

Decrease the number of

users or increase the

user limit.

69 EDQUOT All The disk quota has

been exceeded.

Call your system

administrator.

70 ESTALE All An old NFS** data set

handle was found.

Call your system

administrator.

71 EREMOTE All There are too many

levels of remote in the

path.

Call your system

administrator.

72 ENOSTR All The device is not a

stream device.

Call your system

administrator.

73 ETIME All The timer has expired. Increase timer values or

reissue function.

74 ENOSR All There are no more

stream resources.

Call your system

administrator.

ERRNOs

404 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 24. Sockets ERRNOs (continued)

Error

number Message name

Socket

type Error description Programmer’s response

75 ENOMSG All There is no message of

the desired type.

Call your system

administrator.

76 EBADMSG All The system cannot read

the message.

Verify that z/OS

Communications Server

installation was

successful and that

message files were

properly loaded.

77 EIDRM All The identifier has been

removed.

Call your system

administrator.

78 EDEADLK All A deadlock condition

has occurred.

Call your system

administrator.

78 EDEADLK Select Selectex None of the sockets in

the socket descriptor

sets are either AF_INET

or AF_IUCV sockets

and there is no timeout

value or no ECB

specified. The

select/selectex would

never complete.

Correct the socket

descriptor sets so that

an AF_INET or

AF_IUCV socket is

specified. A timeout or

ECB value can also be

added to avoid the

select/selectex from

waiting indefinitely.

79 ENOLCK All No record locks are

available.

Call your system

administrator.

80 ENONET All The requested machine

is not on the network.

Call your system

administrator.

81 ERREMOTE All The object is remote. Call your system

administrator.

82 ENOLINK All The link has been

severed.

Release the sockets and

reinitialize the

client-server connection.

83 EADV All An ADVERTISE error

has occurred.

Call your system

administrator.

84 ESRMNT All An SRMOUNT error

has occurred.

Call your system

administrator.

85 ECOMM All A communication error

has occurred on a Send

call.

Call your system

administrator.

86 EPROTO All A protocol error has

occurred.

Call your system

administrator.

86 EPROTO IOCTL (SIOCTTLSCTL

requesting TTLS_RESET_

SESSION or TTLS_RESET_

CIPHER)

A TTLS_INIT_

CONNECTION request

has not been received

for the connection or

TTLS_RESET_CIPHER

was requested on a

connection that is

secured using SSL

version 2.

Request TTLS_INIT_

CONNECTION prior to

requesting

TTLS_RESET_SESSION

or

TTLS_RESET_CIPHER.

Request

TTLS_RESET_CIPHER

only on connections

secured using SSL

version 3 or TLS

version 1.

87 EMULTIHOP All A multihop address

link was attempted.

Call your system

administrator.

88 EDOTDOT All A cross-mount point

was detected. This is

not an error.

Call your system

administrator.

ERRNOs

Appendix B. Return codes 405

Table 24. Sockets ERRNOs (continued)

Error

number Message name

Socket

type Error description Programmer’s response

89 EREMCHG All The remote address has

changed.

Call your system

administrator.

90 ECONNCLOSED All The connection was

closed by a peer.

Check that the peer is

running.

113 EBADF All Socket descriptor is not

in correct range. The

maximum number of

socket descriptors is set

by MAXDESC(). The

default range is 0–49.

Reissue function with

corrected socket

descriptor.

113 EBADF Bind socket The socket descriptor is

already being used.

Correct the socket

descriptor.

113 EBADF Givesocket The socket has already

been given. The socket

domain is not AF_INET.

Correct the socket

descriptor.

113 EBADF Select One of the specified

descriptor sets is an

incorrect socket

descriptor.

Correct the socket

descriptor. Set on

Select() or Selectex().

113 EBADF Takesocket The socket has already

been taken.

Correct the socket

descriptor.

113 EBADF Accept A Listen() has not been

issued before the

Accept().

Issue Listen() before

Accept().

121 EINVAL All An incorrect argument

was specified.

Check and correct all

function parameters.

121 EINVAL IOCTL (SIOCSAPPLDATA) The input parameter is

not a correctly

formatted SetApplData

structure.

v The SetAD_eye1

value is not valid

v The SetAD_ver value

is not valid.

v Storage pointed to by

SetAD_ptr does not

contain a properly

formatted

SetADcontainer

structure.

v The SetAD_eye2

value is not valid.

v the SetAD_len value

contains an incorrect

length for the

SetAD_ver version of

the SetADcontainer

structure.

Check and correct all

function parameters.

122 ECLOSED

126 ENMELONG

136 ENOTEMPT

145 E2BIG All The argument list is too

long.

Eliminate excessive

number of arguments.

ERRNOs

406 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Table 24. Sockets ERRNOs (continued)

Error

number Message name

Socket

type Error description Programmer’s response

156 EMVSINITIAL All Process initialization

error.

This indicates an z/OS

UNIX process

initialization failure.

This is usually an

indication that a proper

OMVS RACF segment

is not defined for the

user ID associated with

application. The RACF

OMVS segment may

not be defined or may

contain errors such as

an improper HOME()

directory specification.

Attempt to initialize

again. After ensuring

that an OMVS Segment

is defined, if the errno

is still returned, call

your MVS system

programmer to have

IBM service contacted.

157 EMISSED

1002 EIBMSOCKOUTOFRANGE Socket A socket number

assigned by the client

interface code is out of

range.

Check the socket

descriptor parameter.

1003 EIBMSOCKINUSE Socket A socket number

assigned by the client

interface code is already

in use.

Use a different socket

descriptor.

1004 EIBMIUCVERR All The request failed

because of an IUCV

error. This error is

generated by the client

stub code.

Ensure IUCV/VMCF is

functional.

1008 EIBMCONFLICT All This request conflicts

with a request already

queued on the same

socket.

Cancel the existing call

or wait for its

completion before

reissuing this call.

1009 EIBMCANCELLED All The request was

canceled by the

CANCEL call.

Informational, no action

needed.

1011 EIBMBADTCPNAME All A TCP/IP name that is

not valid was detected.

Correct the name

specified in the

IBM_TCPIMAGE

structure.

1011 EIBMBADTCPNAME Setibmopt A TCP/IP name that is

not valid was detected.

Correct the name

specified in the

IBM_TCPIMAGE

structure.

1011 EIBMBADTCPNAME INITAPI A TCP/IP name that is

not valid was detected.

Correct the name

specified on the IDENT

option TCPNAME field.

1012 EIBMBADREQUESTCODE All A request code that is

not valid was detected.

Contact your system

administrator.

1013 EIBMBADCONNECTIONSTATE All A connection token that

is not valid was

detected; bad state.

Verify TCP/IP is active.

1014 EIBMUNAUTHORIZEDCALLER All An unauthorized caller

specified an authorized

keyword.

Ensure user ID has

authority for the

specified operation.

ERRNOs

Appendix B. Return codes 407

Table 24. Sockets ERRNOs (continued)

Error

number Message name

Socket

type Error description Programmer’s response

1015 EIBMBADCONNECTIONMATCH All A connection token that

is not valid was

detected. There is no

such connection.

Verify TCP/IP is active.

1016 EIBMTCPABEND All An abend occurred

when TCP/IP was

processing this request.

Verify that TCP/IP has

restarted.

1023 EIBMTERMERROR All Encountered a

terminating error while

processing.

Call your system

administrator.

1026 EIBMINVDELETE All Delete requestor did

not create the

connection.

Delete the request from

the process that created

it.

1027 EIBMINVSOCKET All A connection token that

is not valid was

detected. No such

socket exists.

Call your system

programmer.

1028 EIBMINVTCPCONNECTION All Connection terminated

by TCP/IP. The token

was invalidated by

TCP/IP.

Reestablish the

connection to TCP/IP.

1032 EIBMCALLINPROGRESS All Another call was

already in progress.

Reissue after previous

call has completed.

1036 EIBMNOACTIVETCP All TCP/IP is not installed

or not active.

Correct TCP/IP name

used.

1036 EIBMNOACTIVETCP Select EIBMNOACTIVETCP Ensure TCP/IP is

active.

1036 EIBMNOACTIVETCP Getibmopt No TCP/IP image was

found.

Ensure TCP/IP is

active.

1037 EIBMINVTSRBUSERDATA All The request control

block contained data

that is not valid.

Call your system

programmer.

1038 EIBMINVUSERDATA All The request control

block contained user

data that is not valid.

Check your function

parameters and call

your system

programmer.

1040 EIBMSELECTEXPOST SELECTEX SELECTEX passed an

ECB that was already

posted.

Check whether the

user’s ECB was already

posted.

1112 ECANCEL

2001 EINVALIDRXSOCKETCALL REXX A syntax error occurred

in the RXSOCKET

parameter list.

Correct the parameter

list passed to the REXX

socket call.

2002 ECONSOLEINTERRUPT REXX A console interrupt

occurred.

Retry the task.

2003 ESUBTASKINVALID REXX The subtask ID is

incorrect.

Correct the subtask ID

on the INITIALIZE call.

2004 ESUBTASKALREADYACTIVE REXX The subtask is already

active.

Only issue the

INITIALIZE call once in

your program.

2005 ESUBTASKALNOTACTIVE REXX The subtask is not

active.

Issue the INITIALIZE

call before any other

socket call.

ERRNOs

408 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 24. Sockets ERRNOs (continued)

Error

number Message name

Socket

type Error description Programmer’s response

2006 ESOCKNETNOTALLOCATED REXX The specified socket

could not be allocated.

Increase the user

storage allocation for

this job.

2007 EMAXSOCKETSREACHED REXX The maximum number

of sockets has been

reached.

Increase the number of

allocate sockets, or

decrease the number of

sockets used by your

program.

2009 ESOCKETNOTDEFINED REXX The socket is not

defined.

Issue the SOCKET call

before the call that fails.

2011 EDOMAINSERVERFAILURE REXX A Domain Name Server

failure occurred.

Call your MVS system

programmer.

2012 EINVALIDNAME REXX An incorrect name was

received from the

TCP/IP server.

Call your MVS system

programmer.

2013 EINVALIDCLIENTID REXX An incorrect clientid

was received from the

TCP/IP server.

Call your MVS system

programmer.

2014 ENIVALIDFILENAME REXX An error occurred

during NUCEXT

processing.

Specify the correct

translation table file

name, or verify that the

translation table is

valid.

2016 EHOSTNOTFOUND REXX The host is not found. Call your MVS system

programmer.

2017 EIPADDRNOTFOUND REXX Address not found. Call your MVS system

programmer.

3412 ENODATA Message does not exist.

3416 ELINKED Stream is linked.

3419 ERECURSE Recursive attempt

rejected.

3420 EASYNC Asynchronous I/O

scheduled. This is a

normal, internal event

that is NOT returned to

the user.

3448 EUNATCH The protocol required

to support the specified

address family is not

available.

3464 ETERM Operation terminated.

3474 EUNKNOWN Unknown system state.

3495 EBADOBJ You attempted to

reference a object that

does not exist.

3513 EOUTOFSTATE Protocol engine has

received a command

that is not acceptable in

its current state.

ERRNOs

Appendix B. Return codes 409

Sockets extended ERRNOs

 Table 25. Sockets extended ERRNOs

Error

code Problem description System action Programmer’s response

10100 An ESTAE macro did not

complete normally.

End the call. Call your MVS system programmer.

10101 A STORAGE OBTAIN failed. End the call. Increase MVS storage in the application’s

address space.

10108 The first call issued was not a

valid first call.

End the call. For a list of valid first calls, refer to the

section on special considerations in the

general programming information.

10110 LOAD of EZBSOH03 (alias

EZASOH03) failed.

End the call. Call the IBM Software Support Center.

10154 Errors were found in the

parameter list for an IOCTL call.

Disable the subtask

for interrupts. Return

an error code to the

caller.

Correct the IOCTL call. You might have

incorrect sequencing of socket calls.

10155 The length parameter for an

IOCTL call is less than or equal

to 0.

Disable the subtask

for interrupts. Return

an error code to the

caller.

Correct the IOCTL call. You might have

incorrect sequencing of socket calls.

10156 The length parameter for an

IOCTL call is 3200 (32 x 100).

Disable the subtask

for interrupts. Return

an error code to the

caller.

Correct the IOCTL call. You might have

incorrect sequencing of socket calls.

10159 A 0 or negative data length was

specified for a READ or READV

call.

Disable the subtask

for interrupts. Return

an error code to the

caller.

Correct the length in the READ call.

10161 The REQARG parameter in the

IOCTL parameter list is 0.

End the call. Correct the program.

10163 A 0 or negative data length was

found for a RECV, RECVFROM,

or RECVMSG call.

Disable the subtask

for interrupts. Sever

the DLC path. Return

an error code to the

caller.

Correct the data length.

10167 The descriptor set size for a

SELECT or SELECTEX call is less

than or equal to 0.

Disable the subtask

for interrupts. Return

an error code to the

caller.

Correct the SELECT or SELECTEX call. You

might have incorrect sequencing of socket

calls.

10168 The descriptor set size in bytes for

a SELECT or SELECTEX call is

greater than 8192. A number

greater than the maximum

number of allowed sockets (65534

is the maximum) has been

specified.

Disable the subtask

for interrupts. Return

an error code to the

caller.

Correct the descriptor set size.

10170 A 0 or negative data length was

found for a SEND or SENDMSG

call.

Disable the subtask

for interrupts. Return

an error code to the

caller.

Correct the data length in the SEND call.

ERRNOs

410 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 25. Sockets extended ERRNOs (continued)

Error

code Problem description System action Programmer’s response

10174 A 0 or negative data length was

found for a SENDTO call.

Disable the subtask

for interrupts. Return

an error code to the

caller.

Correct the data length in the SENDTO call.

10178 The SETSOCKOPT option length

is less than the minimum length.

Disable the subtask

for interrupts. Return

an error code to the

caller.

Correct the OPTLEN parameter.

10179 The SETSOCKOPT option length

is greater than the maximum

length.

Disable the subtask

for interrupts. Return

an error code to the

caller.

Correct the OPTLEN parameter.

10184 A data length of 0 was specified

for a WRITE call.

Disable the subtask

for interrupts. Return

an error code to the

caller.

Correct the data length in the WRITE call.

10186 A negative data length was

specified for a WRITE or

WRITEV call.

Disable the subtask

for interrupts. Return

an error code to the

caller.

Correct the data length in the WRITE call.

10190 The GETHOSTNAME option

length is not in the range of

1–255..

Disable the subtask

for interrupts. Return

an error code to the

caller.

Correct the length parameter.

10193 The GETSOCKOPT option length

is less than the minimum or

greater than the maximum

length.

End the call. Correct the length parameter.

10197 The application issued an

INITAPI call after the connection

was already established.

Bypass the call. Correct the logic that produces the INITAPI

call that is not valid.

10198 The maximum number of sockets

specified for an INITAPI exceeds

65535.

Return to the user. Correct the INITAPI call.

10200 The first call issued was not a

valid first call.

End the call. For a list of valid first calls, refer to the

section on special considerations in the

general programming information.

10202 The RETARG parameter in the

IOCTL call is 0.

End the call. Correct the parameter list. You might have

incorrect sequencing of socket calls.

10203 The requested socket number is a

negative value.

End the call. Correct the requested socket number.

10205 The requested socket number is a

duplicate.

End the call. Correct the requested socket number.

10208 The NAMELEN parameter for a

GETHOSTBYNAME call was not

specified.

End the call. Correct the NAMELEN parameter. You

might have incorrect sequencing of socket

calls.

10209 The NAME parameter on a

GETHOSTBYNAME call was not

specified.

End the call. Correct the NAME parameter. You might

have incorrect sequencing of socket calls.

ERRNOs

Appendix B. Return codes 411

Table 25. Sockets extended ERRNOs (continued)

Error

code Problem description System action Programmer’s response

10210 The HOSTENT parameter on a

GETHOSTBYNAME or

GETHOSTBYADDR call was not

specified.

End the call. Correct the HOSTENT parameter. You might

have incorrect sequencing of socket calls.

10211 The HOSTADDR parameter on a

GETHOSTBYNAME or

GETHOSTBYADDR call is

incorrect.

End the call. Correct the HOSTADDR parameter. You

might have incorrect sequencing of socket

calls.

10212 The resolver program failed to

load correctly for a

GETHOSTBYNAME or

GETHOSTBYADDR call.

End the call. Check the JOBLIB, STEPLIB, and linklib

datasets and rerun the program.

10213 Not enough storage is available

to allocate the HOSTENT

structure.

End the call. Increase the user storage allocation for this

job.

10214 The HOSTENT structure was not

returned by the resolver program.

End the call. Ensure that the domain name server is

available. This can be a nonerror condition

indicating that the name or address specified

in a GETHOSTBYADDR or

GETHOSTBYNAME call could not be

matched.

10215 The APITYPE parameter on an

INITAPI call instruction was not

2 or 3.

End the call. Correct the APITYPE parameter.

10218 The application programming

interface (API) cannot locate the

specified TCP/IP.

End the call. Ensure that an API that supports the

performance improvements related to CPU

conservation is installed on the system and

verify that a valid TCP/IP name was

specified on the INITAPI call. This error call

might also mean that EZASOKIN could not

be loaded.

10219 The NS parameter is greater than

the maximum socket for this

connection.

End the call. Correct the NS parameter on the ACCEPT,

SOCKET or TAKESOCKET call.

10221 The AF parameter of a SOCKET

call is not AF_INET.

End the call. Set the AF parameter equal to AF_INET.

10222 The SOCTYPE parameter of a

SOCKET call must be stream,

datagram, or raw (1, 2, or 3).

End the call. Correct the SOCTYPE parameter.

10223 No ASYNC parameter specified

for INITAPI with APITYPE=3

call.

End the call. Add the ASYNC parameter to the INITAPI

call.

10224 The IOVCNT parameter is less

than or equal to 0, for a READV,

RECVMSG, SENDMSG, or

WRITEV call.

End the call. Correct the IOVCNT parameter.

10225 The IOVCNT parameter is

greater than 120, for a READV,

RECVMSG, SENDMSG, or

WRITEV call.

End the call. Correct the IOVCNT parameter.

ERRNOs

412 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Table 25. Sockets extended ERRNOs (continued)

Error

code Problem description System action Programmer’s response

10226 Not valid COMMAND parameter

specified for a GETIBMOPT call.

End the call. Correct the COMMAND parameter of the

GETIBMOPT call.

10229 A call was issued on an

APITYPE=3 connection without

an ECB or REQAREA parameter.

End the call. Add an ECB or REQAREA parameter to the

call.

10300 Termination is in progress for

either the CICS transaction or the

socket interface.

End the call. None.

10330 A SELECT call was issued

without a MAXSOC value and a

TIMEOUT parameter.

End the call. Correct the call by adding a TIMEOUT

parameter.

10331 A call that is not valid was issued

while in SRB mode.

End the call. Get out of SRB mode and reissue the call.

10332 A SELECT call is invoked with a

MAXSOC value greater than that

which was returned in the

INITAPI function (MAXSNO

field).

End the call. Correct the MAXSOC parameter and reissue

the call.

10334 An error was detected in creating

the data areas required to process

the socket call.

End the call. Call the IBM Software Support Center.

10999 An abend has occurred in the

subtask.

Write message

EZY1282E to the

system console. End

the subtask and post

the TRUE ECB.

If the call is correct, call your system

programmer.

20000 An unknown function code was

found in the call.

End the call. Correct the SOC-FUNCTION parameter.

20001 The call passed an incorrect

number of parameters.

End the call. Correct the parameter list.

20002 The user ID associated with the

program linking EZACIC25 does

not have the proper authority to

execute a CICS EXTRACT EXIT.

End the call. Start the CICS socket interface before

executing this call.

20003 The CICS socket interface is not

in operation.

End the call. Contact the CICS system programmer.

Ensure that the user ID being used is

permitted to have at least UPDATE access to

the EXITPROGRAM resource.

ERRNOs

Appendix B. Return codes 413

ERRNOs

414 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Appendix C. GETSOCKOPT/SETSOCKOPT command values

You can use the table below to determine the decimal or hexadecimal value

associated with the GETSOCKOPT/SETSOCKOPT OPTNAMES supported by the

APIs discussed in this document.

The command names are shown with underscores for the assembler language. The

underscores should be changed to dashes if using the COBOL programming

language.

Languages that cannot easily handle binary values, such as COBOL, should use the

decimal value associated with the command where necessary.

The hexadecimal value can be used in Macro, Assembler and PL/I programs.

 Table 26. GETSOCKOPT/SETSOCKOPT command values for Macro, Assembler, COBOL

and PL/I

Command name Decimal value Hex value

IP_ADD_MEMBERSHIP 1048581 X'00100005'

IP_ADD_SOURCE_MEMBERSHIP 1048588 X'0010000C'

IP_BLOCK_SOURCE 1048586 X'0010000A'

IP_DROP_MEMBERSHIP 1048582 X'00100006'

IP_DROP_SOURCE_MEMBERSHIP 1048589 X'0010000D'

IP_MULTICAST_IF 1048583 X'00100007'

IP_MULTICAST_LOOP 1048580 X'00100004'

IP_MULTICAST_TTL 1048579 X'00100003'

IP_UNBLOCK_SOURCE 1048587 X'0010000B'

IPV6_JOIN_GROUP 65541 X'00010005'

IPV6_LEAVE_GROUP 65542 X'00010006'

IPV6_MULTICAST_HOPS 65545 X'00010009'

IPV6_MULTICAST_IF 65543 X'00010007'

IPV6_MULTICAST_LOOP 65540 X'00010004'

IPV6_UNICAST_HOPS 65539 X'00010003'

IPV6_V6ONLY 65546 X'0001000A'

MCAST_BLOCK_SOURCE 1048620 X'0010002C'

MCAST_JOIN_GROUP 1048616 X'00100028'

MCAST_JOIN_SOURCE_GROUP 1048618 X'0010002A'

MCAST_LEAVE_GROUP 1048617 X'00100029'

MCAST_LEAVE_SOURCE_GROUP 1048619 X'0010002B'

MCAST_UNBLOCK_SOURCE 1048621 X'0010002D'

SO_BROADCAST 32 X'00000020'

SO_ERROR 4103 X'00001007'

SO_LINGER 128 X'00000080'

SO_KEEPALIVE 8 X'00000008'

© Copyright IBM Corp. 1994, 2007 415

|

|

|

|

|

|

|

|

|

|

Table 26. GETSOCKOPT/SETSOCKOPT command values for Macro, Assembler, COBOL

and PL/I (continued)

Command name Decimal value Hex value

SO_OOBINLINE 256 X'00000100'

SO_RCVBUF 4098 X'00001002'

SO_REUSEADDR 4 X'00000004'

SO_SNDBUF 4097 X'00001001'

SO_TYPE 4104 X'00001008'

TCP_KEEPALIVE 2147483654 X'80000008'

TCP_NODELAY 2147483649 X'80000001'

 Table 27. GETSOCKOPT/SETSOCKOPT optname value for C programs

Option name Decimal value

IP_ADD_MEMBERSHIP 5

IP_ADD_SOURCE_MEMBERSHIP 12

IP_BLOCK_SOURCE 10

IP_DROP_MEMBERSHIP 6

IP_DROP_SOURCE_MEMBERSHIP 13

IP_MULTICAST_IF 7

IP_MULTICAST_LOOP 4

IP_MULTICAST_TTL 3

IP_UNBLOCK_SOURCE 11

MCAST_BLOCK_SOURCE 44

MCAST_JOIN_GROUP 40

MCAST_JOIN_SOURCE_GROUP 42

MCAST_LEAVE_GROUP 41

MCAST_LEAVE_SOURCE_GROUP 43

MCAST_UNBLOCK_SOURCE 45

SO_ACCEPTCONN 2

SO_BROADCAST 32

SO_CLUSTERCONNTYPE 16385

SO_DEBUG 1

SO_ERROR 4103

SO_KEEPALIVE 8

SO_LINGER 128

SO_OOBINLINE 256

SO_RCVBUF 4098

SO_REUSEADDR 4

SO_SNDBUF 4097

SO_TYPE 4104

TCP_KEEPALIVE 8

TCP_NODELAY 1

416 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||

||

||

||

||

||

||

||

||

||

Appendix D. CICS sockets messages

This topic contains CICS socket interface messages.

EZY1218—EZY1366

EZY1218E mm/dd/yy hh:mm:ss PROGRAM programname DISABLED TRANID= transactionid PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The Listener checked the status of the program associated with the transaction. It was not enabled.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 programname is the name of the program that is associated with the transaction requested by the connecting client.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: Listener continues.

Operator response: Use CEMT to determine and correct the status of the program.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1219E mm/dd/yy hh:mm:ss UNEXPECTED eventtype EVENT IN LISTENER transactionid FROM CLIENT IP

ADDRESS ipaddress PORT portnumber

Explanation: The CICS Listener was notified about an unexpected event.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 eventtype is the type of event: READ, WRITE, or EXCEPTION.

 transactionid is the name of the Listener’s CICS transaction.

 ipaddress is the remote IP address of the client.

 portnumber is the remote port number of the client.

System action: The Listener closes the connection and continues processing.

Operator response: Contact the system programmer.

System programmer response: If the event type is EXCEPTION, investigate whether or not the client is attempting

to send out-of-band data. If necessary, have the client avoid sending out-of-band data. If the event type is not

EXCEPTION or the client is not attempting to send out-of-band data, then contact the IBM Software Support Center.

Module: EZACIC02

Destination: LISTENER

© Copyright IBM Corp. 1994, 2007 417

EZY1220E mm/dd/yy hh:mm:ss READ FAILURE ON CONFIGURATION FILE PHASE=phase EIBRESP2=response

Explanation: EZACIC21 was unable to read the IP CICS Sockets configuration file, EZACONFG.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 phase is the IP CICS Sockets initialization phase.

 response is the response from CICS when reading the IP CICS Sockets configuration file.

System action: If the ABEND code is AEXY, then the listener ends normally. Otherwise, the listener ends with an

ABEND code of EZAL.

Operator response: Notify the CICS system programmer.

System programmer response: Use the EIBRESP2 value to determine the problem and correct the file. See the CICS

Application Programming Reference for information about EIBRESP2 values. If the EIBRESP2 value is zero, then the

EZACONFG file has been defined as remote. If this is the configuration file you want, then verify that no CICS

Sockets programs can run directly in the file owning region. This can cause the file to become disabled. Ensure that

EZACIC20 is not in the file owning region PLT, and that the EZAC and EZAO transactions are unable to run directly

in the file owning region. Attempts to open the file will fail if the file is defined with a value of YES specified in the

ADD, DELETE, or UPDATE parameters in the CICS file definition in more than one CICS region.

Module: EZACIC21

Destination: INITIALIZATION

EZY1221E mm/dd/yy hh:mm:ss CICS SOCKETS ENABLE FAILURE EIBRCODE BYTE2 = resp_code

Explanation: The attempt to enable the task related user exit (TRUE) failed.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 resp_code is the CICS response code from attempting to enable IP CICS Sockets Task Related User Exit (TRUE).

System action: Terminate the transaction.

Operator response: Notify the CICS system programmer.

System programmer response: Use the EIBRESP2 value to determine the problem and correct the file. An

EIBRCODE BYTE2 value of 20 indicates the TRUE is already enabled. This will occur if you disable the interface

using EZAO,STOP,CICS transaction and then immediately issue EZAO,START,CICS transaction before the Task

Related User Exit (TRUE) is completely disabled from the previous EZAO,STOP,CICS transaction. See the CICS

Application Programming Reference for information about EIBRCODEs.

Module: EZACIC21

Destination: INITIALIZATION

EZY1222E mm/dd/yy hh:mm:ss CICS/SOCKETS REGISTRATION FAILURE RETURN code= return_code

Explanation: The attempt to register the CICS Sockets Feature to z/OS failed.

System action: Terminate the transaction.

Operator response: Contact your System Administrator.

System programmer response: See the z/OS MVS Programming: Product Registration for information about the values

for return_code.

Module: EZACIC21

Destination: INITIALIZATION

EZY1220E • EZY1222E

418 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

EZY1223E mm/dd/yy hh:mm:ss CICS/SOCKETS ATTACH FAILURE RETURN CODE = return_code REASON

CODE = reason_code

Explanation: An attempt to attach one of the pool subtasks failed.

System action: Stop attaching pool subtasks. The size of the pool is determined by the number of subtasks

successfully attached.

Operator response: Contact the CICS system programmer.

System programmer response: See the z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN for

information about the values for return_code and reason_code and make appropriate adjustments to your CICS

environment.

Module: EZACIC21

Destination: INITIALIZATION

EZY1224I mm/dd/yy hh:mm:ss CICS/SOCKETS INITIALIZATION SUCCESSFUL USING tasking_method

Explanation: The CICS socket interface has completed initialization successfully.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 tasking_method is the tasking method used to support the EZASOKET calls. The possible methods are:

Reusable MVS subtasks

Signifies that the IP CICS socket interface is using MVS subtasks from the pool generated according to the

value specified on the NTASKS configuration parameter.

Non-reusable MVS subtasks

Signifies that the IP CICS socket interface is attaching an MVS subtask for each IP CICS Sockets-enabled

application because NTASKS=0.

Open Transaction Environment

Signifies that the IP CICS socket interface is enabled to use CICS Open Transaction Environment. All

EZASOKET calls will be processed on an Open API, L8, TCB. Programs calling EZASOKET should be coded

to threadsafe programming standards and defined to CICS as CONCURRENCY(THREADSAFE) to benefit

from this environment.

System action: Continue with execution.

Operator response: None.

System programmer response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1225E mm/dd/yy hh:mm:ss STARTBR FAILURE ON CICS/SOCKETS CONFIGURATION FILE PHASE=xx

EIBRESP2=rrrrrr

Explanation: The STARTBR command used for the configuration file has failed.

System action: Terminate the transaction.

Operator response: Contact the CICS system programmer.

System programmer response: Use the EIBRESP2 value to determine the problem. Check the CICS definition of the

Configuration file to ensure the browse operation is permitted. See the CICS Application Programming Reference for

information about EIBRESP2 values.

Module: EZACIC21

Destination: INITIALIZATION

EZY1223E • EZY1225E

Appendix D. CICS sockets messages 419

EZY1226E mm/dd/yy hh:mm:ss READNEXT FAILURE ON CICS/SOCKETS CONFIGURATION FILE PHASE=xx

EIBRESP2=rrrrrr

Explanation: The READNEXT command used for the configuration file has failed.

System action: Terminate the transaction.

Operator response: Contact the CICS system programmer.

System programmer response: Use the EIBRESP2 value to determine the problem. Check the CICS definition of the

Configuration file to ensure the browse operation is permitted. See the CICS Application Programming Reference for

information about EIBRESP2 values.

Module: EZACIC21

Destination: INITIALIZATION

EZY1227E mm/dd/yy hh:mm:ss CICS/SOCKETS INVALID LISTENER TRANID = tran

Explanation: The Listener transaction tran was not defined to CICS.

System action: Terminate Listener Initialization.

Operator response: Use CICS facilities to define the Listener transaction and program. Then use EZAO to start the

Listener.

System programmer response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1228E mm/dd/yy hh:mm:ss CICS/SOCKETS LISTENER TRANSACTION tran DISABLED

Explanation: The Listener transaction tran could not be started because it was disabled.

System action: Terminate Listener Initialization.

Operator response: Use CICS facilities to enable the transaction and then start the Listener using EZAO.

System programmer response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1229E mm/dd/yy hh:mm:ss CICS SOCKETS LISTENER TRANSACTION tran NOT AUTHORIZED

Explanation: The Listener transaction tran could not be started because it was not authorized.

System action: Terminate Listener Initialization.

Operator response: Use CICS facilities to authorize starting the Listener transaction and then start the Listener using

EZAO.

System programmer response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1246E mm/dd/yy hh:mm:ss CICS SOCKETS LISTENER PROGRAM ID mmmmmmmm INVALID

Explanation: The Listener transaction could not be started because program mmmmmmmm is not defined.

System action: Terminate Listener Initialization.

Operator response: If the program ID is correct, use CICS facilities to define it. If it is not correct, use the EZAC

transaction to correct the CICS Sockets Configuration file.

System programmer response: None.

EZY1226E • EZY1246E

420 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Module: EZACIC21

Destination: INITIALIZATION

EZY1247E mm/dd/yy hh:mm:ss CICS SOCKETS LISTENER PROGRAM ID mmmmmmmm DISABLED

Explanation: The Listener transaction could not be started because program mmmmmmmm is disabled.

System action: Terminate Listener Initialization.

Operator response: Use CICS facilities to enable the program and then use EZAO to start the Listener.

System programmer response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1250E mm/dd/yy hh:mm:ss CICS/SOCKETS LISTENER tran NOT ON CONFIGURATION FILE

Explanation: The Listener transaction tran is not defined on the CICS Sockets configuration file.

System action: Terminate Listener Initialization.

Operator response: If the Listener transaction name is correct, use the EZAC transaction to define it on the CICS

Configuration file. If the name is not correct, correct it on the EZAO transaction.

System programmer response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1251E mm/dd/yy hh:mm:ss CICS SOCKETS MODULE mmmmmmmm ABEND xxxx

Explanation: The CICS Sockets module mmmmmmmm has abended.

System action: Terminate the transaction.

Operator response: Contact the IBM Software Support Center.

System programmer response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1252E mm/dd/yy hh:mm:ss UNABLE TO LOAD EZASOH03 ERROR CODE= error_code REASON CODE=

reason_code

Explanation: During CICS Sockets initialization, the attempt to load module EZASOH03 failed.

System action: Terminate Initialization.

Operator response: Contact the CICS system programmer.

System programmer response: See the z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU for

information about the values for error_code and reason_code to determine why the module would not load. Also, look

for associated MVS messages.

Module: EZACIC21

EZY1253E mm/dd/yy hh:mm:ss CICS/SOCKETS LISTENER tran NOT ON CONFIGURATION FILE

Explanation: An EZAO STOP LISTENER transaction was run with an invalid Listener name.

System action: Present the panel to correct the name.

Operator response: Correct the name and retry termination.

System programmer response: None.

EZY1247E • EZY1253E

Appendix D. CICS sockets messages 421

Module: EZACIC22

Destination: TERMINATION

EZY1254E mm/dd/yy hh:mm:ss CACHE FILE ERROR RESP2 VALUE ****** CALL # *

Explanation: An error occurred on a cache file operation.

System action: Return to the calling program with an error response.

Operator response: Contact the CICS system programmer.

System programmer response: Use the RESP2 value to determine the error and correct the cache file. See the CICS

Application Programming Reference for information about RESP2 values.

Module: EZACIC25

Destination: DOMAIN NAME SERVER FUNCTION

EZY1255E mm/dd/yy hh:mm:ss TEMPORARY STORAGE ERROR RESP2 VALUE ****** CALL # *

Explanation: An error occurred on a temporary storage operation in EZACIC25.

System action: Return to the calling program with an error response.

Operator response: Use the RESP2 value to determine the error. Contact the IBM Software Support Center. See the

CICS Application Programming Reference for information about RESP2 values.

System programmer response: None.

Module: EZACIC25

Destination: DOMAIN NAME SERVER FUNCTION

EZY1256E mm/dd/yy hh:mm:ss CICS SOCKETS INTERFACE NOT ENABLED PRIOR TO LISTENER STARTUP

Explanation: An attempt to start a Listener was made when the CICS socket interface was inactive.

System action: Return error and terminate transaction EZAO.

Operator response: Use transaction EZAO to start the CICS socket interface prior to starting the Listener.

System programmer response: None.

Module: EZACIC21

Destination: INITIALIZATION

EZY1258I module ENTRY POINT IS address

Explanation: This message displays the entry point address of a module.

 module is the name of the module.

 address is the entry point address of the module.

System action: Processing continues.

Operator response: None.

System programmer response: None.

Module: EZACIC01, EZACIC02

EZY1259E mm/dd/yy hh:mm:ss IOCTL CALL FAILURE TRANSACTION=transactionid TASKID=tasknumber

ERRNO=errno

Explanation: Listener transaction transactionid experienced a failure on the IOCTL call.

 In the message text:

EZY1254E • EZY1259E

422 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

mm/dd/yy

The date (month/day/year) of the message.

hh:mm:ss

The time (hours:minutes:seconds) of the message.

transactionid

The name of the transaction under which the Listener is executing.

tasknumber

The CICS task number of the Listener task.

errno The UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: If the error is during initialization of the Listener, then the Listener transaction transactionid

terminates. Otherwise, the Listener closes the socket that was being processed and resumes normal processing.

Operator response: Use the errno value to determine the cause of the failure.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1260E mm/dd/yy hh:mm:ss EZACIC03 ATTACH FAILED GPR15=xxxxxxxx ERRNO=errno TRAN=tran

TASK=cicstask

Explanation: An ATTACH for an MVS subtask has failed. The reason code is in GPR 15.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The task related user exit (TRUE) for this transaction is disabled. The transaction abends with an

AEY9.

Operator response: Contact the CICS system programmer.

System programmer response: Determine the cause for the ATTACH failure and correct.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1261I mm/dd/yy hh:mm:ss EZACIC03 ATTACH SUCCESSFUL, TCB ADDRESS= tcbaddr TERM=term

TRAN=tran TASK=cicstask

Explanation: An ATTACH for an MVS subtask was successful. This message is produced only for Listeners and for

those tasks that cannot be accommodated within the pool of reusable tasks.

 Result: If you specify the character L as the last character in the subtask ID parameter of an INITAPI socket

command, then the IP CICS Socket task related user exit (TRUE) assumes that the CICS transaction is a listener

causing the TRUE to attach a new task to support the listener’s socket commands.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 tcbaddr is the address of the Task Control Block (TCB) being attached.

 term is the CICS terminal ID associated with the CICS transaction identified by tran.

 tran is the name of the CICS transaction that was requested.

 cicstask is the task number of the CICS transaction identified by tran.

System action: Processing continues.

Operator response: If this message happens frequently, increase the size of the reusable task pool, NTASKS, for this

CICS. Increasing NTASKS appropriately will prevent overhead incurred with attaching the subtask. See “TYPE

parameter” on page 54 for information the NTASKS value.

EZY1260E • EZY1261I

Appendix D. CICS sockets messages 423

|
|
|

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1262E mm/dd/yy hh:mm:ss GWA ADDRESS INVALID UEPGAA=xxxxxxxx TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid GWA address.

System action: The TRUE is disabled and the task abends with an AEY9.

Operator response: Use EZAO to stop (immediate) and start the CICS socket interface. If the problem repeats,

contact the IBM Software Support Center.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1263E mm/dd/yy hh:mm:ss TIE ADDRESS INVALID UEPGAA=xxxxxxxx TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid TIE address.

System action: The TRUE is disabled and the task abends with an AEY9.

Operator response: Use EZAO to stop (immediate) and start the CICS socket interface. If the problem repeats,

contact the IBM Software Support Center.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1264E mm/dd/yy hh:mm:ss FLAG WORD ADDRESS INVALID UEPFLAGS= xxxxxxxx ERRNO=errno

TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid flag word address.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The TRUE is disabled and the task abends with an AEY9.

Operator response: Use EZAO to stop (immediate) and start the CICS socket interface. If the problem repeats,

contact the IBM Software Support Center.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1265E mm/dd/yy hh:mm:ss CICS VERSION UNSUPPORTED GWACIVRM=xxxx ERRNO=errno TRAN=tran

TASK=cicstask

Explanation: The task related user exit (TRUE) detected a version of CICS which it does not support. The CICS

version must be 3 or above.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The TRUE is disabled and the task abends with an AEY9.

Operator response: Contact the CICS system programmer.

System programmer response: The CICS socket interface requires CICS V3R3 or later.

Module: EZACIC01

EZY1262E • EZY1265E

424 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Destination: TASK RELATED USER EXIT (TRUE)

EZY1267E mm/dd/yy hh:mm:ss ROUTING TASK FUNCTION INVALID UERTIFD=xx ERRNO=errno TRAN=tran

TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid routing task function.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The TRUE is disabled and the task abends with an AEY9.

Operator response: If this happens repeatedly, use EZAO to STOP (immediate) the CICS socket interface and then

START it. If it still happens, contact the IBM Software Support Center.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1268E mm/dd/yy hh:mm:ss SAVE AREA ADDRESS INVALID UEPHSMA= xxxxxxxx ERRNO=errno

TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid save area address.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The TRUE is disabled and the task abends with an AEY9.

Operator response: Contact the IBM Software Support Center.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1269E mm/dd/yy hh:mm:ss PARM LIST ADDRESS INVALID GPR1= xxxxxxxx ERRNO=errno TRAN=tran

TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid parameter list on a call request from the CICS

application program.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The TRUE is disabled and the task abends with an AEY9.

Operator response: Check the application program calls to the CICS socket interface to ensure that each call has the

correct number and type of parameters.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1270E mm/dd/yy hh:mm:ss PARM nn ADDRESS INVALID ADDRESS= xxxxxxxx ERRNO=errno TRAN=tran

TASK=cicstask

Explanation: The task related user exit (TRUE) detected an invalid parameter address on a call request from the

CICS application program. nn is the number of the parameter.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The TRUE is disabled and the task abends with an AEY9.

EZY1267E • EZY1270E

Appendix D. CICS sockets messages 425

Operator response: Check the application program calls to the CICS socket interface to ensure that the parameter

addresses are valid (not zero). This problem is most common in assembler language and C applications.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1271E mm/dd/yy hh:mm:ss TOKERR=xxxxxxxx ERRNO=errno TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) detected a token error on an internal token used to coordinate CICS

transaction activity with TCP/IP activity.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The TRUE is disabled and the task abends with an AEY9.

Operator response: Contact the IBM Software Support Center.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1272E mm/dd/yy hh:mm:ss INVALID SOCKET/FUNCTION CALL FUNCTION= xxxx ERRNO=errno

TRAN=tran TASK=cicstask

Explanation: A call to EZASOKET specified in invalid function.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The TRUE is disabled and the task abends with an AEY9.

Operator response: Correct the call and retry.

System programmer response: None.

Module: EZACIC01

Destination: task related user exit (TRUE)

EZY1273E mm/dd/yy hh:mm:ss IUCV SOCK/FUNC TABLE INVALID FUNCTION= xxxx ERRNO=errno

TRAN=tran TASK=cicstask

Explanation: A call to EZACICAL specified a function that was not valid.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The TRUE is disabled and the task abends with an AEY9.

Operator response: Correct the call and retry.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1274E mm/dd/yy hh:mm:ss INCORRECT EZASOKET PARM COUNT FUNCTION= xxxx ERRNO=errno

TRAN=tran TASK=cicstask

Explanation: A call to EZASOKET specified in invalid number of parameters.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

EZY1271E • EZY1274E

426 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

System action: The TRUE is disabled and the task abends with an AEY9.

Operator response: Correct the call and retry.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1275E mm/dd/yy hh:mm:ss MONITOR CALLS NOT SUPPORTED UERTFID=xx ERRNO=errno TRAN=tran

TASK=cicstask

Explanation: The task related user exit (TRUE) detected a monitor call which is not supported for this version of

CICS.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The TRUE is disabled and the task abends with an AEY9.

Operator response: Contact the IBM Software Support Center.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1276E mm/dd/yy hh:mm:ss EDF CALLS NOT SUPPORTED UERTFID=xx ERRNO=errno TRAN=tran

TASK=cicstask

Explanation: The task related user exit (TRUE) detected an EDF (Execute Diagnostic Facility) call. This TRUE does

not support EDF calls.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The TRUE is disabled and the task abends with an AEY9.

Operator response: Contact the IBM Software Support Center.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1277I mm/dd/yy hh:mm:ss EZACIC03 DETACHED TCB ADDRESS=xxxxxxxx ERRNO=errno TRAN=tran

TASK=cicstask

Explanation: An attached subtask is terminating.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The TRUE detaches the MVS subtask.

Operator response: None.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1275E • EZY1277I

Appendix D. CICS sockets messages 427

EZY1278I mm/dd/yy hh:mm:ss EZACIC03 DETACH SUCCESSFUL TCB ADDRESS= xxxxxxxx TRAN=tran

TASK=cicstask

Explanation: An attached subtask is terminating.

System action: The TRUE detaches the MVS subtask.

Operator response: None.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1279E mm/dd/yy hh:mm:ss INVALID SYNC PT COMMAND DISP=xx TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) Detected an invalid Sync Point command.

System action: Disable the TRUE and return to the caller.

Operator response: Contact the IBM Software Support Center.

System programmer response: None.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1280E mm/dd/yy hh:mm:ss INVALID RESYNC COMMAND DISP=xx TRAN=tran TASK=cicstask

Explanation: The task related user exit (TRUE) Detected an invalid Resync command.

System action: Disable the TRUE and return to the caller.

Operator response: Contact the IBM Software Support Center.

System programmer response: None.

Module: EZACIC01

EZY1282E mm/dd/yy hh:mm:ss 10999 ABEND reasonxx

Explanation: The ESTAE processing in EZACIC03 could not be completed because of reasonxx.

System action: Allow the ABEND to percolate.

Operator response: Contact the IBM Software Support Center. See the CICS Application Programming Reference for

information about abend codes.

System programmer response: None.

Module: EZACIC03

Destination: MVS SUBTASK

EZY1285E mm/dd/yy hh:mm:ss CICS/SOCKETS LISTENER TRANSACTION tran NOT ON CONFIGURATION

FILE

Explanation: The Listener attempting to start does not have a description record on the CICS Sockets configuration

file.

System action: Listener terminates.

Operator response: Contact CICS system programmer.

System programmer response: Add the Listener to the configuration file using EZAC and retry.

Module: EZACIC02

Destination: LISTENER

EZY1278I • EZY1285E

428 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

EZY1286E mm/dd/yy hh:mm:ss READ FAILURE ON CICS/SOCKETS CONFIGURATION FILE TRANSACTION=

tran EIBRESP2= rrrrr

Explanation: The Listener could not read the configuration file.

System action: Listener terminates.

Operator response: Contact CICS system programmer.

System programmer response: Use the CICS APR to interpret the value of EIBRESP2. If the file is not known to

CICS, perform the installation steps for the configuration file.

 See the CICS Application Programming Reference for information about EIBRESP2 values.

Module: EZACIC02

Destination: LISTENER

EZY1287E mm/dd/yy hh:mm:ss EZYCIC02 GETMAIN FAILURE FOR VARIABLE STORAGE TRANSACTION=

tran EIBRESP2=rrrrr

Explanation: EZACIC02 could not obtain the variable storage it requires to execute.

System action: Listener terminates.

Operator response: Contact CICS system programmer.

System programmer response: Use the CICS APR to interpret the value of EIBRESP2. Correct your CICS

configuration as indicated.

 See the CICS Application Programming Reference for information about EIBRESP2 values.

Module: EZACIC02

Destination: LISTENER

EZY1288E mm/dd/yy hh:mm:ss CICS SOCKETS MODULE mmmmmmmm ABEND aaaa

Explanation: An abend has occurred in module mmmmmmmm of the CICS socket interface.

System action: Listener terminates.

Operator response: See the CICS Application Programming Reference for information about abend codes. Contact the

IBM Software Support Center.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1289E mm/dd/yy hh:mm:ss CICS LISTENER TRANSACTION tran TERMINATING

Explanation: The Listener is terminating. This could be a normal shutdown situation or a failure related to the

Listener socket. If it is the latter, a previous message will describe the failure.

System action: Continue termination of the Listener.

Operator response: None.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1286E • EZY1289E

Appendix D. CICS sockets messages 429

EZY1290I mm/dd/yy hh:mm:ss LISTENER TRANSACTION tran STARTING

Explanation: Transaction tran, Listener program EZACIC02 has been given control.

System action: Listener tran continues.

Operator response: None.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1291I mm/dd/yy hh:mm:ss LISTENER TRANSACTION transactionid TASKID= taskno ACCEPTING

REQUESTS VIA PORT port

Explanation: The specified transaction can now receive connection requests on the specified port.

 This message is issued when any of the following events occur:

v The listener is initialized and was able to connect to its TCP/IP.

v The listener reconnects to its TCP/IP after its TCP/IP has been restarted.

v The listener’s socket descriptor table is no longer full and the table is now accepting client connections.

In the message text:

mm/dd/yy

The date (month/day/year) of the message.

hh:mm:ss

The time (hours:minutes:seconds) of the message.

transactionid

The name of the listener’s transaction that can now accept new client connections.

taskno

The task number assigned by CICS.

port

The port number on which the listener identified by the transactionid value is listening.

Example:

EZY1291I 01/19/06 10:07:33 LISTENER TRANSACTION= CSKL TASKID= 0000079L ACCEPTING REQUESTS VIA PORT 3010

System action: The listener transaction continues.

Operator response: No action needed.

User response: None.

System programmer response: No action needed.

Problem determination: None.

Source: Not applicable.

Module: EZACIC02

Routing code: Not applicable.

Descriptor code: Not applicable.

EZY1292E mm/dd/yy hh:mm:ss CANNOT START LISTENER, TRUE NOT ACTIVE TRANSACTION= tran

TASKID= cicstask EIBRCODE BYTE3=rr

Explanation: The initialization of the CICS socket interface did not complete successfully and this Listener cannot

continue.

System action: Listener transaction tran terminates.

EZY1290I • EZY1292E

430 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||
|

|

|

|

|

|

|

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

Operator response: If EZAO is being used to start the Listener, ensure that the CICS socket interface has

successfully completed initialization first. If this happens during automatic initialization, look for other messages

which would indicate why the initialization of the CICS socket interface failed.

 See the CICS Application Programming Reference for information about EIBRCODEs.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1293E mm/dd/yy hh:mm:ss INITAPI CALL FAILURE TRANSACTION=tran TASKID= cicstask ERRNO=errno

Explanation: Listener transaction tran experienced a failure on the INITAPI call.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System programmer response: None.

System action: Listener transaction tran terminates.

Operator response: Use the errno value to determine the cause of the failure.

Module: EZACIC02

Destination: LISTENER

EZY1294E mm/dd/yy hh:mm:ss SOCKET CALL FAILURE TRANSACTION= tran TASKID= cicstask ERRNO= errno

Explanation: Listener transaction tran experienced a failure on the SOCKET call.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System programmer response: None.

System action: Listener transaction tran terminates.

Operator response: Use the errno value to determine the cause of the failure.

Module: EZACIC02

Destination: LISTENER

EZY1295E mm/dd/yy hh:mm:ss BIND CALL FAILURE TRANSACTION= tran TASKID= cicstask ERRNO= errno

Explanation: Listener transaction tran experienced a failure on the BIND call.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: Listener transaction tran terminates.

Operator response: Use the errno value to determine the cause of the failure.

Notes:

1. An ERRNO=13 could indicate that the port and jobname specified in the PORT statement in hlq.TCPIP.PROFILE

does not match the port and jobname used by the CICS Listener.

2. An ERRNO=48 could indicate that the port is not reserved in hlq.TCPIP.PROFILE.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1293E • EZY1295E

Appendix D. CICS sockets messages 431

EZY1296E mm/dd/yy hh:mm:ss LISTEN CALL FAILURE TRANSACTION= tran TASKID= cicstask ERRNO= errno

Explanation: Listener transaction tran experienced a failure on the LISTEN call.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: Listener transaction tran terminates.

Operator response: Use the errno value to determine the cause of the failure.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1297E mm/dd/yy hh:mm:ss GETCLIENTID CALL FAILURE TRANSACTION=tran TASKID= cicstask

ERRNO=errno

Explanation: Listener transaction tran experienced a failure on the GETCLIENTID call.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: Listener transaction tran terminates.

Operator response: Use the errno value to determine the cause of the failure.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1298E mm/dd/yy hh:mm:ss CLOSE FAILURE TRANID= tran TASKID= cicstask ERRNO= errno

Explanation: Listener transaction tran experienced a failure on the CLOSE call.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: Listener transaction tran continues.

Operator response: Use the errno value to determine the cause of the failure.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1299E mm/dd/yy hh:mm:ss SELECT CALL FAILURE TRANSACTION= tran TASKID= xxxxx ERRNO= errno

Explanation: Listener transaction tran experienced a failure on the SELECT call.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: Listener transaction tran terminates.

Operator response: Use the errno value to determine the cause of the failure.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1296E • EZY1299E

432 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

EZY1300E mm/dd/yy hh:mm:ss RECV FAILURE TRANSID= transactionid TASKID= tasknumber ERRNO= errno

INET ADDR=inetaddress PORT=portnumber

Explanation: The Listener transaction transactionid experienced a failure on the RECV call.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the Listener transaction performing the RECV Socket.

 tasknumber is the CICS task number assigned to the CICS transaction transactionid.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction transactionid continues.

Operator response: Use the errno value to determine the cause of the failure.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1301E mm/dd/yy hh:mm:ss CONNECTION CLOSED BY CLIENT TRANSACTION= transactionid PARTNER

INET ADDR= ipaddr PORT= port

Explanation: A remote client connected to the CICS Listener but then closed the connection before sending the

entire amount of data required by the Listener as determined by the MINMSGL standard Listener configuration

parameter or the MSGLEN enhanced Listener configuration parameter.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the transaction name of the CICS Listener.

 ipaddr is the internet address of the remote client.

 port is the port number of the remote client.

System action: The Listener transaction transactionid continues.

Operator response: Correct the client program.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1302I mm/dd/yy hh:mm:ss READ TIMEOUT PARTNER INET ADDR=inetaddress PORT=portnumber

Explanation: The initial message from the client did not arrive within the read timeout value specified for this

Listener in the CICS Sockets configuration file.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener closes the connection socket and does not attempt to start a server transaction.

Operator response: Determine the cause of the delay and correct it.

EZY1300E • EZY1302I

Appendix D. CICS sockets messages 433

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1303I mm/dd/yy hh:mm:ss EZACIC02 GIVESOCKET TIMEOUT TRANS transactionid PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The started server transaction did not perform the takesocket within the timeout value specified for

this Listener in the CICS Sockets configuration file.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: Send an error message to the client and close the socket.

Operator response: Determine the reason for the delay in the server transaction. Possible causes are an overloaded

CICS system or excessive processing in the server transaction before the takesocket is issued. Correct the situation

and retry.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1304I mm/dd/yy hh:mm:ss UNEXPECTED INPUT EVENT TRANSACTION transactionid PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The Listener received data from the client after the end of the transaction input message.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener ignores this data.

Operator response: Ensure that the minimum message length specification for this Listener in the CICS Sockets

Configuration file is correct. If it is, determine why the client is sending this additional data.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1305E mm/dd/yy hh:mm:ss UNEXPECTED EXCEPTION EVENT TRANS transactionid PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The Listener received an exception event on this connection other than the event showing a successful

takesocket was issued by the server.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

EZY1303I • EZY1305E

434 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

portnumber is the connecting client’s port number.

System action: Ignore the event.

Operator response: Ensure the client is not doing anything that would cause an exception event such the use of

out-of-band data.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1306E mm/dd/yy hh:mm:ss SECURITY EXIT mmmmmmmm IS NOT DEFINED TRANID= tran

TASKID=xxxxxxxx

Explanation: The security exit specified for this Listener in the CICS Sockets configuration file is not defined to

CICS.

System action: Close the socket and terminate the connection.

Operator response: Use CICS RDO to define the security exit.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1307E mm/dd/yy hh:mm:ss MAXIMUM # OF SOCKETS USED TRANS= tran TASKID= cicstask ERRNO=

errno

Explanation: All of the sockets allocated to Listener transaction xxxx are in use.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: The ACCEPT call is delayed until a socket is available.

Operator response: Use the EZAC transaction to increase the number of sockets allocated Listener tran and then

stop and restart Listener transaction tran.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1308E mm/dd/yy hh:mm:ss ACCEPT CALL FAILURE TRANSACTION= tran TASKID= cicstask ERRNO= errno

Explanation: Listener transaction tran experienced a failure on the ACCEPT call.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

System action: Listener transaction tran terminates.

Operator response: Use the errno value to determine the cause of the failure.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1309E mm/dd/yy hh:mm:ss GIVESOCKET FAILURE TRANS transactionid TASKID=tasknumber ERRNO=errno

INET ADDR=inetaddress PORT=portnumber

Explanation: The Listener transaction transactionid experienced a failure on the GIVESOCKET call.

 mm/dd/yy is the date (month/day/year) of the message.

EZY1306E • EZY1309E

Appendix D. CICS sockets messages 435

hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 tasknumber is the CICS task number assigned to the CICS transaction transactionid.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction transactionid terminates.

Operator response: Use the errno value to determine the cause of the failure.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1310E mm/dd/yy hh:mm:ss IC VALUE NOT NUMERIC TRANID=transactionid PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The interval specified in the transaction input message contains one or more non-numeric characters.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The interval is ignored, and the transaction is started immediately.

Operator response: Correct the client program which is sending this transaction input message.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1311E mm/dd/yy hh:mm:ss CICS TRANID transactionid NOT AUTHORIZED PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The transaction name specified in the transaction input message is not RSL authorized.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The transaction is not started.

Operator response: Correct the CICS transaction definition if the transaction should be authorized or the client

program if it is sending the wrong transaction name.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1310E • EZY1311E

436 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

EZY1312E mm/dd/yy hh:mm:ss SECURITY EXIT mmmmmmmm CANNOT BE LOADED TRANID= tran

TASKID=cicstask

Explanation: Listener transaction tran experienced a failure when it attempted to load security exit program

mmmmmmmm.

System action: Listener transaction tran continues but the server transaction associated with this transaction input

message is not started.

Operator response: Use CEMT to determine the status of the exit program and correct whatever problems are

found.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1313E mm/dd/yy hh:mm:ss LISTENER NOT AUTHORIZED TO ACCESS SECURITY EXIT mmmmmmmm

TRANID= tran TASKID=xxxxxxxx

Explanation: Listener transaction tran is not authorized to access security exit program mmmmmmmm.

System action: Listener transaction tran continues but the server transaction associated with this transaction input

message is not started.

Operator response: If the security exit program name is incorrect, use EZAC to correct the definition of this Listener

on the CICS Sockets Configuration file. If the security exit program is correct, use the CICS RDO facility to authorize

Listener transaction xxxx to use security exit program mmmmmmmm.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1314E mm/dd/yy hh:mm:ss SECURITY EXIT mmmmmmmm IS DISABLED TRANID= tran TASKID=xxxxxxxx

Explanation: Security exit program mmmmmmmm is disabled.

System action: Listener transaction tran continues but the server transaction associated with this transaction input

message is not started.

Operator response: Use CEMT to enable the security exit program.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1315E mm/dd/yy hh:mm:ss INVALID TRANSID transactionid PARTNER INET ADDR=inetaddress

PORT=portnumber

Explanation: The transaction input message from the client specified transaction transactionid but this transaction is

not defined to CICS.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client. The transactionid field will be

blank if no printable name was passed by the client or the security exit.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues but the server transaction associated with this transaction input

message is not started.

EZY1312E • EZY1315E

Appendix D. CICS sockets messages 437

Operator response: If the transaction name is incorrect, correct the client program. If the transaction name is correct,

correct the CICS transaction definition.

System programmer response: If transactionid is blank, then there is a possible mismatch because the Listener is

expecting the first message segment to start with a transaction name but it does not. A packet trace might be helpful

in determining whether there is such a mismatch. For example, if the packet trace shows that the first message

segment starts with X’160300’ or X’160301’ then possibly a clienthello message was received, which indicates that

there is an Application Transparent Transport Layer Security (AT-TLS) policy on the client side of the TCP connection

but no matching AT-TLS policy (or AT-TLS is not enabled) on the Listener side of the TCP connection. This would

need to be addressed by the AT-TLS administrator. See Application Transparent Transport Layer Security (AT-TLS)

Data Protection in z/OS Communications Server: IP Configuration Guide and Diagnosing AT-TLS problems in z/OS

Communications Server: IP Diagnosis Guide for more information.

Module: EZACIC02

Destination: LISTENER

EZY1316E mm/dd/yy hh:mm:ss TRANSID transactionid IS DISABLED PARTNER INET ADDR=inetaddress

PORT=portnumber

Explanation: Transaction transactionid is disabled.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues but the server transaction associated with this transaction input

message is not started.

Operator response: Use CEMT to enable the server transaction.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1317E mm/dd/yy hh:mm:ss TRANSID transactionid IS NOT AUTHORIZED PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The Listener transaction transactionid is not authorized to start the transaction name specified in the

transaction input message.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The transaction is not started.

Operator response: Authorize Listener transaction transactionid to start the transaction.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1316E • EZY1317E

438 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

EZY1318E mm/dd/yy hh:mm:ss TD START SUCCESSFUL QUEUEID= que

Explanation: The Listener transaction started a server transaction through transient data queue que

System action: Listener transaction continues and the server transaction is ready to start.

Operator response: None.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1319E mm/dd/yy hh:mm:ss QIDERR FOR TD DESTINATION queuename PARTNER INET ADDR=inetaddress

PORT=portnumber

Explanation: The Listener transaction was unable to start a CICS transaction through transient data queue

queuename. DFHRESP was QIDERR.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 queuename is the name of the transient data queue that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues.

Operator response: If the queue name is incorrect, correct the client program sending this transaction input

message. If the queue name is correct, correct the CICS Destination Control Table.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1320E mm/dd/yy hh:mm:ss I/O ERROR FOR TD DESTINATION queuename PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The Listener transaction was unable to start a CICS transaction through transient data queue

queuename. DFHRESP was IOERR.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 queuename is the name of the transient data queue that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues.

Operator response: Contact the CICS system programmer.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1318E • EZY1320E

Appendix D. CICS sockets messages 439

EZY1321E mm/dd/yy hh:mm:ss LENGTH ERROR FOR TD DESTINATION queuename PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The Listener transaction was unable to start a CICS transaction through transient data queue

queuename. DFHRESP was LENGERR.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 queuename is the name of the transient data queue that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues.

Operator response: Contact the CICS system programmer. The minimum length for this queue should be greater

than 72.

System programmer response: Change definition of Transient Data Queue to accommodate length of this message.

Module: EZACIC02

Destination: LISTENER

EZY1322E mm/dd/yy hh:mm:ss TD DESTINATION queuename DISABLED PARTNER INET ADDR=inetaddress

PORT=portnumber

Explanation: The Listener transaction was unable to start a CICS transaction through transient data queue

queuename. DFHRESP was DISABLED.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 queuename is the name of the transient data queue that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues.

Operator response: Use CEMT to enable the destination.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1323E mm/dd/yy hh:mm:ss TD DESTINATION queuename OUT OF SPACE PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The Listener transaction was unable to start a CICS transaction through transient data queue

queuename. DFHRESP was NOSPACE.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 queuename is the name of the transient data queue that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues.

Operator response: Contact the CICS system programmer.

System programmer response: Allocate space for this Transient Data Queue.

EZY1321E • EZY1323E

440 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Module: EZACIC02

Destination: LISTENER

EZY1324E mm/dd/yy hh:mm:ss TD START FAILED QUEUE ID=queuename PARTNER INET ADDR=inetaddress

PORT=portnumber

Explanation: The Listener transaction was unable to start a CICS transaction through transient data queue

queuename.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 queuename is the name of the transient data queue that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues.

Operator response: Contact the CICS system programmer.

System programmer response: Determine the problem with the Transient Data Queue and correct it.

Module: EZACIC02

Destination: LISTENER

EZY1325I mm/dd/yy hh:mm:ss START SUCCESSFUL TRANID=transactionid PARTNER INET ADDR=inetaddress

PORT=portnumber

Explanation: The Listener transaction was able to start a CICS transaction transactionid transient data queue.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues.

Operator response: None.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1326E mm/dd/yy hh:mm:ss START I/O ERROR TRANID=transactionid PARTNER INET ADDR=inetaddress

PORT=portnumber

Explanation: The Listener transaction was unable to start a CICS transaction transactionid. DFHRESP was IOERR.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues.

Operator response: Contact the CICS system programmer.

EZY1324E • EZY1326E

Appendix D. CICS sockets messages 441

System programmer response: Determine the cause of the I/O error and correct it.

Module: EZACIC02

Destination: LISTENER

EZY1327E mm/dd/yy hh:mm:ss START TRANSACTION ID transactionid INVALID PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The Listener transaction was unable to start a CICS transaction transactionid. DFHRESP was

TRANSIDERR.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues.

Operator response: Contact the CICS system programmer.

System programmer response: Check the transaction definition in RDO to ensure it is correct.

Module: EZACIC02

Destination: LISTENER

EZY1328E mm/dd/yy hh:mm:ss START TRANSACTION ID transactionid NOT AUTHORIZED PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The Listener transaction was unable to start a CICS transaction transactionid. DFHRESP was

NOTAUTH.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues.

Operator response: If the transaction ID is incorrect, correct the client program which sent this transaction input

message. If the transaction ID is correct, authorize Listener transaction to start this transaction.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1329E mm/dd/yy hh:mm:ss START FAILED (99) TRANSID=transactionid PARTNER INET ADDR=inetaddress

PORT=portnumber

Explanation: The Listener transaction was unable to start a CICS transaction transactionid. DFHRESP was 99.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

EZY1327E • EZY1329E

442 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

System action: The Listener transaction continues.

Operator response: Contact the CICS system programmer.

System programmer response: Check the transaction definition in RDO. Look for associated messages in the

MSGUSR queue, which might indicate why the transaction would not start.

Module: EZACIC02

Destination: LISTENER

EZY1330E mm/dd/yy hh:mm:ss IC START SUCCESSFUL TRANID=transactionid PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The Listener transaction was able to start a CICS transaction transactionid.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues.

Operator response: None.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1331E mm/dd/yy hh:mm:ss IC START I/O ERROR TRANID=transactionid PARTNER INET ADDR=inetaddress

PORT=portnumber

Explanation: Listener transaction was unable to start a CICS transaction transactionid. DFHRESP was IOERR.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: Listener transaction continues.

Operator response: Contact the CICS system programmer.

System programmer response: Look for other messages in the MSGUSR queue, which provide specific information

on the I/O error and correct the problem.

Module: EZACIC02

Destination: LISTENER

EZY1332E mm/dd/yy hh:mm:ss IC START INVALID REQUEST TRANID=transactionid PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: Listener transaction was unable to start a CICS transaction transactionid. DFHRESP was INVREQ.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

EZY1330E • EZY1332E

Appendix D. CICS sockets messages 443

portnumber is the connecting client’s port number.

System action: Listener transaction continues.

Operator response: Collect the messages written to the console and MSGUSR queue, client input data, and a

SOCKAPI component trace and contact the IBM Software Support Center.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1333E mm/dd/yy hh:mm:ss IC START FAILED TRANID=transactionid PARTNER INET ADDR=inetaddress

PORT=portnumber

Explanation: Listener transaction was unable to start a CICS transaction transactionid.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: Listener transaction continues.

Operator response: Contact the CICS system programmer.

System programmer response: Check the RDO definition of the transaction. Collect the messages written to the

console and MSGUSR queue, client input data, and a SOCKAPI component trace and contact the IBM Software

Support Center.

Module: EZACIC02

Destination: LISTENER

EZY1334E mm/dd/yy hh:mm:ss INVALID USER TRANID=transactionid PARTNER INET ADDR = inetaddress

PORT = portnumber

Explanation: This message indicates that the user security exit has given the Listener an invalid USERID field.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The server transaction does not start.

Operator response: Correct the invalid USERID in the security exit.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1335E mm/dd/yy hh:mm:ss WRITE FAILED ERRNO=errno TRANID=transactionid. PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: Listener transaction had a failure on a WRITE command.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

EZY1333E • EZY1335E

444 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues.

Operator response: Use the errno value to determine the cause of the failure.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1336E mm/dd/yy hh:mm:ss TAKESOCKET FAILURE TRANS transactionid TASKID=tasknumber ERRNO=errno

INET ADDR=inetaddress PORT=portnumber

Explanation: The Listener transaction had a failure on a TAKESOCKET command.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

 transactionid is the name of the transaction that was requested by the connecting client.

 inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: The Listener transaction continues.

Operator response: Use the errno value to determine the cause of the failure.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1337E mm/dd/yy hh:mm:ss CICS IN QUIESCE, LISTENER TERMINATING TRANSID= tran TASKID=

cicstask

Explanation: Listener transaction tran is terminating because it detected a CICS quiesce in progress.

System action: Listener transaction tran terminates.

Operator response: None.

System programmer response: None.

Module: EZACIC02

Destination: LISTENER

EZY1338E mm/dd/yy hh:mm:ss PROGRAM programname NOT FOUND TRANID=transactionid PARTNER INET

ADDR=inetaddress PORT=portnumber

Explanation: The Listener checked the status of the program associated with the transaction. It was not found.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 programname is the name of the program which is associated with the transaction requested by the connecting client.

 transactionid is the name of the transaction that was requested by the connecting client.

EZY1336E • EZY1338E

Appendix D. CICS sockets messages 445

inetaddress is the internet address of the connecting client.

 portnumber is the connecting client’s port number.

System action: Listener continues.

Operator response: If transactionid is incorrect, correct the client program that sent the transaction input message. If

the transaction ID is correct, check the transaction and program definitions in CICS.

System programmer response: None.

Module: EZACIC02

EZY1339E mm/dd/yy hh:mm:ss EXIT PROGRAM (EZACIC01) IS NOT ENABLED. DISABLE IGNORED

TERM=term TRAN=tranxxx

Explanation: A termination of the CICS socket interface was requested but the interface is not enabled.

System action: The termination request is ignored.

Operator response: None.

System programmer response: None.

Module: EZACIC22

Destination: TERMINATION

EZY1340E mm/dd/yy hh:mm:ss API ALREADY QUIESCING DUE TO PREVIOUS REQ. EZAO IGNORED

TERM=term TRAN=tranxxx

Explanation: A request for a quiesce of the CICS socket interface has been made but one is already is progress.

System action: Ignore the second request.

Operator response: None.

System programmer response: None.

Module: EZACIC22

Destination: TERMINATION

EZY1341E mm/dd/yy hh:mm:ss API ALREADY IN IMMED MODE DUE TO PREV. REQ. EZAO IGNORED

TERM=term TRAN=tranxxx

Explanation: A request for an immediate of the CICS socket interface has been made but one is already is progress.

System action: Ignore the second request.

Operator response: None.

System programmer response: None.

Module: EZACIC22

Destination: TERMINATION

EZY1342I mm/dd/yy hh:mm:ss DISABLE DELAYED UNTIL ALL USING TASKS COMPLETE TERM=termid

TRAN=transid

Explanation: A quiesce is in progress and is waiting for all outstanding CICS tasksto complete using the CICS

socket interface.

 When an IP CICS interface is being shut down the following actions occur:

v All listeners are posted to end.

v If the interface is configured as OTE=NO, then all non-listener tasks have their MVS subtask posted and their CICS

task ends.

EZY1339E • EZY1342I

446 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|

|

|

|
|

v If the interface is configured as OTE=YES, then any non-listener transaction that is running a blocking socket

command is forced to end by a CICS FORCE PURGE action.

See the information about the “TYPE=CICS” on page 55 for information about the OTE configuration option.

 In the message text:

mm/dd/yy

The date (month/day/year) of the message.

hh:mm:ss

The time (hours:minutes:seconds) of the message.

termid

The CICS terminal ID on which the IP CICS socket shutdown is occuring.

transid

The CICS transaction ID that requested that the IP CICS socket be shut down.

System action: The system continues to shut down.

Operator response: None.

System programmer response: None.

Module: EZACIC22

Destination: TERMINATION

EZY1343I mm/dd/yy hh:mm:ss CICS/SOCKETS INTERFACE IMMEDIATELY DISABLED TERM=term

TRAN=tranxxx

Explanation: A request for immediate termination of the CICS socket interface has been successfully completed.

System action: Terminate the CICS socket interface.

Operator response: None.

System programmer response: None.

Module: EZACIC22

Destination: TERMINATION

EZY1344I mm/dd/yy hh:mm:ss CICS/SOCKETS INTERFACE QUIESCENTLY DISABLED TERM=term

TRAN=tranxxx

Explanation: A request for deferred termination of the CICS socket interface has been successfully completed.

System action: Terminate the CICS socket interface.

Operator response: None.

System programmer response: None.

Module: EZACIC22

EZY1345E mm/dd/yy hh:mm:ss CICS/SOCKETS WLM REGISTER FAILURE. RETURN CODE = return_code,

GROUP = groupname, LISTNER = list

Explanation: The CICS Listener received an error response when attempting to register WLM group with the

Workload manager.

mm/dd/yy hh:mm:ss

Date and time of the message.

return_code

The return code from the WLM registration.

EZY1343I • EZY1345E

Appendix D. CICS sockets messages 447

|
|

|

|

|
|

|
|

|
|

|
|

|

groupname

Name of the WLM group.

list Name of the CICS Listener.

System action: The Listener continues initialization but will not use groupname to participate in workload connection

balancing.

Operator response: Verify that the WLM group name is correct and correctly defined to the Workload manager. If it

is incorrect, either change it in the EZACICD TYPE=LISTENER macro that was used to define the Listener, or change

it via the EZAC transaction. See the z/OS MVS Programming: Workload Management Services for more information

about return_code.

System programmer response: None

Module: EZACIC12

EZY1346E mm/dd/yy hh:mm:ss CICS SOCKETS WLM DEREGISTER FAILED RETURN CODE = return_code,

GROUP = groupname, LISTNER = list

Explanation: The CICS Listener received an error response when attempting to deregister WLM group with the

Workload manager.

mm/dd/yy hh:mm:ss

Date and time of the message.

return_code

The return code from the WLM deregistration.

groupname

Name of the WLM group.

list Name of the CICS Listener.

System action: The Listener continues termination.

Operator response: See the z/OS MVS Programming: Workload Management Services for more information about

return_code.

System programmer response: None.

Module: EZACIC12

EZY1347I mm/dd/yy hh:mm:ss PROGRAM programname ASSUMED TO BE AUTOINSTALLED

TRANID=transactionid IP ADDR=inetaddress PORT=portnumber

Explanation: The Listener checked the status of the program associated with the transaction. It was not found. Since

program autoinstall is active in the CICS region, the Listener assumes that the program definition will automatically

be installed by CICS.

 mm/dd/yy

The date (month/day/year) of the message.

hh:mm:ss

The time (hours:minutes:seconds) of the message.

programname

The name of the undefined program which is associated with the transaction requested by the connecting

client.

transactionid

The name of the transaction that was requested by the connecting client.

inetaddress

The internet address of the connecting client.

portnumber

The connecting client’s port number.

System action: Listener continues.

EZY1346E • EZY1347I

448 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Operator response: None.

System programmer response: Verify that the program name in the transaction definition is correct. Verify that the

program is intended to be autoinstalled rather than explicitly defined in the PPT.

Module: EZACIC02

Destination: LISTENER

EZY1348E mm/dd/yy hh:mm:ss INVALID SOCKET FUNCTION function ERRNO errno TRAN tranid TASK taskid

Explanation: The task related user exit (TRUE) detected an invalid socket function on a call request from the CICS

application program.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 function is the invalid socket function.

 errno is the UNIX System Services return code. These return codes are listed and described in the return codes

(errnos) information in z/OS UNIX System Services Messages and Codes.

 tranid is the name of the CICS transaction.

 taskid is the CICS task ID number.

System action: The TRUE is disabled and the task abends with an AEY9 CICS abend code.

Operator response: Correct the invalid socket function and retry.

 The most probable errno is 10011 ″INVALID SOCKET FUNCTION″. If the socket function name appears correct,

ensure that the application padded the function call with blanks.

System programmer response: None.

Module: EZACIC01

Destination: Task Related User Exit (TRUE)

EZY1349E mm/dd/yy hh:mm:ss UNABLE TO OPEN CONFIGURATION FILE TRANSACTION=transactionid

EIBRESP2=eibresp2

Explanation: The CICS Listener received an abnormal response from CICS when attempting to open the CICS

Sockets configuration file (EZACONFG) using an EXEC CICS SET FILE call.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the transaction under which the Listener is executing.

 eibresp2 is the EIBRESP2 value returned by CICS on the EXEC CICS SET FILE call as described in CICS System

Programming Reference.

System action: The Listener ends.

Operator response: Contact the CICS system programmer.

System programmer response: Use the CICS System Programming Reference to interpret the value of EIBRESP2. If the

file is not known to CICS, perform the installation steps for the configuration file.

Module: EZACIC02

Destination: LISTENER

EZY1350E mm/dd/yy hh:mm:ss NOT AUTHORIZED TO USE api_function, action IGNORED. TERM=termid

TRAN=transid

Explanation: The IP CICS socket interface uses a CICS EXTRACT EXIT command to determine whether the IP CICS

Sockets Task Related User Exit (TRUE) is enabled. This action is performed by IP CICS socket interface initialization

EZY1348E • EZY1350E

Appendix D. CICS sockets messages 449

and shutdown programs, the Listener, and by any user application linking to the IP CICS domain name server

module.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 api_function is the CICS command performed.

 action is the action intended.

v ENABLE means the IP CICS socket interface is being enabled.

v DISABLE means the IP CICS socket interface is being disabled.

v STARTUP means the IP CICS socket interface is being started.

termid is the terminal ID where the transaction receiving the error is executing.

 transid is the name of the transaction that is incurring the security violation.

System action:

v If the TRUE is being enabled when the IP CICS socket interface is initializing, then the enable action is ignored and

the interface is not activated.

v If the TRUE is being disabled when the IP CICS socket interface is shutting down, then the disable action is

ignored and the interface remains active.

v If the IP CICS socket interface is being started, then the startup action is ignored and the interface remains inactive.

Operator response: Contact the CICS system programmer.

System programmer response: Ensure that the user ID being used is allowed at least UPDATE access to the

EXITPROGRAM resource.

Module: EZACIC02, EZACIC21, EZACIC22

Destination: Listener, Initialization, Shutdown

EZY1351E mm/dd/yy hh:mm:ss EXIT PROGRAM (EZACIC01) IS NOT ENABLED, action IGNORED.

TERM=termid TRAN=transid

Explanation: The IP CICS socket interface uses a CICS ENABLE PROGRAM command to enable the IP CICS

Sockets Task Related User Exit (TRUE). This action is performed by IP CICS socket interface initialization.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 action is the action intended.

v ENABLE means the IP CICS socket interface is being enabled.

v DISABLE means the IP CICS socket interface is being disabled.

termid is the terminal ID where the transaction receiving the error is executing.

 transid is the name of the transaction that is incurring the security violation.

System action: The IP CICS socket interface is not initialized.

Operator response: Contact the CICS system programmer.

System programmer response: Ensure that the user ID being used is allowed at least UPDATE access to the

EXITPROGRAM resource.

Module: EZACIC21

Destination: Initialization

EZY1351E

450 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

EZY1352E mm/dd/yy hh:mm:ss SUBTASK ENDED UNEXPECTEDLY TRANSACTION= transactionid TASKID=

taskid

Explanation: The current tasks CICS Sockets subtask ended unexpectedly. This is probably caused by an ABEND of

the subtask.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the CICS transaction whose subtask ended unexpectedly.

 taskid is the CICS task number of the task whose subtask ended unexpectedly.

System action: The CICS socket interface is disabled for the current task. Any subsequent CICS Sockets calls by that

task will result in CICS ABEND code AEY9. Other tasks are not affected.

Operator response: Contact the CICS system programmer.

System programmer response: Check the console log for previous messages that explain what happened to the

subtask.

Module: EZACIC01

Destination: TASK RELATED USER EXIT (TRUE)

EZY1353E mm/dd/yy hh:mm:ss COMMA MISSING AFTER IC TRANS ID = transactionid PARTNER IP ADDR =

inetaddress PORT = portnumber

Explanation: The listener did not find a comma delimiter after the interval control (IC) start type indicator in the

client’s transaction request message.

 In the message text:

mm/dd/yy

The date (month/day/year) of the message.

hh:mm:ss

The time (hours:minutes:seconds) of the message.

transactionid

The name of the transaction that was requested by the connecting client.

inetaddress

The internet address of the connecting client.

portnumber

The connecting client’s port number.

Example: An example of a transaction request message for the standard listener:

SCCS,DATA,IC000010

EZY1258I 10/11/05 14:01:55 EZACIC02 ENTRY POINT IS 17CB2028

EZY1258I 10/11/05 14:01:55 EZACIC01 ENTRY POINT IS 177E2518

EZY1291I 10/11/05 14:01:56 LISTENER TRANSACTION= CSKL TASKID= 0000032L ACCEPTING REQUESTS VIA PORT 3010

EZY1353E 10/11/05 14:02:56 COMMA MISSING AFTER IC TRANSACTION ID= SCCS PARTNER INET ADDR=10.1.1.2 PORT= 1076

System action: The listener does not start the transaction specified by the client’s transaction request message and

ends the connection. This message is also returned to the client.

Operator response: Ensure that a comma delimiter separates the IC start type and the IC start time. See “Listener

input format” on page 135 for information about the client’s transaction request message.

User response: Not applicable.

System programmer response: None.

Problem determination: Not applicable.

Source:

Module: EZACIC02

EZY1352E • EZY1353E

Appendix D. CICS sockets messages 451

Routing code: Not applicable.

Descriptor code: Not applicable.

EZY1354I mm/dd/yy hh:mm:ss CICS/SOCKETS CICS TRACING IS status

Explanation: This message shows the status of changing IP CICS Sockets CICS tracing and is issued when one of

the following occurs:

v The operator issued the EZAO,START,TRACE transaction.

v The operator issued the EZAO,STOP,TRACE transaction.

v The CICS Master User Trace Flag is specified as OFF and the IP CICS Sockets TRACE configuration is specified as

YES.

mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 status is the status of CICS tracing for the IP CICS socket interface.

v ENABLED indicates that the IP CICS socket interface will generate CICS trace data when CICS tracing is active.

v DISABLED indicates that the IP CICS socket interface will not generate CICS trace data.

System action: When status is ENABLED, IP CICS Sockets will generate CICS trace data when CICS tracing is

active. When status is DISABLED, IP CICS Sockets will not generate CICS trace data.

Operator response: None.

System programmer response: None.

Module: EZACIC00, EZACIC01

Destination: TRC00000, SUB05100

EZY1355I mm/dd/yy hh:mm:ss CICS/SOCKETS TCBLIM EXCEEDS MAXOPENTCBS

Explanation: IP CICS Sockets has determined that the value specified for TCBLIM exceeds the value of

MAXOPENTCBS allowed at the time the interface was enabled. TCBLIM will be forced to the same value as

MAXOPENTCBS.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

System action: IP CICS Sockets TCBLIM will default to the value of MAXOPENTCBS. IP CICS Sockets processing

continues.

Operator response: Contact the CICS system programmer.

System programmer response: Adjust the value specified by the TCBLIM configuration option using one or more of

the following methods:

v Specify an appropriate TCBLIM value on the EZACICD TYPE=CICS,TCBLIM= macro.

v Specify an appropriate TCBLIM value using the EZAC Configuration transaction.

v Specify an appropriate TCBLIM value dynamically by using the EZAO Operator transaction.

v Specify an appropriate MAXOPENTCBS value using the CICS System Initialization parameters.

v Specify an appropriate MAXOPENTCBS value using the CICS Master Terminal transaction, CEMT SET

DISPATCHER MAXOPENTCBS.

Refer to the following sections:

v “Building the configuration data set with EZACICD” on page 51 for information about using the EZACICD macro.

v “Configuration transaction (EZAC)” on page 70 for information about the EZAC Configuration transaction.

v “SET function” on page 107 and “INQUIRE function” on page 105 for information about the EZAO Operator

transaction.

v “TYPE parameter” on page 54 for a description of the TCBLIM parameter.

EZY1354I • EZY1355I

452 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Refer to the CICS System Definition Guide for a description of the MAXOPENTCBS parameter. Refer to CICS Supplied

Transactions for information about using the CEMT transaction.

Module: EZACIC21

Destination: Initialization

EZY1356E mm/dd/yy hh:mm:ss CICS/SOCKETS TCBLIM HAS BEEN REACHED

Explanation: The number of IP CICS Sockets-enabled CICS tasks using an Open API, L8, TCB is equal to the value

specified by the TCBLIM configuration option.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

System action: The IP CICS socket interface will suspend any new tasks until one of the following actions occur:

v The IP CICS Sockets TCBLIM value is increased.

v Existing transactions using IP CICS Sockets end.

This message will be issued only when the interface detects that it has reached TCBLIM. EZY1360I will be issued

when this condition is relieved.

Operator response: Contact the CICS system programmer.

System programmer response: Use the CICS Master Terminal transaction, CEMT INQ TASK HVALUE(ATTCBLIM),

to determine which IP CICS Sockets-enabled CICS transactions are subject to TCBLIM. Either take action to reduce

the IP CICS Sockets work load or increase the IP CICS Socket TCBLIM configuration option. You can use the

EZAO,SET,CICS Operator transaction to dynamically increase TCBLIM. The new value you set for the TCBLIM

configuration option must be less than or equal to the value specified by MAXOPENTCBS.

Module: EZACIC01

Destination: SUB16000

EZY1357I mm/dd/yy hh:mm:ss TRANSIENT DATA QUEUE SPECIFIED ON ERRORTD IS NOT DEFINED TO

CICS

Explanation: IP CICS Sockets has determined that the CICS transient data queue specified by the ERRORTD

configuration option was not defined to the CICS region where the IP CICS socket interface is enabled.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

System action: The CSMT transient data queue will be used for reporting all IP CICS Sockets interface messages.

CSMT is the default CICS transient data queue name.

Operator response: Contact the CICS system programmer.

System programmer response: Ensure that the CICS transient data queue specified by the ERRORTD configuration

option is properly defined to CICS.

 See “Transient data definition” on page 36 for more information.

Module: EZACIC21

Destination: Initialization

EZY1358E 10999 ABEND - IP CICS SOCKETS USING OTE

Explanation: IP CICS Sockets has incorrectly called the MVS subtask wrapper module when the interface was

enabled to use CICS Open Transaction Environment.

System action: The IP CICS socket interface will stop.

Operator response: Contact the CICS system programmer.

System programmer response: Contact the IBM Software Support Center. See the CICS Application Programming

Reference for information about abend codes.

EZY1356E • EZY1358E

Appendix D. CICS sockets messages 453

Module: EZACIC03

Destination: MVS SUBTASK

EZY1359I mm/dd/yy hh:mm:ss CICS/SOCKETS APPLICATIONS WILL USE THE QR TCB

Explanation: IP CICS Sockets has determined that CICS FORCEQR=YES is specified.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

System action: CICS will force all user application programs, including those enabled to IP CICS Sockets, that are

specified as threadsafe to run under the CICS Quasi-Reentrant (QR) TCB, as if they were specified as quasi-reentrant

programs.

Operator response: Contact the CICS system programmer.

System programmer response: If you do not want to incur the overhead of CICS switching Open API-enabled tasks

back to the QR TCB, then change the value of FORCEQR to NO. Refer to the CICS System Definition Guide for more

information about the FORCEQR CICS System Initialization parameter. Refer to CICS Supplied Transactions for more

information about the CICS Master Terminal transaction that is used to dynamically change the FORCEQR setting.

Module: EZACIC21

Destination: Initialization

EZY1360I mm/dd/yy hh:mm:ss CICS/SOCKETS TCBLIM CONDITION HAS BEEN RELIEVED

Explanation: IP CICS Sockets enable transactions are no longer suspended due to TCBLIM.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

System action: Any new or suspended IP CICS Sockets work will now be processed without being suspended due

to IP CICS Sockets being at TCBLIM.

Operator response: None.

System programmer response: None.

Module: EZACIC01

Destination: SUB16000, Task termination

EZY1361E mm/dd/yy hh:mm:ss CICS/TS OPEN TRANSACTION ENVIRONMENT SUPPORT IS NOT

AVAILABLE

Explanation: The IP CICS Sockets OTE configuration parameter is specified as YES. IP CICS Sockets determined that

the CICS environment that is required to support the exploitation of CICS Open Transaction Environment by IP CICS

Sockets is not available.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

System action: The IP CICS socket interface is not enabled to use CICS Open Transaction Environment.

Operator response: Contact the system programmer.

System programmer response: Perform one of the following:

v Upgrade the level of CICS to support Open Transaction Environment. The CICS Open Transaction Environment

requires CICS/TS V2R2 or later.

v Change the IP CICS socket interface configuration to use MVS subtasks when configuring it by using the EZAC

configuration transaction or the EZACICD macro.

Module: EZACIC21

Destination: Initialization

EZY1359I • EZY1361E

454 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

EZY1362E mm/dd/yy hh:mm:ss CICS/SOCKETS START OF LISTENER transactionid FAILED RESP1= resp1

RESP2=resp2

Explanation: CICS Sockets attempted to start the specified listener, but the EXEC CICS START command failed with

the RESP1 and RESP2 values listed in the message text.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the transaction name of the listener that the CICS Sockets attempted to start.

 resp1 is the RESP1 value returned by the EXEC CICS START transaction.

 resp2 is the RESP2 value returned by the EXEC CICS START transaction.

System action: The CICS Listener does not start.

Operator response: None.

System programmer response: Refer to the description of the START command in the CICS Application Programming

Reference for information about why the START command failed.

v If the RESP2 value is 8 or 9, then the problem is related to the USERID parameter in the definition of the listener.

Verify that the USERID parameter is correct. See Chapter 2, “Setting up and configuring CICS TCP/IP,” on page 23

for a description of the USERID parameter.

v If the RESP2 value is 8, then the USERID parameter of the listener definition specifies a user ID that is not known

to RACF. Therefore, either change the USERID parameter or define the user ID to RACF.

v If the RESP2 value is 9, then the user ID under which the EXEC CICS START was issued does not have

SURROGAT security access to the user ID that is specified in the USERID parameter. For example, if the failure

occurs during CICS PLT processing, then the PLT user ID does not have SURROGAT security access to the

listener’s user ID. Refer to the CICS RACF Security Guide for more information.

Module: EZACIC21

Destination: INITIALIZATION

EZY1363I mm/dd/yy hh:mm:ss LISTENER transactionid taskno HAD threads THREADS ACTIVE WHEN STACK

tcpname ENDED

Explanation: This message displays the number of listener threads that were active when the TCP/IP stack that is

specified ended. This message is followed by one or more EZY1368I messages that describe the clients that are

affected.

 In the message text:

mm/dd/yy

The date (month/day/year) of the message.

hh:mm:ss

The time (hours:minutes:seconds) of the message.

transactionid

The listener’s transaction ID.

taskno

The task number assigned by CICS.

threads

The number of threads that were active when the specified TCP/IP stack ended.

tcpname

The TCP/IP procedure name with which the listener had affinity.

Example: Following is an example of the messages that are displayed when the stack has ended while the listener

was processing data.

EZY1369E 01/10/06 12:59:32 LISTENER CSKL 10295 IS DELAYED, STACK TCPCS IS UNAVAILABLE

EZY1363I 01/10/06 12:59:33 LISTENER CSKL 10295 HAD 5 THREADS ACTIVE WHEN STACK TCPCS ENDED

EZY1367I 01/10/06 12:59:33 SOCK# IP ADDRESS PORT CHILD

EZY1362E • EZY1363I

Appendix D. CICS sockets messages 455

||
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

EZY1368I 01/10/06 12:59:33 2 10.11.1.2 10245 PAYR

EZY1368I 01/10/06 12:59:33 12 2001:DB8:10::11:2:1 21089

EZY1368I 01/10/06 12:59:33 15 10.91.1.1 10245 INVN

EZY1368I 01/10/06 12:59:33 19 10.81.1.1 21212 ACCT

EZY1368I 01/10/06 12:59:33 999 2001:DB8:10::11:1:2 00901 ORDR

System action: Processing continues.

Operator response: No action needed.

User response: No action needed.

System programmer response: No action needed.

Problem determination: Not applicable.

Source: z/OS Communications Server TCP/IP: CICS Socket Interface and API

Module: EZACIC02

Routing code: 10

Descriptor code: 12

Automation: This message is sent to the CICS transient data queue that is specified by the IP CICS Sockets

ERRORTD configuration option.

EZY1364I mm/dd/yy hh:mm:ss LISTENER transactionid DETECTED THAT TTLS IS status ON STACK tcpname

Explanation: The CICS Listener is defined with a GETTID parameter of YES which indicates that the listener is

requested to attempt to obtain the connecting client certificates and user IDs from Application Transparent Transport

Layer Security (AT-TLS). If status is DISABLED, then AT-TLS is disabled in the TCP/IP stack. Therefore, the listener

is unable to obtain client certificates and user IDs as requested by the GETTID parameter. If status is ENABLED, then

AT-TLS has been enabled in the TCP/IP stack, making it possible for the listener to obtain client certificates and user

IDs.

 mm/dd/yy is the date (month/day/year) of the message.

 hh:mm:ss is the time (hours:minutes:seconds) of the message.

 transactionid is the name of the listeners CICS transaction.

 status is the status of AT-TLS in the TCP/IP stack. status is either DISABLED or ENABLED.

 tcpname is the name of the TCP/IP stack.

System action: The listener continues its normal processing, which includes attempting to obtain client certificates

and User IDs.

Operator response: Contact the system programmer.

System programmer response: No response is needed if status is ENABLED. If status is DISABLED, then verify that

the GETTID parameter of YES is correct in the listener definition. If so, request that your AT-TLS administrator

investigate why AT-TLS is not enabled in the TCP/IP stack. See Chapter 2, “Setting up and configuring CICS

TCP/IP,” on page 23 for a description of the GETTID parameter.

 See Application Transparent Transport Layer Security (AT-TLS) Data Protection in z/OS Communications Server: IP

Configuration Guide and Diagnosing AT-TLS problems in z/OS Communications Server: IP Diagnosis Guide for more

information.

Module: EZACIC02

Destination: LISTENER

EZY1365E mm/dd/yy hh:mm:ss LISTENER transactionid taskno IS NOT ACCEPTING REQUESTS ON PORT port

Explanation: The listener identified by the specified transaction ID and task number cannot process inbound

connections because the listener’s socket descriptor table is full.

 In the message text:

EZY1364I • EZY1365E

456 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|

|

|

|

|

|

|

|

|

|

|
|

||

|
|

|

mm/dd/yy

The date (month/day/year) of the message.

hh:mm:ss

The time (hours:minutes:seconds) of the message.

transactionid

The name of the listener’s transaction that cannot accept new client connections.

taskno

The task number assigned by CICS.

port

The port number on which the specified listener is listening.

Example:

EZY1365E 01/19/06 10:07:33 LISTENER CSKL 0000079 IS NOT ACCEPTING REQUESTS AT PORT 3010

System action: The listener does not accept new connections until the number of socket descriptors currently being

processed by the listener is less than the value specified by the lesser of either the system MAXFILEPROC parameter

or the listener user ID’s FILEPROCMAX parameter.

Operator response: Contact the system programmer.

User response: No action needed.

System programmer response: Perform any of the following actions as appropriate:

v If the ERRORTD log indicates that the child server transaction failed to take the client’s given socket, then

investigate the CICS region where the child server transaction runs.

 See the steps for diagnosing TCP/IP clients that are unable to connect in z/OS Communications Server: IP Diagnosis

Guide for information about diagnosing child server transactions problems.

 See CICS Problem Determination Guide for information about CICS/TS problems.

v If the listeners NUMSOCK value is greater than or equal to the value specified by the MAXFILEPROC parameter,

then perform one of the following actions:

– Set the NUMSOCK value to be less than the MAXFILEPROC value using either the EZACICD macro or the

EZAC configuration transaction and then restart the listener. See the information about “Configuring the CICS

TCP/IP environment” on page 51 for more information about using the EZACICD macro and the EZAC

configuration transaction.

– Set the MAXFILEPROC value to be greater than the NUMSOCK value using the SETOMVS system command.

See the SETOMVS command information in z/OS MVS System Commands for information about dynamically

changing the MAXFILEPROC option that z/OS UNIX System Services is currently using.

v If the listener user ID FILEPROCMAX value is less than the value specified by the NUMSOCK parameter, set the

FILEPROCMAX value to be greater than the value specified by the NUMSOCK parameter. For more information

about the FILEPROCMAX specification, see the documentation provided for the SAF product that is in use on

your system. If you are using RACF, see the information about the FILEPROCMAX parameter in the z/OS Security

Server RACF Security Administrator’s Guide.

Problem determination: See the system programmer response.

Source: z/OS Communications Server TCP/IP: CICS Socket Interface and API

Module: EZACIC02

Routing code: 1

Descriptor code: 2

Automation: This message is sent to the system console and to the CICS transient data queue that is specified by

the IP CICS Sockets ERRORTD configuration option.

EZY1366E mm/dd/yy hh:mm:ss CICS/SOCKETS LISTENER TRANSACTION tranid IS ALREADY ACTIVE

Explanation: The IP CICS Sockets Listener determined that another listener with the same transaction ID is already

active.

 mm/dd/yy is the date (month/day/year) of the message.

EZY1366E

Appendix D. CICS sockets messages 457

|
|

|
|

|
|

|
|

|
|

|

|

|
|
|

|

|

|

|
|

|
|

|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|

|

|

|

|

|
|

hh:mm:ss is the time (hours:minutes:seconds) of the message.

 tranid is the CICS transaction identifier of the duplicate IP CICS Sockets Listener.

System action: The IP CICS Sockets Listener that issued this message ends.

Operator response: Contact the system programmer.

System programmer response: Change the Listeners CICS transaction identifier or port number to ensure that the

definition is unique. See Chapter 2, “Setting up and configuring CICS TCP/IP,” on page 23 for more information

about configuring the IP CICS Sockets Listener.

Module: EZACIC02

Destination: Initialization

EZY1367I mm/dd/yy hh:mm:ss SOCK# IP ADDRESS PORT CHILD

Explanation: The listener was processing client connections when its TCP/IP stack ended. This message is issued

when the listener has accepted sockets that were not taken by child server tasks. This message is a header message

for the EZY1368I detail messages that follow. This message accompanies an EZY1363I message.

 In the message text:

mm/dd/yy

The date (month/day/year) of the message.

hh:mm:ss

The time (hours:minutes:seconds) of the message.

Example: Following is an example of the messages displayed when the stack has ended while the listener was

processing data.

EZY1369E 01/10/06 12:59:32 LISTENER CSKL 10295 IS DELAYED, STACK TCPCS IS UNAVAILABLE

EZY1363I 01/10/06 12:59:33 LISTENER CSKL 10295 HAD 5 THREADS ACTIVE WHEN STACK TCPCS ENDED

EZY1367I 01/10/06 12:59:33 SOCK# IP ADDRESS PORT CHILD

EZY1368I 01/10/06 12:59:33 2 10.11.1.2 10245 PAYR

EZY1368I 01/10/06 12:59:33 12 2001:DB8:10::11:2:1 21089

EZY1368I 01/10/06 12:59:33 15 10.91.1.1 10245 INVN

EZY1368I 01/10/06 12:59:33 19 10.81.1.1 21212 ACCT

EZY1368I 01/10/06 12:59:33 999 2001:DB8:10::11:1:2 00901 ORDR

System action: Processing continues.

Operator response: No action needed.

User response: No action needed.

System programmer response: No action needed.

Problem determination: Not applicable.

Source: z/OS Communications Server TCP/IP: CICS Socket Interface and API

Module: EZACIC02

Routing code: 10

Descriptor code: 12

Automation: This message is sent to the CICS transient data queue that is specified by the IP CICS Sockets

ERRORTD configuration option.

EZY1368I mm/dd/yy hh:mm:ss sock# ipaddr port tran

Explanation: The listener was processing client connections when its TCP/IP stack ended. This message is issued

when the listener has accepted sockets that were not taken by child server tasks. One EZY1368I message is issued for

each client connection that is being processed.

 In the message text:

EZY1367I • EZY1368I

458 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||

|
|
|

|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|
|

||

|
|
|

|

mm/dd/yy

The date (month/day/year) of the message.

hh:mm:ss

The time (hours:minutes:seconds) of the message.

sock#

The listener’s socket number.

ipaddr

The client’s IP address.

port

The client’s port number.

tran

The child server’s transaction ID. A blank child server transaction ID indicates that the ID has not yet been

determined.

Example: Following is an example of the messages displayed when the stack has ended while the listener was

processing data.

EZY1369E 01/10/06 12:59:32 LISTENER CSKL 10295 IS DELAYED, STACK TCPCS IS UNAVAILABLE

EZY1363I 01/10/06 12:59:33 LISTENER CSKL 10295 HAD 5 THREADS ACTIVE WHEN STACK TCPCS ENDED

EZY1367I 01/10/06 12:59:33 SOCK# IP ADDRESS PORT CHILD

EZY1368I 01/10/06 12:59:33 2 10.11.1.2 10245 PAYR

EZY1368I 01/10/06 12:59:33 12 2001:DB8:10::11:2:1 21089

EZY1368I 01/10/06 12:59:33 15 10.91.1.1 10245 INVN

EZY1368I 01/10/06 12:59:33 19 10.81.1.1 21212 ACCT

EZY1368I 01/10/06 12:59:33 999 2001:DB8:10::11:1:2 00901 ORDR

System action: Processing continues.

Operator response: No action needed.

User response: No action needed.

System programmer response: No action needed.

Problem determination: Not applicable.

Source: z/OS Communications Server TCP/IP: CICS Socket Interface and API

Module: EZACIC02

Routing code: 10

Descriptor code: 12

Automation: This message is sent to the CICS transient data queue that is specified by the IP CICS Sockets

ERRORTD configuration option.

EZY1369E mm/dd/yy hh:mm:ss LISTENER transactionid taskno IS DELAYED, STACK tcpname IS UNAVAILABLE.

Explanation: The TCP/IP stack assigned to the specified listener is not active.

 In the message text:

mm/dd/yy

The date (month/day/year) of the message.

hh:mm:ss

The time (hours:minutes:seconds) of the message.

transactionid

The listener’s transaction ID.

taskno

The task number assigned by CICS.

tcpname

The TCP/IP procedure name with which the listener had affinity.

EZY1369E

Appendix D. CICS sockets messages 459

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|
|

||

|

|

|
|

|
|

|
|

|
|

|
|

Example: The following is an example of the messages displayed when the stack has ended while the listener was

processing data.

EZY1369E 01/10/06 12:59:32 LISTENER CSKL 10295 IS DELAYED, STACK TCPCS IS UNAVAILABLE

EZY1363I 01/10/06 12:59:33 LISTENER CSKL 10295 HAD 5 THREADS ACTIVE WHEN STACK TCPCS ENDED

EZY1367I 01/10/06 12:59:33 SOCK# IP ADDRESS PORT CHILD

EZY1368I 01/10/06 12:59:33 2 10.11.1.2 10245 PAYR

EZY1368I 01/10/06 12:59:33 12 2001:DB8:10::11:2:1 21089

EZY1368I 01/10/06 12:59:33 15 10.91.1.1 10245 INVN

EZY1368I 01/10/06 12:59:33 19 10.81.1.1 21212 ACCT

EZY1368I 01/10/06 12:59:33 999 2001:DB8:10::11:1:2 00901 ORDR

System action: The listener releases any resources and connects to the TCP/IP stack specified by the tcpname value.

If the connection fails because the stack is not active, then the listener delays using the time value specified by its

RTYTIME configuration option and attempts to reconnect. See the “TYPE=LISTENER” on page 59 for information

about setting the listener’s RTYTIME value.

Operator response: Start or restart the TCP/IP address space specified by the tcpname value.

User response: No action needed.

System programmer response: No action needed.

Problem determination: Not applicable.

Source: z/OS Communications Server TCP/IP: CICS Socket Interface and API

Module: EZACIC02

Routing code: 1

Descriptor code: 2

Automation: This message is sent to the system console and to the CICS transient data queue that is specified by

the IP CICS Sockets ERRORTD configuration option.

EZY1370I mm/dd/yy hh:mm:ss LISTENER transactionid NUMSOCK numsock IS EQUAL TO OR GREATER THAN

MAXFILEPROC maxfileproc

Explanation: A listener startup run-time check determined that the z/OS UNIX System Services MAXFILEPROC

value was less than or equal to the listener’s NUMSOCK value. The listener’s accept processing pauses when the

number of sockets that are supported by this listener exceeds the MAXFILEPROC value. No new connections are

accepted until the number of sockets that are supported by this listener is less than the MAXFILEPROC value.

 In the message text:

mm/dd/yy

The date (month/day/year) of the message.

hh:mm:ss

The time (hours:minutes:seconds) of the message.

transactionid

The listener’s transaction ID.

numsock

The number of sockets supported by this listener.

maxfileproc

The maximum number of descriptors for files, sockets, directories, and any other file-system objects that can be

concurrently active or allocated by a single process.

Example:

EZY1370I 01/19/06 10:07:33 LISTENER CSKL NUMSOCK 2000 IS EQUAL TO OR GREATER THAN MAXFILEPROC 250

System action: Processing continues.

Operator response: Contact the system programmer.

User response: No action needed.

System programmer response: Perform one of the following actions:

EZY1370I

460 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|
|

||
|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|
|

|

|

|

|

|

|

v Set the NUMSOCK value to be less than the MAXFILEPROC value using either the EZACICD macro or the EZAC

configuration transaction, and then restart the listener. See the information about “Configuring the CICS TCP/IP

environment” on page 51 for more information about using the EZACICD macro and the EZAC configuration

transaction.

v Set the MAXFILEPROC value to be greater than the NUMSOCK value using the SETOMVS system command. See

the SETOMVS command information in z/OS MVS System Commands for information about dynamically changing

the MAXFILEPROC option that z/OS UNIX System Services is currently using.

Problem determination: Not applicable.

Source: z/OS Communications Server TCP/IP: CICS Socket Interface and API

Module: EZACIC21

Routing code: 10

Descriptor code: 12

Automation: This message is sent to the CICS transient data queue that is specified by the IP CICS Sockets

ERRORTD configuration option.

EZY1371E mm/dd/yy hh:mm:ss AUTOMATIC APPLDATA REGISTRATION FAILED FOR TRANSACTION=

transactionid TASKNO= taskno ERRNO= errno

Explanation: The automatic registration of application data failed for the reason described by the errno value.

 In the message text:

mm/dd/yy

The date (month/day/year) of the message.

hh:mm:ss

The time (hours:minutes:seconds) of the message.

transactionid

The listener’s transaction ID.

taskno

The task number assigned by CICS.

errno

The UNIX System Services return code for the SIOCSAPPLDATA IOCTL socket command. These return codes

are listed and described in the return codes (errnos) information in z/OS UNIX System Services Messages and

Codes.

Example:

EZY1371E 07/01/06 10:07:33 AUTOMATIC APPLDATA REGISTRATION FAILED FOR

 TRANSACTION= CSKL TASKNO= 00000022L ERRNO= 55

System action: The application continues.

Operator response: Contact the system programmer.

User response: Not applicable.

System programmer response: See the information about automatically registering application data in z/OS

Communications Server: IP Configuration Reference for information about the socket commands affected by the

automatic registration of application data. See the return codes (errnos) information in z/OS UNIX System Services

Messages and Codes for the action that you should take based on the SIOCSAPPLDATA IOCTL socket command

return code.

Problem determination: See the system programmer response.

Source: z/OS Communications Server TCP/IP: CICS Socket Interface and API

Module: EZACIC01, EZACIC02

Routing code: 10

Descriptor code: 12

EZY1371E

Appendix D. CICS sockets messages 461

|
|
|
|

|
|
|

|

|

|

|

|

|
|

||
|

|

|

|
|

|
|

|
|

|
|

|
|
|
|

|

|
|

|

|

|

|
|
|
|
|

|

|

|

|

|

Automation: This message is sent to the CICS transient data queue that is specified by the IP CICS Sockets

ERRORTD configuration option.

462 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|

Appendix E. Sample programs

This topic contains the following samples:

v EZACICSC - An IPv4 child server, see EZACICSC

v EZACICSS - An IPv4 iterative server, see EZACICSS

v EZACIC6C - An IPv6 child server, see EZACIC6C

v EZACIC6S - An IPv6 iterative server, see EZACIC6S

v EZACICAC - An assembler child server, see EZACICAC

v EZACICAS - An assembler iterative server, see SELECTEX

EZACICSC

The following COBOL socket program is in the SEZAINST data set.

© Copyright IBM Corp. 1994, 2007 463

 * *

 * Communications Server for z/OS, Version 1, Release 9 *

 * *

 * *

 * Copyright: Licensed Materials - Property of IBM *

 * *

 * "Restricted Materials of IBM" *

 * *

 * 5694-A01 *

 * *

 * Copyright IBM Corp. 1993, 2007 *

 * *

 * US Government Users Restricted Rights - *

 * Use, duplication or disclosure restricted by *

 * GSA ADP Schedule Contract with IBM Corp. *

 * *

 * Status: CSV1R9 *

 * *

 * $MOD(EZACICSC),COMP(CICS),PROD(TCPIP): *

 * *

 * $SEG(EZACICSC)

 --

 * *

 * Module Name : EZACICSC *

 * *

 * Description : *

 * *

 * This is a sample CICS/TCP application program. It issues*

 * TAKESOCKET to obtain the socket passed from MASTER *

 * SERVER and perform dialog function with CLIENT program. *

 * *

 --

 *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. EZACICSC.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 *

 WORKING-STORAGE SECTION.

 77 TASK-START PIC X(40)

 VALUE IS ’TASK STARTING THRU CICS/TCPIP INTERFACE ’.

 77 TAKE-ERR PIC X(24)

 VALUE IS ’ TAKESOCKET FAIL ’.

 77 TAKE-SUCCESS PIC X(24)

 VALUE IS ’ TAKESOCKET SUCCESSFUL ’.

 77 READ-ERR PIC X(24)

 VALUE IS ’ READ SOCKET FAIL ’.

Figure 176. EZACICSC IPv4 child server sample (Part 1 of 8)

464 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

77 READ-SUCCESS PIC X(24)

 VALUE IS ’ READ SOCKET SUCCESSFUL ’.

 77 WRITE-ERR PIC X(24)

 VALUE IS ’ WRITE SOCKET FAIL ’.

 77 WRITE-END-ERR PIC X(32)

 VALUE IS ’ WRITE SOCKET FAIL - PGM END MSG’.

 77 WRITE-SUCCESS PIC X(25)

 VALUE IS ’ WRITE SOCKET SUCCESSFUL ’.

 77 CLOS-ERR PIC X(24)

 VALUE IS ’ CLOSE SOCKET FAIL ’.

 77 CLOS-SUCCESS PIC X(24)

 VALUE IS ’CLOSE SOCKET SUCCESSFUL ’.

 77 INVREQ-ERR PIC X(24)

 VALUE IS ’INTERFACE IS NOT ACTIVE ’.

 77 IOERR-ERR PIC X(24)

 VALUE IS ’IOERR OCCURRS ’.

 77 LENGERR-ERR PIC X(24)

 VALUE IS ’LENGERR ERROR ’.

 77 ITEMERR-ERR PIC X(24)

 VALUE IS ’ITEMERR ERROR ’.

 77 NOSPACE-ERR PIC X(24)

 VALUE IS ’NOSPACE CONDITION ’.

 77 QIDERR-ERR PIC X(24)

 VALUE IS ’QIDERR CONDITION ’.

 77 ENDDATA-ERR PIC X(30)

 VALUE IS ’RETRIEVE DATA CAN NOT BE FOUND’.

 77 WRKEND PIC X(20)

 VALUE ’CONNECTION END ’.

 77 WRITE-SW PIC X(1)

 VALUE ’N’.

 77 FORCE-ERROR-MSG PIC X(1)

 VALUE ’N’.

 01 SOKET-FUNCTIONS.

 02 SOKET-ACCEPT PIC X(16) VALUE ’ACCEPT ’.

 02 SOKET-BIND PIC X(16) VALUE ’BIND ’.

 02 SOKET-CLOSE PIC X(16) VALUE ’CLOSE ’.

 02 SOKET-CONNECT PIC X(16) VALUE ’CONNECT ’.

 02 SOKET-FCNTL PIC X(16) VALUE ’FCNTL ’.

 02 SOKET-GETCLIENTID PIC X(16) VALUE ’GETCLIENTID ’.

 02 SOKET-GETHOSTBYADDR PIC X(16) VALUE ’GETHOSTBYADDR ’.

 02 SOKET-GETHOSTBYNAME PIC X(16) VALUE ’GETHOSTBYNAME ’.

 02 SOKET-GETHOSTID PIC X(16) VALUE ’GETHOSTID ’.

 02 SOKET-GETHOSTNAME PIC X(16) VALUE ’GETHOSTNAME ’.

 02 SOKET-GETPEERNAME PIC X(16) VALUE ’GETPEERNAME ’.

 02 SOKET-GETSOCKNAME PIC X(16) VALUE ’GETSOCKNAME ’.

 02 SOKET-GETSOCKOPT PIC X(16) VALUE ’GETSOCKOPT ’.

 02 SOKET-GIVESOCKET PIC X(16) VALUE ’GIVESOCKET ’.

 02 SOKET-INITAPI PIC X(16) VALUE ’INITAPI ’.

 02 SOKET-IOCTL PIC X(16) VALUE ’IOCTL ’.

 02 SOKET-LISTEN PIC X(16) VALUE ’LISTEN ’.

 02 SOKET-READ PIC X(16) VALUE ’READ ’.

 02 SOKET-RECV PIC X(16) VALUE ’RECV ’.

 02 SOKET-RECVFROM PIC X(16) VALUE ’RECVFROM ’.

 02 SOKET-SELECT PIC X(16) VALUE ’SELECT ’.

 02 SOKET-SEND PIC X(16) VALUE ’SEND ’.

Figure 176. EZACICSC IPv4 child server sample (Part 2 of 8)

Appendix E. Sample programs 465

02 SOKET-SENDTO PIC X(16) VALUE ’SENDTO ’.

 02 SOKET-SETSOCKOPT PIC X(16) VALUE ’SETSOCKOPT ’.

 02 SOKET-SHUTDOWN PIC X(16) VALUE ’SHUTDOWN ’.

 02 SOKET-SOCKET PIC X(16) VALUE ’SOCKET ’.

 02 SOKET-TAKESOCKET PIC X(16) VALUE ’TAKESOCKET ’.

 02 SOKET-TERMAPI PIC X(16) VALUE ’TERMAPI ’.

 02 SOKET-WRITE PIC X(16) VALUE ’WRITE ’.

 01 WRKMSG.

 02 WRKM PIC X(14)

 VALUE IS ’DATA RECEIVED ’.

 * program’s variables *

 77 SUBTRACE PIC X(8) VALUE ’CONTRACE’.

 77 RESPONSE PIC 9(9) COMP.

 77 TASK-FLAG PIC X(1) VALUE ’0’.

 77 TAKE-SOCKET PIC 9(8) COMP.

 77 SOCKID PIC 9(4) COMP.

 77 SOCKID-FWD PIC 9(8) COMP.

 77 ERRNO PIC 9(8) COMP.

 77 RETCODE PIC S9(8) COMP.

 77 AF-INET PIC 9(8) COMP VALUE 2.

 01 TCP-BUF.

 05 TCP-BUF-H PIC X(3) VALUE IS SPACES.

 05 TCP-BUF-DATA PIC X(197) VALUE IS SPACES.

 77 TCPLENG PIC 9(8) COMP.

 77 RECV-FLAG PIC 9(8) COMP.

 77 CLENG PIC 9(4) COMP.

 77 CNT PIC 9(4) COMP.

 01 ZERO-PARM PIC X(16) VALUE LOW-VALUES.

 01 DUMMY-MASK REDEFINES ZERO-PARM.

 05 DUMYMASK PIC X(8).

 05 ZERO-FLD-8 PIC X(8).

 01 ZERO-FLD REDEFINES ZERO-PARM.

 05 ZERO-FWRD PIC 9(8) COMP.

 05 ZERO-HWRD PIC 9(4) COMP.

 05 ZERO-DUM PIC X(10).

 01 TD-MSG.

 03 TASK-LABEL PIC X(07) VALUE ’TASK # ’.

 03 TASK-NUMBER PIC 9(07).

 03 TASK-SEP PIC X VALUE ’ ’.

 03 CICS-MSG-AREA PIC X(70).

 01 CICS-ERR-AREA.

 03 ERR-MSG PIC X(24).

 03 SOCK-HEADER PIC X(08) VALUE ’ SOCKET=’.

 03 ERR-SOCKET PIC 9(05).

 03 RETC-HEADER PIC X(09) VALUE ’ RETCDE=-’.

 03 ERR-RETCODE PIC 9(05).

 03 ERRN-HEADER PIC X(07) VALUE ’ ERRNO=’.

 03 ERR-ERRNO PIC 9(05).

 *

 01 CLIENTID-LSTN.

 05 CID-DOMAIN-LSTN PIC 9(8) COMP.

Figure 176. EZACICSC IPv4 child server sample (Part 3 of 8)

466 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

05 CID-NAME-LSTN PIC X(8).

 05 CID-SUBTASKNAME-LSTN PIC X(8).

 05 CID-RES-LSTN PIC X(20).

 01 CLIENTID-APPL.

 05 CID-DOMAIN-APPL PIC 9(8) COMP.

 05 CID-NAME-APPL PIC X(8).

 05 CID-SUBTASKNAME-APPL PIC X(8).

 05 CID-RES-APPL PIC X(20).

 01 TCPSOCKET-PARM.

 05 GIVE-TAKE-SOCKET PIC 9(8) COMP.

 05 LSTN-NAME PIC X(8).

 05 LSTN-SUBTASKNAME PIC X(8).

 05 CLIENT-IN-DATA PIC X(35).

 05 THREADSAFE-INDICATOR PIC X(1).

 88 INTERFACE-IS-THREADSAFE VALUE ’1’.

 05 SOCKADDR-IN.

 10 SIN-FAMILY PIC 9(4) COMP.

 10 SIN-PORT PIC 9(4) COMP.

 10 SIN-ADDR PIC 9(8) COMP.

 10 SIN-ZERO PIC X(8).

 PROCEDURE DIVISION.

 MOVE ’Y’ TO WRITE-SW.

 EXEC CICS HANDLE CONDITION INVREQ (INVREQ-ERR-SEC)

 IOERR (IOERR-SEC)

 ENDDATA (ENDDATA-SEC)

 LENGERR (LENGERR-SEC)

 NOSPACE (NOSPACE-ERR-SEC)

 QIDERR (QIDERR-SEC)

 ITEMERR (ITEMERR-SEC)

 END-EXEC.

 PERFORM INITIAL-SEC THRU INITIAL-SEC-EXIT.

 PERFORM TAKESOCKET-SEC THRU TAKESOCKET-SEC-EXIT.

 MOVE ’0’ TO TASK-FLAG.

 PERFORM CLIENT-TASK THRU CLIENT-TASK-EXIT

 VARYING CNT FROM 1 BY 1 UNTIL TASK-FLAG = ’1’.

 CLOSE-SOCK.

 * *

 * CLOSE ’accept descriptor’ *

 * *

 CALL ’EZASOKET’ USING SOKET-CLOSE SOCKID

 ERRNO RETCODE.

 IF RETCODE < 0 THEN

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE CLOS-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 ELSE

 MOVE CLOS-SUCCESS TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 PGM-EXIT.

 IF RETCODE < 0 THEN

Figure 176. EZACICSC IPv4 child server sample (Part 4 of 8)

Appendix E. Sample programs 467

EXEC CICS ABEND ABCODE(’TCPC’) END-EXEC.

 MOVE SPACES TO CICS-MSG-AREA.

 MOVE ’END OF EZACICSC PROGRAM’ TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 EXEC CICS RETURN END-EXEC.

 GOBACK.

 *

 * RECEIVE PASSED PARAMETER WHICH ARE CID *

 *

 INITIAL-SEC.

 MOVE SPACES TO CICS-MSG-AREA.

 MOVE 50 TO CLENG.

 MOVE ’TCPC TRANSACTION START UP ’ TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 MOVE 72 TO CLENG.

 EXEC CICS RETRIEVE INTO(TCPSOCKET-PARM) LENGTH(CLENG)

 END-EXEC.

 INITIAL-SEC-EXIT.

 EXIT.

 * *

 * Perform TCP SOCKET functions by passing socket command to *

 * EZASOKET routine. SOCKET command are translated to pre- *

 * define integer. *

 * *

 TAKESOCKET-SEC.

 * *

 * Issue ’TAKESOCKET’ call to acquire a socket which was *

 * given by the LISTENER program. *

 * *

 MOVE AF-INET TO CID-DOMAIN-LSTN CID-DOMAIN-APPL.

 MOVE LSTN-NAME TO CID-NAME-LSTN.

 MOVE LSTN-SUBTASKNAME TO CID-SUBTASKNAME-LSTN.

 MOVE GIVE-TAKE-SOCKET TO TAKE-SOCKET SOCKID SOCKID-FWD.

 CALL ’EZASOKET’ USING SOKET-TAKESOCKET SOCKID

 CLIENTID-LSTN ERRNO RETCODE.

 IF RETCODE < 0 THEN

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE TAKE-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 GO TO PGM-EXIT

 ELSE

 MOVE SPACES TO CICS-MSG-AREA

 MOVE TAKE-SUCCESS TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 MOVE RETCODE TO SOCKID.

Figure 176. EZACICSC IPv4 child server sample (Part 5 of 8)

468 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

MOVE SPACES TO TCP-BUF.

 MOVE TASK-START TO TCP-BUF.

 MOVE 50 TO TCPLENG.

 *

 * REMOVE FOLLOWING STATEMENT IF USING EBCDIC CLIENT

 *

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG.

 CALL ’EZASOKET’ USING SOKET-WRITE SOCKID TCPLENG

 TCP-BUF ERRNO RETCODE.

 IF RETCODE < 0 THEN

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE WRITE-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 GO TO PGM-EXIT

 ELSE

 MOVE WRITE-SUCCESS TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 TAKESOCKET-SEC-EXIT.

 EXIT.

 CLIENT-TASK.

 * *

 * Issue ’RECV’ socket to receive input data from client *

 * *

 MOVE LOW-VALUES TO TCP-BUF.

 MOVE 200 TO TCPLENG.

 MOVE ZEROS TO RECV-FLAG.

 CALL ’EZASOKET’ USING SOKET-RECV SOCKID

 RECV-FLAG TCPLENG TCP-BUF ERRNO RETCODE.

 IF RETCODE < 0 THEN

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE READ-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 GO TO PGM-EXIT

 ELSE

 MOVE READ-SUCCESS TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 *

 * REMOVE FOLLOWING STATEMENT IF USING EBCDIC CLIENT

 *

 CALL ’EZACIC05’ USING TCP-BUF TCPLENG.

 *

Figure 176. EZACICSC IPv4 child server sample (Part 6 of 8)

Appendix E. Sample programs 469

|

|

* DETERMINE WHETHER THE CLIENT IS FINISHED SENDING DATA

 *

 IF TCP-BUF-H = ’END’ OR TCP-BUF-H = ’end’ THEN

 MOVE ’1’ TO TASK-FLAG

 PERFORM CLIENT-TALK-END THRU CLIENT-TALK-END-EXIT

 GO TO CLIENT-TASK-EXIT.

 IF RETCODE = 0 THEN

 MOVE ’1’ TO TASK-FLAG

 GO TO CLIENT-TASK-EXIT.

 ** ECHO RECEIVING DATA

 MOVE TCP-BUF TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 MOVE RETCODE TO TCPLENG.

 *

 * REMOVE FOLLOWING STATEMENT IF USING EBCDIC CLIENT

 *

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG.

 CALL ’EZASOKET’ USING SOKET-WRITE SOCKID TCPLENG

 TCP-BUF ERRNO RETCODE.

 IF RETCODE < 0 THEN

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE WRITE-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 GO TO PGM-EXIT

 ELSE

 MOVE WRITE-SUCCESS TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 CLIENT-TASK-EXIT.

 EXIT.

 WRITE-CICS.

 MOVE 78 TO CLENG.

 MOVE EIBTASKN TO TASK-NUMBER.

 IF WRITE-SW = ’Y’ THEN

 IF INTERFACE-IS-THREADSAFE THEN

 IF FORCE-ERROR-MSG = ’Y’ THEN

 EXEC CICS WRITEQ TD QUEUE(’CSMT’) FROM(TD-MSG)

 LENGTH(CLENG) NOHANDLE

 END-EXEC

 ELSE

 NEXT SENTENCE

 ELSE

 EXEC CICS WRITEQ TD QUEUE(’CSMT’) FROM(TD-MSG)

 LENGTH(CLENG) NOHANDLE

 END-EXEC

 ELSE

 NEXT SENTENCE.

 MOVE SPACES TO CICS-MSG-AREA.

Figure 176. EZACICSC IPv4 child server sample (Part 7 of 8)

470 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

WRITE-CICS-EXIT.

 EXIT.

 CLIENT-TALK-END.

 MOVE LOW-VALUES TO TCP-BUF.

 MOVE WRKEND TO TCP-BUF CICS-MSG-AREA.

 MOVE 50 TO TCPLENG.

 *

 * REMOVE FOLLOWING STATEMENT IF USING EBCDIC CLIENT

 *

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG.

 CALL ’EZASOKET’ USING SOKET-WRITE SOCKID TCPLENG

 TCP-BUF ERRNO RETCODE.

 IF RETCODE < 0 THEN

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE WRITE-END-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 GO TO PGM-EXIT.

 CLIENT-TALK-END-EXIT.

 EXIT.

 INVREQ-ERR-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE INVREQ-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

 IOERR-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE IOERR-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

 LENGERR-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE LENGERR-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

 NOSPACE-ERR-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE NOSPACE-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

 QIDERR-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE QIDERR-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

 ITEMERR-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE ITEMERR-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

 ENDDATA-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE ENDDATA-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

Figure 176. EZACICSC IPv4 child server sample (Part 8 of 8)

Appendix E. Sample programs 471

|

EZACICSS

The following COBOL socket program is in the SEZAINST data set.

 * *

 * Communications Server for z/OS, Version 1, Release 9 *

 * *

 * *

 * Copyright: Licensed Materials - Property of IBM *

 * *

 * "Restricted Materials of IBM" *

 * *

 * 5694-A01 *

 * *

 * Copyright IBM Corp. 1977, 2007 *

 * *

 * US Government Users Restricted Rights - *

 * Use, duplication or disclosure restricted by *

 * GSA ADP Schedule Contract with IBM Corp. *

 * *

 * Status: CSV1R9 *

 * *

 * $MOD(EZACICSS),COMP(CICS),PROD(TCPIP): *

 * *

 * $SEG(EZACICSS)

 --

 * *

 * Module Name : EZACICSS *

 * *

 * Description : This is a sample server program. It *

 * establishes a connection between *

 * CICS & TCPIP to process client requests. *

 * The server expects the data received *

 * from a host / workstation in ASCII. *

 * All responses sent by the server to the *

 * CLIENT are in ASCII. This server is *

 * started using CECI or via the LISTENER. *

 * *

 * CECI START TRANS(xxxx) from(yyyy) *

 * where xxxx is this servers CICS *

 * transaction id and yyyy is the *

 * port this server will listen on. *

 * *

 * It processes request received from *

 * clients for updates to a hypothetical *

 * DB2 database. Any and all references to *

Figure 177. EZACICSS IPv4 iterative server sample (Part 1 of 22)

472 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|

|

|
|
|
|
|
|

|
|

* DB2 or SQL are commented out as this *

 * sample is to illustrate CICS Sockets. *

 * *

 * A client connection is broken when the *

 * client transmits and ’END’ token to the *

 * server. All processing is terminated *

 * when an ’TRM’ token is received from a *

 * client. *

 * *

 * *

 --

 * *

 * LOGIC : 1. Establish server setup *

 * a). TRUE Active *

 * b). CAF Active *

 * 2. Assign user specified port at *

 * start up or use the program *

 * declared default. *

 * 3. Initialize the Socket. *

 * 4. Bind the port. *

 * 5. Set Bit Mask to accept incoming *

 * read request. *

 * 6. Process request from clients. *

 * a). Wait for connection *

 * b). Process request until ’END’ *

 * token is receive from client. *

 * c). Close connection. *

 * note: The current client request *

 * ends when the client closes *

 * the connection or sends an *

 * ’END’ token to the server. *

 * d). If the last request received by *

 * the current client is not a *

 * request to the server to *

 * terminate processing (’TRM’), *

 * continue at step 6A. *

 * 7. Close the server’s connection. *

 * *

 --

 IDENTIFICATION DIVISION.

 PROGRAM-ID. EZACICSS.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * MESSAGES *

 77 BITMASK-ERR PIC X(30)

 VALUE IS ’BITMASK CONVERSION - FAILED ’.

 77 ENDDATA-ERR PIC X(30)

 VALUE IS ’RETRIEVE DATA CAN NOT BE FOUND’.

 77 INIT-MSG PIC X(30)

 VALUE IS ’INITAPI COMPLETE ’.

 77 IOERR-ERR PIC X(30)

Figure 177. EZACICSS IPv4 iterative server sample (Part 2 of 22)

Appendix E. Sample programs 473

|
|
|

VALUE IS ’IOERR OCCURRS ’.

 77 ITEMERR-ERR PIC X(30)

 VALUE IS ’ITEMERR ERROR ’.

 77 KEYWORD-ERR PIC X(30)

 VALUE IS ’INPUT KEYWORD ERROR ’.

 77 LENGERR-ERR PIC X(30)

 VALUE IS ’LENGERR ERROR ’.

 77 NOSPACE-ERR PIC X(30)

 VALUE IS ’NOSPACE CONDITION ’.

 77 NULL-DATA PIC X(30)

 VALUE IS ’READ NULL DATA ’.

 77 QIDERR-ERR PIC X(30)

 VALUE IS ’TRANSIENT DATA QUEUE NOT FOUND’.

 77 START-MSG PIC X(30)

 VALUE IS ’SERVER PROGRAM IS STARTING ’.

 77 TCP-EXIT-ERR PIC X(30)

 VALUE IS ’SERVER STOPPED:TRUE NOT ACTIVE’.

 77 TCP-SERVER-OFF PIC X(30)

 VALUE IS ’SERVER IS ENDING ’.

 77 TS-INVREQ-ERR PIC X(30)

 VALUE IS ’WRITE TS FAILED - INVREQ ’.

 77 TS-NOTAUTH-ERR PIC X(30)

 VALUE IS ’WRITE TS FAILED - NOTAUTH ’.

 77 TS-IOERR-ERR PIC X(30)

 VALUE IS ’WRITE TS FAILED - IOERR ’.

 77 WRITETS-ERR PIC X(30)

 VALUE IS ’WRITE TS FAILED ’.

 01 ACCEPT-ERR.

 05 ACCEPT-ERR-M PIC X(25)

 VALUE IS ’SOCKET CALL FAIL - ACCEPT’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 ACCEPT-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(13)

 VALUE IS SPACES.

 01 BIND-ERR.

 05 BIND-ERR-M PIC X(25)

 VALUE IS ’SOCKET CALL FAIL - BIND’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 BIND-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(13)

 VALUE IS SPACES.

 01 CLOSE-ERR.

 05 CLOSE-ERR-M PIC X(30)

 VALUE IS ’CLOSE SOCKET DESCRIPTOR FAILED’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 CLOSE-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(8)

 VALUE IS SPACES.

 01 DB2END.

 05 FILLER PIC X(16)

 VALUE IS ’DB2 PROCESS ENDS’.

 05 FILLER PIC X(39)

Figure 177. EZACICSS IPv4 iterative server sample (Part 3 of 22)

474 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

VALUE IS SPACES.

 01 DB2-CAF-ERR.

 05 FILLER PIC X(24)

 VALUE IS ’CONNECT NOT ESTABLISHED ’.

 05 FILLER PIC X(30)

 VALUE IS ’ATTACHMENT FACILITY NOT ACTIVE’.

 05 FILLER PIC X(1)

 VALUE IS SPACES.

 01 DB2MSG.

 05 DB2-ACT PIC X(6) VALUE SPACES.

 88 DAINSERT VALUE ’INSERT’.

 88 DADELETE VALUE ’DELETE’.

 88 DAUPDATE VALUE ’UPDATE’.

 05 DB2M PIC X(18)

 VALUE IS ’ COMPLETE - #ROWS ’.

 05 DB2M-VAR PIC X(10).

 05 FILLER PIC X(2) VALUE SPACES.

 05 DB2CODE PIC -(9)9.

 05 FILLER PIC X(11)

 VALUE IS SPACES.

 01 INITAPI-ERR.

 05 INITAPI-ERR-M PIC X(35)

 VALUE IS ’INITAPI FAILED - SERVER NOT STARTED’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 INIT-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(3)

 VALUE IS SPACES.

 01 LISTEN-ERR.

 05 LISTEN-ERR-M PIC X(25)

 VALUE IS ’SOCKET CALL FAIL - LISTEN’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 LISTEN-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(13)

 VALUE IS SPACES.

 01 LISTEN-SUCC.

 05 FILLER PIC X(34)

 VALUE IS ’READY TO ACCEPT REQUEST ON PORT: ’.

 05 BIND-PORT PIC X(4).

 05 FILLER PIC X(10) VALUE SPACES.

 05 FILLER PIC X(7)

 VALUE IS SPACES.

 01 PORTNUM-ERR.

 05 INVALID-PORT PIC X(33)

 VALUE IS ’SERVER NOT STARTED - INVALID PORT’.

 05 FILLER PIC X(10)

 VALUE IS ’ NUMBER = ’.

 05 PORT-ERRNUM PIC X(4).

 05 FILLER PIC X(8)

 VALUE IS SPACES.

 01 RECVFROM-ERR.

 05 RECVFROM-ERR-M PIC X(24)

 VALUE IS ’RECEIVE SOCKET CALL FAIL’.

 05 FILLER PIC X(9)

Figure 177. EZACICSS IPv4 iterative server sample (Part 4 of 22)

Appendix E. Sample programs 475

VALUE IS ’ ERRNO = ’.

 05 RECVFROM-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(14)

 VALUE IS SPACES.

 01 SELECT-ERR.

 05 SELECT-ERR-M PIC X(24)

 VALUE IS ’SELECT CALL FAIL ’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 SELECT-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(14)

 VALUE IS SPACES.

 01 SQL-ERROR.

 05 FILLER PIC X(35)

 VALUE IS ’SQLERR -PROG TERMINATION,SQLCODE = ’.

 05 SQL-ERR-CODE PIC -(9)9.

 05 FILLER PIC X(11)

 VALUE IS SPACES.

 01 SOCKET-ERR.

 05 SOCKET-ERR-M PIC X(25)

 VALUE IS ’SOCKET CALL FAIL - SOCKET’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 SOCKET-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(13)

 VALUE IS SPACES.

 01 TAKE-ERR.

 05 TAKE-ERR-M PIC X(17)

 VALUE IS ’TAKESOCKET FAILED’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 TAKE-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(21)

 VALUE IS SPACES.

 01 WRITE-ERR.

 05 WRITE-ERR-M PIC X(33)

 VALUE IS ’WRITE SOCKET FAIL’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 WRITE-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(21)

 VALUE IS SPACES.

 * PROGRAM’S CONSTANTS *

 77 CTOB PIC X(4) VALUE ’CTOB’.

 77 DEL-ID PIC X(1) VALUE ’,’.

 77 BACKLOG PIC 9(8) COMP VALUE 5.

 77 NONZERO-FWRD PIC 9(8) VALUE 256.

 77 TCP-FLAG PIC 9(8) COMP VALUE 0.

 77 SOCK-TYPE PIC 9(8) COMP VALUE 1.

 77 AF-INET PIC 9(8) COMP VALUE 2.

 77 NUM-FDS PIC 9(8) COMP VALUE 5.

Figure 177. EZACICSS IPv4 iterative server sample (Part 5 of 22)

476 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

77 LOM PIC 9(4) COMP VALUE 4.

 77 CECI-LENG PIC 9(8) COMP VALUE 5.

 77 BUFFER-LENG PIC 9(8) COMP VALUE 55.

 77 GWLENG PIC 9(4) COMP VALUE 256.

 77 DEFAULT-PORT PIC X(4) VALUE ’????’.

 88 DEFAULT-SPECIFIED VALUE ’1950’.

 01 INADDR-ANY.

 05 FILLER PIC 9(8) BINARY VALUE 0.

 01 SOKET-FUNCTIONS.

 02 SOKET-ACCEPT PIC X(16) VALUE ’ACCEPT ’.

 02 SOKET-BIND PIC X(16) VALUE ’BIND ’.

 02 SOKET-CLOSE PIC X(16) VALUE ’CLOSE ’.

 02 SOKET-CONNECT PIC X(16) VALUE ’CONNECT ’.

 02 SOKET-FCNTL PIC X(16) VALUE ’FCNTL ’.

 02 SOKET-GETCLIENTID PIC X(16) VALUE ’GETCLIENTID ’.

 02 SOKET-GETHOSTBYADDR PIC X(16) VALUE ’GETHOSTBYADDR ’.

 02 SOKET-GETHOSTBYNAME PIC X(16) VALUE ’GETHOSTBYNAME ’.

 02 SOKET-GETHOSTID PIC X(16) VALUE ’GETHOSTID ’.

 02 SOKET-GETHOSTNAME PIC X(16) VALUE ’GETHOSTNAME ’.

 02 SOKET-GETPEERNAME PIC X(16) VALUE ’GETPEERNAME ’.

 02 SOKET-GETNAMEINFO PIC X(16) VALUE ’GETNAMEINFO ’.

 02 SOKET-GETSOCKNAME PIC X(16) VALUE ’GETSOCKNAME ’.

 02 SOKET-GETSOCKOPT PIC X(16) VALUE ’GETSOCKOPT ’.

 02 SOKET-GIVESOCKET PIC X(16) VALUE ’GIVESOCKET ’.

 02 SOKET-INITAPI PIC X(16) VALUE ’INITAPI ’.

 02 SOKET-IOCTL PIC X(16) VALUE ’IOCTL ’.

 02 SOKET-LISTEN PIC X(16) VALUE ’LISTEN ’.

 02 SOKET-NTOP PIC X(16) VALUE ’NTOP ’.

 02 SOKET-READ PIC X(16) VALUE ’READ ’.

 02 SOKET-RECV PIC X(16) VALUE ’RECV ’.

 02 SOKET-RECVFROM PIC X(16) VALUE ’RECVFROM ’.

 02 SOKET-SELECT PIC X(16) VALUE ’SELECT ’.

 02 SOKET-SELECTEX PIC X(16) VALUE ’SELECTEX ’.

 02 SOKET-SEND PIC X(16) VALUE ’SEND ’.

 02 SOKET-SENDTO PIC X(16) VALUE ’SENDTO ’.

 02 SOKET-SETSOCKOPT PIC X(16) VALUE ’SETSOCKOPT ’.

 02 SOKET-SHUTDOWN PIC X(16) VALUE ’SHUTDOWN ’.

 02 SOKET-SOCKET PIC X(16) VALUE ’SOCKET ’.

 02 SOKET-TAKESOCKET PIC X(16) VALUE ’TAKESOCKET ’.

 02 SOKET-TERMAPI PIC X(16) VALUE ’TERMAPI ’.

 02 SOKET-WRITE PIC X(16) VALUE ’WRITE ’.

 * PROGRAM’S VARIABLES *

 77 PROTOCOL PIC 9(8) COMP VALUE 0.

 77 SRV-SOCKID PIC 9(4) COMP VALUE 0.

 77 SRV-SOCKID-FWD PIC 9(8) COMP VALUE 0.

 77 CLI-SOCKID PIC 9(4) COMP VALUE 0.

 77 CLI-SOCKID-FWD PIC S9(8) COMP VALUE 0.

 77 LENG PIC 9(4) COMP.

 77 WSLENG PIC 9(4) COMP.

Figure 177. EZACICSS IPv4 iterative server sample (Part 6 of 22)

Appendix E. Sample programs 477

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

77 RESPONSE PIC 9(9) COMP.

 77 TSTAMP PIC 9(8).

 77 TASK-FLAG PIC X(1) VALUE ’0’.

 88 TASK-END VALUE ’1’.

 88 TASK-TERM VALUE ’2’.

 77 GWPTR PIC S9(8) COMP.

 77 WSPTR PIC S9(8) COMP.

 77 TCP-INDICATOR PIC X(1) VALUE IS SPACE.

 77 TAKESOCKET-SWITCH PIC X(1) VALUE IS SPACE.

 88 DOTAKESOCKET VALUE ’1’.

 77 TCPLENG PIC 9(8) COMP VALUE 0.

 77 ERRNO PIC 9(8) COMP.

 77 RETCODE PIC S9(8) COMP.

 77 TRANS PIC X(4).

 01 CLIENTID-LSTN.

 05 CID-DOMAIN-LSTN PIC 9(8) COMP VALUE 2.

 05 CID-LSTN-INFO.

 10 CID-NAME-LSTN PIC X(8).

 10 CID-SUBTNAM-LSTN PIC X(8).

 05 CID-RES-LSTN PIC X(20) VALUE LOW-VALUES.

 01 INIT-SUBTASKID.

 05 SUBTASKNO PIC X(7) VALUE LOW-VALUES.

 05 SUBT-CHAR PIC A(1) VALUE ’L’.

 01 IDENT.

 05 TCPNAME PIC X(8) VALUE ’TCPCS ’.

 05 ADSNAME PIC X(8) VALUE ’EZACIC6S’.

 01 MAXSOC PIC 9(4) BINARY VALUE 0.

 01 MAXSNO PIC 9(8) BINARY VALUE 0.

 01 NFDS PIC 9(8) BINARY.

 01 PORT-RECORD.

 05 PORT PIC X(4).

 05 FILLER PIC X(36).

 01 SELECT-CSOCKET.

 05 READMASK PIC X(4) VALUE LOW-VALUES.

 05 DUMYMASK PIC X(4) VALUE LOW-VALUES.

 05 REPLY-RDMASK PIC X(4) VALUE LOW-VALUES.

 05 REPLY-RDMASK-FF PIC X(4).

 01 SOCKADDR-IN.

 05 SAIN-FAMILY PIC 9(4) BINARY VALUE 0.

 88 SAIN-FAMILY-IS-AFINET VALUE 2.

 05 SAIN-DATA PIC X(14).

 05 SAIN-SIN REDEFINES SAIN-DATA.

 10 SAIN-SIN-PORT PIC 9(4) BINARY.

 10 SAIN-SIN-ADDR PIC 9(8) BINARY.

 10 FILLER PIC X(8).

 01 SOCKET-CONV.

 05 SOCKET-TBL OCCURS 6 TIMES.

 10 SOCK-CHAR PIC X(1) VALUE ’0’.

 01 TCP-BUF.

 05 TCP-BUF-H PIC X(3).

 05 TCP-BUF-DATA PIC X(52).

Figure 177. EZACICSS IPv4 iterative server sample (Part 7 of 22)

478 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

01 TCPCICS-MSG-AREA.

 02 TCPCICS-MSG-1.

 05 MSGDATE PIC 9(8).

 05 FILLER PIC X(2) VALUE SPACES.

 05 MSGTIME PIC 9(8).

 05 FILLER PIC X(2) VALUE SPACES.

 05 MODULE PIC X(10) VALUE ’EZACICSS: ’.

 02 TCPCICS-MSG-2.

 05 MSG-AREA PIC X(55) VALUE SPACES.

 01 TCP-INPUT-DATA PIC X(85) VALUE LOW-VALUES.

 01 TCPSOCKET-PARM REDEFINES TCP-INPUT-DATA.

 05 GIVE-TAKE-SOCKET PIC 9(8) COMP.

 05 CLIENTID-PARM.

 10 LSTN-NAME PIC X(8).

 10 LSTN-SUBTASKNAME PIC X(8).

 05 CLIENT-DATA-FLD.

 10 CLIENT-IN-DATA PIC X(35).

 10 FILLER PIC X(1).

 05 TCPSOCKADDR-IN.

 10 SOCK-FAMILY PIC 9(4) BINARY.

 88 SOCK-FAMILY-IS-AFINET VALUE 2.

 88 SOCK-FAMILY-IS-AFINET6 VALUE 19.

 10 SOCK-DATA PIC X(26).

 10 SOCK-SIN REDEFINES SOCK-DATA.

 15 SOCK-SIN-PORT PIC 9(4) BINARY.

 15 SOCK-SIN-ADDR PIC 9(8) BINARY.

 15 FILLER PIC X(8).

 15 FILLER PIC X(12).

 10 SOCK-SIN6 REDEFINES SOCK-DATA.

 15 SOCK-SIN6-PORT PIC 9(4) BINARY.

 15 SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.

 15 SOCK-SIN6-ADDR.

 20 FILLER PIC 9(16) BINARY.

 20 FILLER PIC 9(16) BINARY.

 15 SOCK-SIN6-SCOPEID PIC 9(8) BINARY.

 05 FILLER PIC X(68).

 05 CLIENT-IN-DATA-LENGTH PIC 9(4) COMP.

 05 CLIENT-IN-DATA-2 PIC X(999).

 01 SOCK-TO-RECV-FWD.

 02 FILLER PIC 9(4) BINARY.

 02 SOCK-TO-RECV PIC 9(4) BINARY.

 01 TIMEVAL.

 02 TVSEC PIC 9(8) COMP VALUE 180.

 02 TVUSEC PIC 9(8) COMP VALUE 0.

 01 ZERO-PARM PIC X(16) VALUE LOW-VALUES.

 01 ZERO-FLD REDEFINES ZERO-PARM.

 02 ZERO-8 PIC X(8).

 02 ZERO-DUM PIC X(2).

 02 ZERO-HWRD PIC 9(4) COMP.

 02 ZERO-FWRD PIC 9(8) COMP.

 * *** *

 * INPUT FORMAT FOR UPDATING THE SAMPLE DB2 TABLE *

 * *** *

Figure 177. EZACICSS IPv4 iterative server sample (Part 8 of 22)

Appendix E. Sample programs 479

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

01 INPUT-DEPT.

 05 IN-ACT PIC X(3).

 05 IN-DEPTNO PIC X(3).

 05 IN-DEPTN PIC X(36).

 05 IN-MGRNO PIC X(6).

 05 IN-ADMRDEPT PIC X(3).

 * SQL STATEMENTS: SQL COMMUNICATION AREA *

 *** EXEC SQL INCLUDE SQLCA END-EXEC.

 * SQL STATEMENTS: DEPARTMENT TABLE CREATE STATEMENT FOR DB2 *

 * *

 * CREATE TABLE TCPCICS.DEPT *

 * (DEPTNO CHAR(03), *

 * DEPTNAME CHAR(36), *

 * MGRNO CHAR(06), *

 * ADMRDEPT CHAR(03)); *

 * *

 * DCLGEN GENERATED FROM DB2 FOR THE DEPARTMENT TABLE. *

 * ***EXEC SQL INCLUDE DCLDEPT END-EXEC.

 **

 * DCLGEN TABLE(TCPCICS.DEPT) *

 * LIBRARY(SYSADM.CICS.SPUFI(DCLDEPT)) *

 * LANGUAGE(COBOL) *

 * QUOTE *

 * ... IS THE DCLGEN COMMAND THAT MADE THE FOLLOWING STATEMENTS *

 **

 *** EXEC SQL DECLARE TCPCICS.DEPT TABLE

 *** (DEPTNO CHAR(3),

 *** DEPTNAME CHAR(36),

 *** MGRNO CHAR(6),

 *** ADMRDEPT CHAR(3)

 ***) END-EXEC.

 **

 * COBOL DECLARATION FOR TABLE TCPCICS.DEPT *

 **

 01 DCLDEPT.

 10 DEPTNO PIC X(3).

 10 DEPTNAME PIC X(36).

 10 MGRNO PIC X(6).

 10 ADMRDEPT PIC X(3).

 **

 * THE NUMBER OF COLUMNS DESCRIBED BY THIS DECLARATION IS 4 *

 **

 PROCEDURE DIVISION.

Figure 177. EZACICSS IPv4 iterative server sample (Part 9 of 22)

480 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|

|
|
|
|
|
|

|

*** EXEC SQL WHENEVER SQLERROR GO TO SQL-ERROR-ROU END-EXEC.

 *** EXEC SQL WHENEVER SQLWARNING GO TO SQL-ERROR-ROU END-EXEC.

 EXEC CICS IGNORE CONDITION TERMERR

 EOC

 SIGNAL

 END-EXEC.

 EXEC CICS HANDLE CONDITION ENDDATA (ENDDATA-SEC)

 IOERR (IOERR-SEC)

 LENGERR (LENGERR-SEC)

 NOSPACE (NOSPACE-ERR-SEC)

 QIDERR (QIDERR-SEC)

 END-EXEC.

 MOVE START-MSG TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 * *

 * BEFORE SERVER STARTS, TRUE MUST BE ACTIVE. ISSUE ’EXTRACT *

 * EXIT’ COMMAND TO CHECK IF TRUE IS ACTIVE OR NOT *

 * *

 EXEC CICS PUSH HANDLE END-EXEC.

 EXEC CICS HANDLE CONDITION

 INVEXITREQ(TCP-TRUE-REQ)

 END-EXEC.

 EXEC CICS EXTRACT EXIT

 PROGRAM (’EZACIC01’)

 GASET (GWPTR)

 GALENGTH(GWLENG)

 END-EXEC.

 EXEC CICS POP HANDLE END-EXEC.

 * *

 * CICS ATTACH FACILITY MUST BE STARTED FOR THE APPROPRIATE DB2 *

 * SUBSYSTEM BEFORE YOU EXECUTE CICS TRANSACTIONS REQUIRING *

 * ACCESS TO DB2 DATABASES. *

 * *

 * EXEC CICS PUSH HANDLE END-EXEC.

 *

 * EXEC CICS HANDLE CONDITION

 * INVEXITREQ(DB2-TRUE-REQ)

 * END-EXEC.

 *

 * EXEC CICS EXTRACT EXIT

 * PROGRAM (’DSNCEXT1’)

 * ENTRYNAME (’DSNCSQL’)

 * GASET (WSPTR)

 * GALENGTH (WSLENG)

 * END-EXEC.

 *

 * EXEC CICS POP HANDLE END-EXEC.

 *

 *

Figure 177. EZACICSS IPv4 iterative server sample (Part 10 of 22)

Appendix E. Sample programs 481

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

 * *

 * AT START UP THE SERVER REQUIRES THE PORT NUMBER FOR TCP/IP *

 * IT WILL USE. THE PORT NUMBER SUPPORTED BY THIS SAMPLE IS *

 * 4 DIGITS IN LENGTH. *

 * *

 * INVOCATION: <server>,<port number> *

 * LISTENER => SRV2,4000 - OR - SRV2,4 - *

 * CECI => CECI START TR(SRV2) FROM(4000) *

 * *

 * THE LEADING SPACES ARE SIGNIFICANT. *

 * *

 MOVE EIBTRNID TO TRANS.

 EXEC CICS RETRIEVE

 INTO (TCP-INPUT-DATA)

 LENGTH (LENG)

 END-EXEC.

 * *** *

 * THE PORT CAN SPECIFIED IN THE FROM(????) OPTION OF THE CECI *

 * COMMAND OR THE DEFAULT PORT IS USED. *

 * THE PORT FOR THE LISTENER STARTED SERVER IS THE PORT *

 * SPECIFIED IN THE CLIENT-DATA-FLD OR THE DEFAULT PORT *

 * IS USED. *

 * *** *

 * THE DEFAULT PORT MUST BE SET, BY THE PROGRAMMER. *

 * *** *

 IF LENG < CECI-LENG

 THEN MOVE TCP-INPUT-DATA TO PORT

 ELSE

 MOVE CLIENT-DATA-FLD TO PORT-RECORD

 MOVE ’1’ TO TAKESOCKET-SWITCH

 END-IF.

 INSPECT PORT REPLACING LEADING SPACES BY ’0’.

 IF PORT IS NUMERIC

 THEN MOVE PORT TO BIND-PORT

 ELSE

 IF DEFAULT-SPECIFIED

 THEN MOVE DEFAULT-PORT TO PORT

 BIND-PORT

 ELSE

 MOVE PORT TO PORT-ERRNUM

 MOVE PORTNUM-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT

 END-IF

 END-IF.

 IF DOTAKESOCKET

 THEN PERFORM LISTENER-STARTED-TASK THRU

 LISTENER-STARTED-TASK-EXIT

 ELSE PERFORM INIT-SOCKET THRU

 INIT-SOCKET-EXIT

 END-IF.

 PERFORM SCKET-BIND-LSTN THRU SCKET-BIND-LSTN-EXIT.

Figure 177. EZACICSS IPv4 iterative server sample (Part 11 of 22)

482 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

MOVE 2 TO CLI-SOCKID

 CLI-SOCKID-FWD.

 MOVE LISTEN-SUCC TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 COMPUTE NFDS = NUM-FDS + 1.

 MOVE LOW-VALUES TO READMASK.

 MOVE 6 TO TCPLENG.

 CALL ’EZACIC06’ USING CTOB

 READMASK

 SOCKET-CONV

 TCPLENG

 RETCODE.

 IF RETCODE = -1

 THEN

 MOVE BITMASK-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 ELSE

 PERFORM ACCEPT-CLIENT-REQ THRU

 ACCEPT-CLIENT-REQ-EXIT

 UNTIL TASK-TERM

 END-IF.

 PERFORM CLOSE-SOCKET THRU CLOSE-SOCKET-EXIT.

 MOVE TCP-SERVER-OFF TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 * *

 * END OF PROGRAM *

 * *

 PGM-EXIT.

 EXEC CICS

 RETURN

 END-EXEC.

 GOBACK.

 * *

 * TRUE IS NOT ENABLED *

 * *

 TCP-TRUE-REQ.

 MOVE TCP-EXIT-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 * *

 * DB2 CALL ATTACH FACILITY IS NOT ENABLED *

 * *

 DB2-TRUE-REQ.

 MOVE DB2-CAF-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

Figure 177. EZACICSS IPv4 iterative server sample (Part 12 of 22)

Appendix E. Sample programs 483

|
|
|
|
|

* *

 * LISTENER STARTED TASK *

 * *

 LISTENER-STARTED-TASK.

 MOVE CLIENTID-PARM TO CID-LSTN-INFO.

 MOVE GIVE-TAKE-SOCKET TO SOCK-TO-RECV-FWD.

 CALL ’EZASOKET’ USING SOKET-TAKESOCKET

 SOCK-TO-RECV

 CLIENTID-LSTN

 ERRNO

 RETCODE.

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO TAKE-ERRNO

 MOVE TAKE-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT

 ELSE

 MOVE BUFFER-LENG TO TCPLENG

 MOVE START-MSG TO TCP-BUF

 MOVE RETCODE TO SRV-SOCKID

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG

 CALL ’EZASOKET’ USING SOKET-WRITE

 SRV-SOCKID

 TCPLENG

 TCP-BUF

 ERRNO

 RETCODE

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO WRITE-ERRNO

 MOVE WRITE-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU

 HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT

 ELSE

 CALL ’EZASOKET’ USING SOKET-CLOSE

 SRV-SOCKID

 ERRNO

 RETCODE

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO CLOSE-ERRNO

 MOVE CLOSE-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU

 HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT

 ELSE NEXT SENTENCE

Figure 177. EZACICSS IPv4 iterative server sample (Part 13 of 22)

484 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

END-IF

 END-IF

 END-IF.

 MOVE LOW-VALUES TO TCP-BUF.

 LISTENER-STARTED-TASK-EXIT.

 EXIT.

 * *

 * START SERVER PROGRAM *

 * *

 INIT-SOCKET.

 MOVE EIBTASKN TO SUBTASKNO.

 CALL ’EZASOKET’ USING SOKET-INITAPI

 MAXSOC

 IDENT

 INIT-SUBTASKID

 MAXSNO

 ERRNO

 RETCODE.

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO INIT-ERRNO

 MOVE INITAPI-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT

 ELSE

 MOVE INIT-MSG TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 END-IF.

 INIT-SOCKET-EXIT.

 EXIT.

 SCKET-BIND-LSTN.

 MOVE -1 TO SRV-SOCKID-FWD.

 --

 * *

 * CREATING A SOCKET TO ALLOCATE *

 * AN OPEN SOCKET FOR INCOMING CONNECTIONS *

 * *

 --

 CALL ’EZASOKET’ USING SOKET-SOCKET

 AF-INET

 SOCK-TYPE

 PROTOCOL

 ERRNO

 RETCODE.

 IF RETCODE < 0

Figure 177. EZACICSS IPv4 iterative server sample (Part 14 of 22)

Appendix E. Sample programs 485

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|

THEN

 MOVE ERRNO TO SOCKET-ERRNO

 MOVE SOCKET-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT

 ELSE MOVE RETCODE TO SRV-SOCKID

 MOVE ’1’ TO SOCK-CHAR(RETCODE + 1)

 END-IF.

 --

 * *

 * BIND THE SOCKET TO THE SERVICE PORT *

 * TO ESTABLISH A LOCAL ADDRESS FOR PROCESSING INCOMING *

 * CONNECTIONS. *

 * *

 --

 MOVE AF-INET TO SAIN-FAMILY.

 MOVE INADDR-ANY TO SAIN-SIN-ADDR.

 MOVE PORT TO SAIN-SIN-PORT.

 CALL ’EZASOKET’ USING SOKET-BIND

 SRV-SOCKID

 SOCKADDR-IN

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO BIND-ERRNO

 MOVE BIND-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT.

 --

 * *

 * CALL THE LISTEN COMMAND TO ALLOWS SERVERS TO *

 * PREPARE A SOCKET FOR INCOMING CONNECTIONS AND SET MAXIMUM *

 * CONNECTIONS. *

 * *

 --

 CALL ’EZASOKET’ USING SOKET-LISTEN

 SRV-SOCKID

 BACKLOG

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO LISTEN-ERRNO

 MOVE LISTEN-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT.

 SCKET-BIND-LSTN-EXIT.

 EXIT.

Figure 177. EZACICSS IPv4 iterative server sample (Part 15 of 22)

486 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|
|
|
|
|
|
|
|

|

|
|
|
|

--

 * *

 * SOCKET HAS BEEN SET UP, THEN CALL ’ACCEPT’ TO *

 * ACCEPT A REQUEST WHEN A CONNECTION ARRIVES. *

 * *

 * THIS SAMPLE PROGRAM WILL ONLY USE 5 SOCKETS. *

 * *

 --

 ACCEPT-CLIENT-REQ.

 CALL ’EZASOKET’ USING SOKET-SELECT

 NFDS

 TIMEVAL

 READMASK

 DUMYMASK

 DUMYMASK

 REPLY-RDMASK

 DUMYMASK

 DUMYMASK

 ERRNO

 RETCODE.

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO SELECT-ERRNO

 MOVE SELECT-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT.

 IF RETCODE = 0

 THEN GO TO ACCEPT-CLIENT-REQ-EXIT.

 --

 * *

 * ACCEPT REQUEST *

 * *

 --

 CALL ’EZASOKET’ USING SOKET-ACCEPT

 SRV-SOCKID

 SOCKADDR-IN

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO ACCEPT-ERRNO

 MOVE ACCEPT-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT.

 MOVE RETCODE TO CLI-SOCKID.

 PERFORM ACCEPT-RECV THRU ACCEPT-RECV-EXIT

 UNTIL TASK-END OR TASK-TERM.

 MOVE DB2END TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

Figure 177. EZACICSS IPv4 iterative server sample (Part 16 of 22)

Appendix E. Sample programs 487

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

CALL ’EZASOKET’ USING SOKET-CLOSE

 CLI-SOCKID

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO CLOSE-ERRNO

 MOVE CLOSE-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 IF NOT TASK-TERM

 MOVE ’0’ TO TASK-FLAG.

 ACCEPT-CLIENT-REQ-EXIT.

 EXIT.

 --

 * *

 * RECEIVING DATA THROUGH A SOCKET BY ISSUING ’RECVFROM’ *

 * COMMAND. *

 * *

 --

 ACCEPT-RECV.

 MOVE ’T’ TO TCP-INDICATOR.

 MOVE BUFFER-LENG TO TCPLENG.

 MOVE LOW-VALUES TO TCP-BUF.

 CALL ’EZASOKET’ USING SOKET-RECVFROM

 CLI-SOCKID

 TCP-FLAG

 TCPLENG

 TCP-BUF

 SOCKADDR-IN

 ERRNO

 RETCODE.

 IF RETCODE EQUAL 0 AND TCPLENG EQUAL 0

 THEN NEXT SENTENCE

 ELSE

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO RECVFROM-ERRNO

 MOVE RECVFROM-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU

 HANDLE-TCPCICS-EXIT

 MOVE ’1’ TO TASK-FLAG

 ELSE

 CALL ’EZACIC05’ USING TCP-BUF TCPLENG

 IF TCP-BUF-H = LOW-VALUES OR SPACES

 THEN

 MOVE NULL-DATA TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU

 HANDLE-TCPCICS-EXIT

 ELSE

 IF TCP-BUF-H = ’END’

 THEN MOVE ’1’ TO TASK-FLAG

Figure 177. EZACICSS IPv4 iterative server sample (Part 17 of 22)

488 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|

|
|
|
|
|
|
|

|

ELSE IF TCP-BUF-H = ’TRM’

 THEN MOVE ’2’ TO TASK-FLAG

 ELSE PERFORM TALK-CLIENT THRU

 TALK-CLIENT-EXIT

 END-IF

 END-IF

 END-IF

 END-IF

 END-IF.

 ACCEPT-RECV-EXIT.

 EXIT.

 **

 ** PROCESSES TALKING TO CLIENT THAT WILL UPDATE DB2 **

 ** TABLES. **

 **

 ** DATA PROCESS: **

 ** **

 ** INSERT REC - INS,X81,TEST DEPT,A0213B,Y94 **

 ** UPDATE REC - UPD,X81,,A1234C, **

 ** DELETE REC - DEL,X81,,, **

 ** END CLIENT - END,{end client connection } **

 ** END SERVER - TRM,{terminate server } **

 ** **

 **

 TALK-CLIENT.

 UNSTRING TCP-BUF DELIMITED BY DEL-ID OR ALL ’*’

 INTO IN-ACT

 IN-DEPTNO

 IN-DEPTN

 IN-MGRNO

 IN-ADMRDEPT.

 IF IN-ACT EQUAL ’END’

 THEN

 MOVE ’1’ TO TASK-FLAG

 ELSE

 IF IN-ACT EQUAL ’U’ OR EQUAL ’UPD’

 THEN

 *** EXEC SQL UPDATE TCPCICS.DEPT

 *** SET MGRNO = :IN-MGRNO

 *** WHERE DEPTNO = :IN-DEPTNO

 *** END-EXEC

 MOVE ’UPDATE’ TO DB2-ACT

 MOVE ’UPDATED: ’ TO DB2M-VAR

 ELSE

 IF IN-ACT EQUAL ’I’ OR EQUAL ’INS’

 THEN

 *** EXEC SQL INSERT

 *** INTO TCPCICS.DEPT (DEPTNO, DEPTNAME,

 *** MGRNO, ADMRDEPT)

 *** VALUES (:IN-DEPTNO, :IN-DEPTN,

 *** :IN-MGRNO, :IN-ADMRDEPT)

 *** END-EXEC

 MOVE ’INSERT’ TO DB2-ACT

 MOVE ’INSERTED: ’ TO DB2M-VAR

Figure 177. EZACICSS IPv4 iterative server sample (Part 18 of 22)

Appendix E. Sample programs 489

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ELSE

 IF IN-ACT EQUAL ’D’ OR EQUAL ’DEL’

 THEN

 *** EXEC SQL DELETE

 *** FROM TCPCICS.DEPT

 *** WHERE DEPTNO = :IN-DEPTNO

 *** END-EXEC

 MOVE ’DELETE’ TO DB2-ACT

 MOVE ’DELETED: ’ TO DB2M-VAR

 ELSE

 MOVE KEYWORD-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU

 HANDLE-TCPCICS-EXIT

 END-IF

 END-IF

 END-IF

 END-IF.

 IF DADELETE OR DAINSERT OR DAUPDATE

 THEN

 * MOVE SQLERRD(3) TO DB2CODE

 MOVE DB2MSG TO MSG-AREA

 MOVE LENGTH OF TCPCICS-MSG-AREA TO LENG

 EXEC CICS SYNCPOINT END-EXEC

 EXEC CICS WRITEQ TD

 QUEUE (’CSMT’)

 FROM (TCPCICS-MSG-AREA)

 LENGTH (LENG)

 NOHANDLE

 END-EXEC

 **

 ** WRITE THE DB2 MESSAGE TO CLIENT. **

 **

 MOVE TCPCICS-MSG-2 TO TCP-BUF

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG

 CALL ’EZASOKET’ USING SOKET-WRITE

 CLI-SOCKID

 TCPLENG

 TCP-BUF

 ERRNO

 RETCODE

 MOVE LOW-VALUES TO TCP-BUF

 TCP-INDICATOR

 DB2-ACT

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO WRITE-ERRNO

 MOVE WRITE-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU

 HANDLE-TCPCICS-EXIT

 MOVE ’1’ TO TASK-FLAG

Figure 177. EZACICSS IPv4 iterative server sample (Part 19 of 22)

490 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

END-IF

 END-IF.

 TALK-CLIENT-EXIT.

 EXIT.

 * *

 * CLOSE ORIGINAL SOCKET DESCRIPTOR *

 * *

 CLOSE-SOCKET.

 CALL ’EZASOKET’ USING SOKET-CLOSE

 SRV-SOCKID

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO CLOSE-ERRNO

 MOVE CLOSE-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 CLOSE-SOCKET-EXIT.

 EXIT.

 * *

 * SEND TCP/IP ERROR MESSAGE *

 * *

 HANDLE-TCPCICS.

 MOVE LENGTH OF TCPCICS-MSG-AREA TO LENG.

 EXEC CICS ASKTIME

 ABSTIME (TSTAMP)

 NOHANDLE

 END-EXEC.

 EXEC CICS FORMATTIME

 ABSTIME (TSTAMP)

 MMDDYY (MSGDATE)

 TIME (MSGTIME)

 DATESEP (’/’)

 TIMESEP (’:’)

 NOHANDLE

 END-EXEC.

 EXEC CICS WRITEQ TD

 QUEUE (’CSMT’)

 FROM (TCPCICS-MSG-AREA)

 RESP (RESPONSE)

 LENGTH (LENG)

 END-EXEC.

 IF RESPONSE = DFHRESP(NORMAL)

 THEN NEXT SENTENCE

 ELSE

 IF RESPONSE = DFHRESP(INVREQ)

 THEN MOVE TS-INVREQ-ERR TO MSG-AREA

 ELSE

 IF RESPONSE = DFHRESP(NOTAUTH)

 THEN MOVE TS-NOTAUTH-ERR TO MSG-AREA

Figure 177. EZACICSS IPv4 iterative server sample (Part 20 of 22)

Appendix E. Sample programs 491

|
|
|
|

ELSE

 IF RESPONSE = DFHRESP(IOERR)

 THEN MOVE TS-IOERR-ERR TO MSG-AREA

 ELSE MOVE WRITETS-ERR TO MSG-AREA

 END-IF

 END-IF

 END-IF

 END-IF.

 IF TCP-INDICATOR = ’T’ THEN

 MOVE BUFFER-LENG TO TCPLENG

 MOVE LOW-VALUES TO TCP-BUF

 MOVE TCPCICS-MSG-2 TO TCP-BUF

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG

 MOVE ’ ’ TO TCP-INDICATOR

 CALL ’EZASOKET’ USING SOKET-WRITE

 CLI-SOCKID

 TCPLENG

 TCP-BUF

 ERRNO

 RETCODE

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO WRITE-ERRNO

 MOVE WRITE-ERR TO MSG-AREA

 EXEC CICS WRITEQ TD

 QUEUE (’CSMT’)

 FROM (TCPCICS-MSG-AREA)

 LENGTH (LENG)

 NOHANDLE

 END-EXEC

 IF TASK-TERM OR TASK-END

 THEN NEXT SENTENCE

 ELSE MOVE ’1’ TO TASK-FLAG

 END-IF

 END-IF.

 MOVE SPACES TO MSG-AREA.

 HANDLE-TCPCICS-EXIT.

 EXIT.

 * *

 * SEND DB2 ERROR MESSAGE *

 * *

 SQL-ERROR-ROU.

 * MOVE SQLCODE TO SQL-ERR-CODE.

 MOVE SPACES TO MSG-AREA.

 * MOVE SQL-ERROR TO MSG-AREA.

Figure 177. EZACICSS IPv4 iterative server sample (Part 21 of 22)

492 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|
|
|
|
|
|

|

|

EZACIC6C

The following COBOL socket program is in the SEZAINST data set.

 EXEC CICS WRITEQ TD

 QUEUE (’CSMT’)

 FROM (TCPCICS-MSG-AREA)

 RESP (RESPONSE)

 LENGTH (LENG)

 END-EXEC.

 MOVE LOW-VALUES TO TCP-BUF.

 MOVE TCPCICS-MSG-2 TO TCP-BUF.

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG.

 CALL ’EZASOKET’ USING SOKET-WRITE

 CLI-SOCKID

 TCPLENG

 TCP-BUF

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO WRITE-ERRNO

 MOVE WRITE-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 SQL-ERROR-ROU-EXIT.

 EXIT.

 * *

 * OTHER ERRORS (HANDLE CONDITION) *

 * *

 INVREQ-ERR-SEC.

 MOVE TCP-EXIT-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 IOERR-SEC.

 MOVE IOERR-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 LENGERR-SEC.

 MOVE LENGERR-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 NOSPACE-ERR-SEC.

 MOVE NOSPACE-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 QIDERR-SEC.

 MOVE QIDERR-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 ITEMERR-SEC.

 MOVE ITEMERR-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 ENDDATA-SEC.

 MOVE ENDDATA-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

Figure 177. EZACICSS IPv4 iterative server sample (Part 22 of 22)

Appendix E. Sample programs 493

|
|
|
|
|
|
|

 * *

 * Communications Server for z/OS, Version 1, Release 9 *

 * *

 * *

 * Copyright: Licensed Materials - Property of IBM *

 * *

 * "Restricted Materials of IBM" *

 * *

 * 5694-A01 *

 * *

 * Copyright IBM Corp. 2003, 2007 *

 * *

 * US Government Users Restricted Rights - *

 * Use, duplication or disclosure restricted by *

 * GSA ADP Schedule Contract with IBM Corp. *

 * *

 * Status: CSV1R9 *

 * *

 * $MOD(EZACIC6C),COMP(CICS),PROD(TCPIP): *

 * *

 * $SEG(EZACIC6C)

 --

 * *

 * Module Name : EZACIC6C *

 * *

 * Description : *

 * *

 * This is a sample CICS/TCP application program. It issues*

 * TAKESOCKET to obtain the socket passed from MASTER *

 * SERVER and perform dialog function with CLIENT program. *

 * *

 --

 *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. EZACIC6C.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 *

 WORKING-STORAGE SECTION.

 77 TASK-START PIC X(40)

 VALUE IS ’TASK STARTING THRU CICS/TCPIP INTERFACE ’.

 77 GNI-ERR PIC X(24)

 VALUE IS ’ GETNAMEINFO FAIL ’.

 77 GNI-SUCCESS PIC X(24)

 VALUE IS ’ GETNAMEINFO SUCCESSFUL’.

 77 GPN-ERR PIC X(24)

 VALUE IS ’ GETPEERNAME FAIL ’.

Figure 178. EZACIC6C IPv6 child server sample (Part 1 of 12)

494 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

77 GPN-SUCCESS PIC X(24)

 VALUE IS ’ GETPEERNAME SUCCESSFUL’.

 77 TAKE-ERR PIC X(24)

 VALUE IS ’ TAKESOCKET FAIL ’.

 77 TAKE-SUCCESS PIC X(24)

 VALUE IS ’ TAKESOCKET SUCCESSFUL ’.

 77 READ-ERR PIC X(24)

 VALUE IS ’ READ SOCKET FAIL ’.

 77 READ-SUCCESS PIC X(24)

 VALUE IS ’ READ SOCKET SUCCESSFUL ’.

 77 WRITE-ERR PIC X(24)

 VALUE IS ’ WRITE SOCKET FAIL ’.

 77 WRITE-END-ERR PIC X(32)

 VALUE IS ’ WRITE SOCKET FAIL - PGM END MSG’.

 77 WRITE-SUCCESS PIC X(25)

 VALUE IS ’ WRITE SOCKET SUCCESSFUL ’.

 77 CLOS-ERR PIC X(24)

 VALUE IS ’ CLOSE SOCKET FAIL ’.

 77 CLOS-SUCCESS PIC X(24)

 VALUE IS ’CLOSE SOCKET SUCCESSFUL ’.

 77 INVREQ-ERR PIC X(24)

 VALUE IS ’INTERFACE IS NOT ACTIVE ’.

 77 IOERR-ERR PIC X(24)

 VALUE IS ’IOERR OCCURRS ’.

 77 LENGERR-ERR PIC X(24)

 VALUE IS ’LENGERR ERROR ’.

 77 ITEMERR-ERR PIC X(24)

 VALUE IS ’ITEMERR ERROR ’.

 77 NOSPACE-ERR PIC X(24)

 VALUE IS ’NOSPACE CONDITION ’.

 77 QIDERR-ERR PIC X(24)

 VALUE IS ’QIDERR CONDITION ’.

 77 ENDDATA-ERR PIC X(30)

 VALUE IS ’RETRIEVE DATA CAN NOT BE FOUND’.

 77 WRKEND PIC X(20)

 VALUE ’CONNECTION END ’.

 77 WRITE-SW PIC X(1)

 VALUE ’N’.

 77 FORCE-ERROR-MSG PIC X(1)

 VALUE ’N’.

 01 SOKET-FUNCTIONS.

 02 SOKET-ACCEPT PIC X(16) VALUE ’ACCEPT ’.

 02 SOKET-BIND PIC X(16) VALUE ’BIND ’.

 02 SOKET-CLOSE PIC X(16) VALUE ’CLOSE ’.

 02 SOKET-CONNECT PIC X(16) VALUE ’CONNECT ’.

 02 SOKET-FCNTL PIC X(16) VALUE ’FCNTL ’.

 02 SOKET-GETCLIENTID PIC X(16) VALUE ’GETCLIENTID ’.

 02 SOKET-GETHOSTBYADDR PIC X(16) VALUE ’GETHOSTBYADDR ’.

 02 SOKET-GETHOSTBYNAME PIC X(16) VALUE ’GETHOSTBYNAME ’.

 02 SOKET-GETHOSTID PIC X(16) VALUE ’GETHOSTID ’.

 02 SOKET-GETHOSTNAME PIC X(16) VALUE ’GETHOSTNAME ’.

 02 SOKET-GETPEERNAME PIC X(16) VALUE ’GETPEERNAME ’.

 02 SOKET-GETNAMEINFO PIC X(16) VALUE ’GETNAMEINFO ’.

 02 SOKET-GETSOCKNAME PIC X(16) VALUE ’GETSOCKNAME ’.

 02 SOKET-GETSOCKOPT PIC X(16) VALUE ’GETSOCKOPT ’.

Figure 178. EZACIC6C IPv6 child server sample (Part 2 of 12)

Appendix E. Sample programs 495

02 SOKET-GIVESOCKET PIC X(16) VALUE ’GIVESOCKET ’.

 02 SOKET-INITAPI PIC X(16) VALUE ’INITAPI ’.

 02 SOKET-IOCTL PIC X(16) VALUE ’IOCTL ’.

 02 SOKET-LISTEN PIC X(16) VALUE ’LISTEN ’.

 02 SOKET-NTOP PIC X(16) VALUE ’NTOP ’.

 02 SOKET-READ PIC X(16) VALUE ’READ ’.

 02 SOKET-RECV PIC X(16) VALUE ’RECV ’.

 02 SOKET-RECVFROM PIC X(16) VALUE ’RECVFROM ’.

 02 SOKET-SELECT PIC X(16) VALUE ’SELECT ’.

 02 SOKET-SEND PIC X(16) VALUE ’SEND ’.

 02 SOKET-SENDTO PIC X(16) VALUE ’SENDTO ’.

 02 SOKET-SETSOCKOPT PIC X(16) VALUE ’SETSOCKOPT ’.

 02 SOKET-SHUTDOWN PIC X(16) VALUE ’SHUTDOWN ’.

 02 SOKET-SOCKET PIC X(16) VALUE ’SOCKET ’.

 02 SOKET-TAKESOCKET PIC X(16) VALUE ’TAKESOCKET ’.

 02 SOKET-TERMAPI PIC X(16) VALUE ’TERMAPI ’.

 02 SOKET-WRITE PIC X(16) VALUE ’WRITE ’.

 01 WRKMSG.

 02 WRKM PIC X(14)

 VALUE IS ’DATA RECEIVED ’.

 * program’s variables *

 77 SUBTRACE PIC X(8) VALUE ’CONTRACE’.

 77 RESPONSE PIC 9(9) COMP.

 77 TASK-FLAG PIC X(1) VALUE ’0’.

 77 TAKE-SOCKET PIC 9(8) COMP.

 77 DATA2-LENGTH PIC 9(04).

 77 NTOP-FAMILY PIC 9(8) COMP.

 77 NTOP-LENGTH PIC 9(4) COMP.

 77 SOCKID PIC 9(4) COMP.

 77 SOCKID-FWD PIC 9(8) COMP.

 77 ERRNO PIC 9(8) COMP.

 77 RETCODE PIC S9(8) COMP.

 01 TCP-BUF.

 05 TCP-BUF-H PIC X(3) VALUE IS SPACES.

 05 TCP-BUF-DATA PIC X(197) VALUE IS SPACES.

 77 TCPLENG PIC 9(8) COMP.

 77 RECV-FLAG PIC 9(8) COMP.

 77 CLENG PIC 9(4) COMP.

 77 CPTRREF PIC 9(8) COMP.

 77 CNT PIC 9(4) COMP.

 77 MSGLENG PIC 9(4) COMP.

 01 ZERO-PARM PIC X(16) VALUE LOW-VALUES.

 01 DUMMY-MASK REDEFINES ZERO-PARM.

 05 DUMYMASK PIC X(8).

 05 ZERO-FLD-8 PIC X(8).

 01 ZERO-FLD REDEFINES ZERO-PARM.

 05 ZERO-FWRD PIC 9(8) COMP.

 05 ZERO-HWRD PIC 9(4) COMP.

 05 ZERO-DUM PIC X(10).

 01 TD-MSG.

 03 TASK-LABEL PIC X(07) VALUE ’TASK # ’.

Figure 178. EZACIC6C IPv6 child server sample (Part 3 of 12)

496 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

03 TASK-NUMBER PIC 9(07).

 03 TASK-SEP PIC X VALUE ’ ’.

 03 CICS-MSG-AREA PIC X(70).

 01 CICS-DETAIL-AREA.

 03 DETAIL-FIELD PIC X(20).

 03 DETAIL-EQUALS PIC X(02) VALUE ’= ’.

 03 DETAIL-DATA PIC X(48) VALUE SPACES.

 01 CICS-ERR-AREA.

 03 ERR-MSG PIC X(24).

 03 SOCK-HEADER PIC X(08) VALUE ’ SOCKET=’.

 03 ERR-SOCKET PIC 9(05).

 03 RETC-HEADER PIC X(09) VALUE ’ RETCDE=-’.

 03 ERR-RETCODE PIC 9(05).

 03 ERRN-HEADER PIC X(07) VALUE ’ ERRNO=’.

 03 ERR-ERRNO PIC 9(05).

 01 CICS-DATA2-AREA.

 05 DATA-2-FOR-MSG PIC X(48) VALUE SPACES.

 05 FILLER PIC X(951).

 *

 01 CLIENTID-LSTN.

 05 CID-DOMAIN-LSTN PIC 9(8) COMP.

 05 CID-NAME-LSTN PIC X(8).

 05 CID-SUBTASKNAME-LSTN PIC X(8).

 05 CID-RES-LSTN PIC X(20).

 01 CLIENTID-APPL.

 05 CID-DOMAIN-APPL PIC 9(8) COMP.

 05 CID-NAME-APPL PIC X(8).

 05 CID-SUBTASKNAME-APPL PIC X(8).

 05 CID-RES-APPL PIC X(20).

 *

 * GETNAMEINFO Call variables.

 *

 01 NAME-LEN PIC 9(8) BINARY.

 01 HOST-NAME PIC X(255).

 01 HOST-NAME-LEN PIC 9(8) BINARY.

 01 SERVICE-NAME PIC X(32).

 01 SERVICE-NAME-LEN PIC 9(8) BINARY.

 01 NAME-INFO-FLAGS PIC 9(8) BINARY VALUE 0.

 *

 * GETNAMEINFO FLAG VALUES

 *

 01 NI-NOFQDN PIC 9(8) BINARY VALUE 1.

 01 NI-NUMERICHOST PIC 9(8) BINARY VALUE 2.

 01 NI-NAMEREQD PIC 9(8) BINARY VALUE 4.

 01 NI-NUMERICSERV PIC 9(8) BINARY VALUE 8.

 01 NI-DGRAM PIC 9(8) BINARY VALUE 16.

 *

 * GETPEERNAME SOCKET ADDRESS STRUCTURE

 *

 01 PEER-NAME.

 05 PEER-FAMILY PIC 9(4) BINARY.

 88 PEER-FAMILY-IS-AFINET VALUE 2.

 88 PEER-FAMILY-IS-AFINET6 VALUE 19.

 05 PEER-DATA PIC X(26).

 05 PEER-SIN REDEFINES PEER-DATA.

Figure 178. EZACIC6C IPv6 child server sample (Part 4 of 12)

Appendix E. Sample programs 497

10 PEER-SIN-PORT PIC 9(4) BINARY.

 10 PEER-SIN-ADDR PIC 9(8) BINARY.

 10 FILLER PIC X(8).

 10 FILLER PIC X(12).

 05 PEER-SIN6 REDEFINES PEER-DATA.

 10 PEER-SIN6-PORT PIC 9(4) BINARY.

 10 PEER-SIN6-FLOWINFO PIC 9(8) BINARY.

 10 PEER-SIN6-ADDR.

 15 FILLER PIC 9(16) BINARY.

 15 FILLER PIC 9(16) BINARY.

 10 PEER-SIN6-SCOPEID PIC 9(8) BINARY.

 *

 * TRANSACTION INPUT MESSAGE FROMT THE LISTENER

 *

 01 TCPSOCKET-PARM.

 05 GIVE-TAKE-SOCKET PIC 9(8) COMP.

 05 LSTN-NAME PIC X(8).

 05 LSTN-SUBTASKNAME PIC X(8).

 05 CLIENT-IN-DATA PIC X(35).

 05 THREADSAFE-INDICATOR PIC X(1).

 88 INTERFACE-IS-THREADSAFE VALUE ’1’.

 05 SOCKADDR-IN.

 10 SOCK-FAMILY PIC 9(4) BINARY.

 88 SOCK-FAMILY-IS-AFINET VALUE 2.

 88 SOCK-FAMILY-IS-AFINET6 VALUE 19.

 10 SOCK-DATA PIC X(26).

 10 SOCK-SIN REDEFINES SOCK-DATA.

 15 SOCK-SIN-PORT PIC 9(4) BINARY.

 15 SOCK-SIN-ADDR PIC 9(8) BINARY.

 15 FILLER PIC X(8).

 15 FILLER PIC X(12).

 10 SOCK-SIN6 REDEFINES SOCK-DATA.

 15 SOCK-SIN6-PORT PIC 9(4) BINARY.

 15 SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.

 15 SOCK-SIN6-ADDR.

 20 FILLER PIC 9(16) BINARY.

 20 FILLER PIC 9(16) BINARY.

 15 SOCK-SIN6-SCOPEID PIC 9(8) BINARY.

 05 FILLER PIC X(68).

 05 CLIENT-IN-DATA-LENGTH PIC 9(4) COMP.

 05 CLIENT-IN-DATA-2 PIC X(999).

 PROCEDURE DIVISION.

 MOVE ’Y’ TO WRITE-SW.

 EXEC CICS HANDLE CONDITION INVREQ (INVREQ-ERR-SEC)

 IOERR (IOERR-SEC)

 ENDDATA (ENDDATA-SEC)

 NOSPACE (NOSPACE-ERR-SEC)

 QIDERR (QIDERR-SEC)

 ITEMERR (ITEMERR-SEC)

 END-EXEC.

 EXEC CICS IGNORE CONDITION LENGERR

 END-EXEC.

 PERFORM INITIAL-SEC THRU INITIAL-SEC-EXIT.

 PERFORM TAKESOCKET-SEC THRU TAKESOCKET-SEC-EXIT.

 PERFORM GET-PEER-NAME THRU GET-PEER-NAME-EXIT.

Figure 178. EZACIC6C IPv6 child server sample (Part 5 of 12)

498 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

PERFORM GET-NAME-INFO THRU GET-NAME-INFO-EXIT.

 MOVE ’0’ TO TASK-FLAG.

 PERFORM CLIENT-TASK THRU CLIENT-TASK-EXIT

 VARYING CNT FROM 1 BY 1 UNTIL TASK-FLAG = ’1’.

 CLOSE-SOCK.

 * *

 * CLOSE ’accept descriptor’ *

 * *

 CALL ’EZASOKET’ USING SOKET-CLOSE SOCKID

 ERRNO RETCODE.

 IF RETCODE < 0 THEN

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE CLOS-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 ELSE

 MOVE CLOS-SUCCESS TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 PGM-EXIT.

 IF RETCODE < 0 THEN

 EXEC CICS ABEND ABCODE(’SRV6’) END-EXEC.

 MOVE SPACES TO CICS-MSG-AREA.

 MOVE ’END OF EZACIC6C PROGRAM’ TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 EXEC CICS RETURN END-EXEC.

 GOBACK.

 *

 * RECEIVE PASSED PARAMETER WHICH ARE CID *

 *

 INITIAL-SEC.

 MOVE SPACES TO CICS-MSG-AREA.

 MOVE 50 TO MSGLENG.

 MOVE ’SRV6 TRANSACTION START UP ’ TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 *

 * PREPARE TO RECEIVE AND ENHANCED TIM

 *

 MOVE 1153 TO CLENG.

 INITIALIZE TCPSOCKET-PARM.

 EXEC CICS RETRIEVE INTO(TCPSOCKET-PARM)

 LENGTH(CLENG)

 END-EXEC.

 MOVE ’LISTENER ADDR SPACE ’ TO DETAIL-FIELD.

 MOVE SPACES TO DETAIL-DATA.

 MOVE LSTN-NAME TO DETAIL-DATA.

 MOVE CICS-DETAIL-AREA TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 MOVE ’LISTENER TASK ID ’ TO DETAIL-FIELD.

 MOVE SPACES TO DETAIL-DATA.

Figure 178. EZACIC6C IPv6 child server sample (Part 6 of 12)

Appendix E. Sample programs 499

MOVE LSTN-SUBTASKNAME TO DETAIL-DATA.

 MOVE CICS-DETAIL-AREA TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 IF CLIENT-IN-DATA-LENGTH <= 0

 MOVE ’TIM IS STANDARD’ TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 MOVE ’CLIENT IN DATA ’ TO DETAIL-FIELD

 MOVE SPACES TO DETAIL-DATA

 MOVE CLIENT-IN-DATA TO DETAIL-DATA

 MOVE CICS-DETAIL-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 ELSE

 MOVE ’TIM IS ENHANCED’ TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 MOVE ’CLIENT IN DATA ’ TO DETAIL-FIELD

 MOVE SPACES TO DETAIL-DATA

 MOVE CLIENT-IN-DATA TO DETAIL-DATA

 MOVE CICS-DETAIL-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 MOVE ’CLIENT IN DATA 2 LEN’ TO DETAIL-FIELD

 MOVE SPACES TO DETAIL-DATA

 MOVE CLIENT-IN-DATA-LENGTH TO DATA2-LENGTH

 MOVE DATA2-LENGTH TO DETAIL-DATA

 MOVE CICS-DETAIL-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 MOVE ’CLIENT IN DATA 2 ’ TO DETAIL-FIELD

 MOVE SPACES TO DETAIL-DATA

 MOVE CLIENT-IN-DATA-2 TO CICS-DATA2-AREA

 MOVE DATA-2-FOR-MSG TO DETAIL-DATA

 MOVE CICS-DETAIL-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 INITIAL-SEC-EXIT.

 EXIT.

 * *

 * Perform TCP SOCKET functions by passing socket command to *

 * EZASOKET routine. SOCKET command are translated to pre- *

 * define integer. *

 * *

 TAKESOCKET-SEC.

 * *

 * Issue ’TAKESOCKET’ call to acquire a socket which was *

 * given by the LISTENER program. *

 * *

 * MOVE AF-INET TO CID-DOMAIN-LSTN CID-DOMAIN-APPL.

 MOVE SOCK-FAMILY TO CID-DOMAIN-LSTN CID-DOMAIN-APPL.

 MOVE LSTN-NAME TO CID-NAME-LSTN.

 MOVE LSTN-SUBTASKNAME TO CID-SUBTASKNAME-LSTN.

 MOVE GIVE-TAKE-SOCKET TO TAKE-SOCKET SOCKID SOCKID-FWD.

 CALL ’EZASOKET’ USING SOKET-TAKESOCKET SOCKID

 CLIENTID-LSTN ERRNO RETCODE.

 IF RETCODE < 0 THEN

Figure 178. EZACIC6C IPv6 child server sample (Part 7 of 12)

500 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE TAKE-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 GO TO PGM-EXIT

 ELSE

 MOVE SPACES TO CICS-MSG-AREA

 MOVE TAKE-SUCCESS TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 MOVE SPACES TO CICS-MSG-AREA.

 IF SOCK-FAMILY-IS-AFINET

 MOVE ’TOOK AN AF_INET SOCKET’ TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 MOVE SPACES TO DETAIL-DATA

 MOVE ’AF_INET ADDRESS IS ’ TO DETAIL-FIELD

 MOVE SOCK-FAMILY TO NTOP-FAMILY

 MOVE 16 TO NTOP-LENGTH

 CALL ’EZASOKET’ USING SOKET-NTOP

 NTOP-FAMILY

 SOCK-SIN-ADDR

 DETAIL-DATA

 NTOP-LENGTH

 ERRNO

 RETCODE

 ELSE

 MOVE ’TOOK AN AF_INET6 SOCKET’ TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 MOVE ’AF_INET6 ADDRESS IS ’ TO DETAIL-FIELD

 MOVE SPACES TO DETAIL-DATA

 MOVE SOCK-FAMILY TO NTOP-FAMILY

 MOVE 45 TO NTOP-LENGTH

 CALL ’EZASOKET’ USING SOKET-NTOP

 NTOP-FAMILY

 SOCK-SIN6-ADDR

 DETAIL-DATA

 NTOP-LENGTH

 ERRNO

 RETCODE.

 MOVE CICS-DETAIL-AREA TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 MOVE RETCODE TO SOCKID.

 MOVE SPACES TO TCP-BUF.

 MOVE TASK-START TO TCP-BUF.

 MOVE 50 TO TCPLENG.

 *

 * REMOVE FOLLOWING STATEMENT IF USING EBCDIC CLIENT

 *

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG.

 CALL ’EZASOKET’ USING SOKET-WRITE SOCKID TCPLENG

 TCP-BUF ERRNO RETCODE.

Figure 178. EZACIC6C IPv6 child server sample (Part 8 of 12)

Appendix E. Sample programs 501

|

IF RETCODE < 0 THEN

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE WRITE-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 GO TO PGM-EXIT

 ELSE

 MOVE WRITE-SUCCESS TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 TAKESOCKET-SEC-EXIT.

 EXIT.

 GET-PEER-NAME.

 CALL ’EZASOKET’ USING SOKET-GETPEERNAME

 SOCKID PEER-NAME ERRNO RETCODE.

 IF RETCODE < 0 THEN

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE GPN-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 GO TO PGM-EXIT

 ELSE

 MOVE GPN-SUCCESS TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GET-PEER-NAME-EXIT.

 EXIT.

 GET-NAME-INFO.

 IF PEER-FAMILY-IS-AFINET

 MOVE 16 TO NAME-LEN

 ELSE

 MOVE 28 TO NAME-LEN.

 MOVE SPACES TO HOST-NAME.

 MOVE 256 TO HOST-NAME-LEN.

 MOVE SPACES TO SERVICE-NAME.

 MOVE 32 TO SERVICE-NAME-LEN.

 CALL ’EZASOKET’ USING SOKET-GETNAMEINFO

 PEER-NAME NAME-LEN

 HOST-NAME HOST-NAME-LEN

 SERVICE-NAME SERVICE-NAME-LEN

 NAME-INFO-FLAGS

 ERRNO RETCODE.

 IF RETCODE < 0 THEN

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE GNI-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 GO TO PGM-EXIT

Figure 178. EZACIC6C IPv6 child server sample (Part 9 of 12)

502 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

ELSE

 MOVE GNI-SUCCESS TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GET-NAME-INFO-EXIT.

 EXIT.

 CLIENT-TASK.

 * *

 * Issue ’RECV’ socket to receive input data from client *

 * *

 MOVE LOW-VALUES TO TCP-BUF.

 MOVE 200 TO TCPLENG.

 MOVE ZEROS TO RECV-FLAG.

 CALL ’EZASOKET’ USING SOKET-RECV SOCKID

 RECV-FLAG TCPLENG TCP-BUF ERRNO RETCODE.

 IF RETCODE < 0 THEN

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE READ-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 GO TO PGM-EXIT

 ELSE

 MOVE READ-SUCCESS TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 *

 * REMOVE FOLLOWING STATEMENT IF USING EBCDIC CLIENT

 *

 CALL ’EZACIC05’ USING TCP-BUF TCPLENG.

 *

 * DETERMINE WHETHER THE CLIENT IS FINISHED SENDING DATA

 *

 IF TCP-BUF-H = ’END’ OR TCP-BUF-H = ’end’ THEN

 MOVE ’1’ TO TASK-FLAG

 PERFORM CLIENT-TALK-END THRU CLIENT-TALK-END-EXIT

 GO TO CLIENT-TASK-EXIT.

 IF RETCODE = 0 THEN

 MOVE ’1’ TO TASK-FLAG

 GO TO CLIENT-TASK-EXIT.

 ** ECHO RECEIVING DATA

 MOVE TCP-BUF TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 MOVE RETCODE TO TCPLENG.

 *

 * REMOVE FOLLOWING STATEMENT IF USING EBCDIC CLIENT

 *

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG.

Figure 178. EZACIC6C IPv6 child server sample (Part 10 of 12)

Appendix E. Sample programs 503

|

|

CALL ’EZASOKET’ USING SOKET-WRITE SOCKID TCPLENG

 TCP-BUF ERRNO RETCODE.

 IF RETCODE < 0 THEN

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE WRITE-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 GO TO PGM-EXIT

 ELSE

 MOVE WRITE-SUCCESS TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 CLIENT-TASK-EXIT.

 EXIT.

 WRITE-CICS.

 MOVE 78 TO CLENG.

 MOVE EIBTASKN TO TASK-NUMBER.

 IF WRITE-SW = ’Y’ THEN

 IF INTERFACE-IS-THREADSAFE THEN

 IF FORCE-ERROR-MSG = ’Y’ THEN

 EXEC CICS WRITEQ TD QUEUE(’CSMT’) FROM(TD-MSG)

 LENGTH(CLENG) NOHANDLE

 END-EXEC

 ELSE

 NEXT SENTENCE

 ELSE

 EXEC CICS WRITEQ TD QUEUE(’CSMT’) FROM(TD-MSG)

 LENGTH(CLENG) NOHANDLE

 END-EXEC

 ELSE

 NEXT SENTENCE.

 MOVE SPACES TO CICS-MSG-AREA.

 WRITE-CICS-EXIT.

 EXIT.

 CLIENT-TALK-END.

 MOVE LOW-VALUES TO TCP-BUF.

 MOVE WRKEND TO TCP-BUF CICS-MSG-AREA.

 MOVE 50 TO TCPLENG.

 *

 * REMOVE FOLLOWING STATEMENT IF USING EBCDIC CLIENT

 *

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG.

 CALL ’EZASOKET’ USING SOKET-WRITE SOCKID TCPLENG

 TCP-BUF ERRNO RETCODE.

 IF RETCODE < 0 THEN

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE WRITE-END-ERR TO ERR-MSG

 MOVE SOCKID TO ERR-SOCKET

 MOVE RETCODE TO ERR-RETCODE

 MOVE ERRNO TO ERR-ERRNO

Figure 178. EZACIC6C IPv6 child server sample (Part 11 of 12)

504 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|

EZACIC6S

The following COBOL socket program is in the SEZAINST data set.

 MOVE CICS-ERR-AREA TO CICS-MSG-AREA

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 GO TO PGM-EXIT.

 CLIENT-TALK-END-EXIT.

 EXIT.

 INVREQ-ERR-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE INVREQ-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

 IOERR-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE IOERR-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

 LENGERR-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE LENGERR-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

 NOSPACE-ERR-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE NOSPACE-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

 QIDERR-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE QIDERR-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

 ITEMERR-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE ITEMERR-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

 ENDDATA-SEC.

 MOVE ’Y’ TO WRITE-SW FORCE-ERROR-MSG

 MOVE ENDDATA-ERR TO CICS-MSG-AREA.

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 GO TO PGM-EXIT.

Figure 178. EZACIC6C IPv6 child server sample (Part 12 of 12)

Appendix E. Sample programs 505

 * *

 * Communications Server for z/OS Version 1, Release 9 *

 * *

 * *

 * Copyright: Licensed Materials - Property of IBM *

 * *

 * "Restricted Materials of IBM" *

 * *

 * 5694-A01 *

 * *

 * Copyright IBM Corp. 2003, 2007 *

 * *

 * US Government Users Restricted Rights - *

 * Use, duplication or disclosure restricted by *

 * GSA ADP Schedule Contract with IBM Corp. *

 * *

 * Status: CSV1R9 *

 * *

 * $MOD(EZACIC6S),COMP(CICS),PROD(TCPIP): *

 * *

 * $SEG(EZACIC6S)

 --

 * *

 * Module Name : EZACIC6S *

 * *

 * Description : This is a sample server program. It *

 * establishes a connection between *

 * CICS & TCPIP to process client requests. *

 * The server expects the data received *

 * from a host / workstation in ASCII. *

 * All responses sent by the server to the *

 * CLIENT are in ASCII. This server is *

 * started using CECI or via the LISTENER. *

 * *

 * CECI START TRANS(xxxx) from(yyyy) *

 * where xxxx is this servers CICS *

 * transaction id and yyyy is the *

 * port this server will listen on. *

 * *

 * It processes request received from *

 * clients for updates to a hypothetical *

 * DB2 database. Any and all references to *

 * DB2 or SQL are commented out as this *

 * sample is to illustrate CICS Sockets. *

 * *

Figure 179. EZACIC6S IPv6 iterative server sample (Part 1 of 24)

506 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|

|

* A client connection is broken when the *

 * client transmits and ’END’ token to the *

 * server. All processing is terminated *

 * when an ’TRM’ token is received from a *

 * client. *

 * *

 * *

 --

 * *

 * LOGIC : 1. Establish server setup *

 * a). TRUE Active *

 * b). CAF Active *

 * 2. Assign user specified port at *

 * start up or use the program *

 * declared default. *

 * 3. Initialize the AF_INET6 socket. *

 * 4. Bind the port and in6addr_any. *

 * 5. Set Bit Mask to accept incoming *

 * read request. *

 * 6. Process request from clients. *

 * a). Wait for connection *

 * b). Process request until ’END’ *

 * token is receive from client. *

 * c). Close connection. *

 * note: The current client request *

 * ends when the client closes *

 * the connection or sends an *

 * ’END’ token to the server. *

 * d). If the last request received by *

 * the current client is not a *

 * request to the server to *

 * terminate processing (’TRM’), *

 * continue at step 6A. *

 * 7. Close the server’s connection. *

 * *

 --

 IDENTIFICATION DIVISION.

 PROGRAM-ID. EZACIC6S.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * MESSAGES *

 77 BITMASK-ERR PIC X(30)

 VALUE IS ’BITMASK CONVERSION - FAILED ’.

 77 ENDDATA-ERR PIC X(30)

 VALUE IS ’RETRIEVE DATA CAN NOT BE FOUND’.

 77 INIT-MSG PIC X(30)

 VALUE IS ’INITAPI COMPLETE ’.

 77 IOERR-ERR PIC X(30)

 VALUE IS ’IOERR OCCURRS ’.

 77 ITEMERR-ERR PIC X(30)

 VALUE IS ’ITEMERR ERROR ’.

 77 KEYWORD-ERR PIC X(30)

Figure 179. EZACIC6S IPv6 iterative server sample (Part 2 of 24)

Appendix E. Sample programs 507

VALUE IS ’INPUT KEYWORD ERROR ’.

 77 LENGERR-ERR PIC X(30)

 VALUE IS ’LENGERR ERROR ’.

 77 NOSPACE-ERR PIC X(30)

 VALUE IS ’NOSPACE CONDITION ’.

 77 NULL-DATA PIC X(30)

 VALUE IS ’READ NULL DATA ’.

 77 QIDERR-ERR PIC X(30)

 VALUE IS ’TRANSIENT DATA QUEUE NOT FOUND’.

 77 START-MSG PIC X(30)

 VALUE IS ’SERVER PROGRAM IS STARTING ’.

 77 TCP-EXIT-ERR PIC X(30)

 VALUE IS ’SERVER STOPPED:TRUE NOT ACTIVE’.

 77 TCP-SERVER-OFF PIC X(30)

 VALUE IS ’SERVER IS ENDING ’.

 77 TS-INVREQ-ERR PIC X(30)

 VALUE IS ’WRITE TS FAILED - INVREQ ’.

 77 TS-NOTAUTH-ERR PIC X(30)

 VALUE IS ’WRITE TS FAILED - NOTAUTH ’.

 77 TS-IOERR-ERR PIC X(30)

 VALUE IS ’WRITE TS FAILED - IOERR ’.

 77 WRITETS-ERR PIC X(30)

 VALUE IS ’WRITE TS FAILED ’.

 01 ACCEPT-ERR.

 05 ACCEPT-ERR-M PIC X(25)

 VALUE IS ’SOCKET CALL FAIL - ACCEPT’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 ACCEPT-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(13)

 VALUE IS SPACES.

 01 NTOP-ERR.

 05 NTOP-ERR-M PIC X(23)

 VALUE IS ’SOCKET CALL FAIL - NTOP’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 NTOP-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(13)

 VALUE IS SPACES.

 01 NTOP-OK.

 05 NTOP-OK-M PIC X(21)

 VALUE IS ’ACCEPTED IP ADDRESS: ’.

 05 NTOP-PRESENTABLE-ADDR PIC X(45) DISPLAY

 VALUE IS SPACES.

 01 GNI-ERR.

 05 GNI-ERR-M PIC X(30)

 VALUE IS ’SOCKET CALL FAIL - GETNAMEINFO’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 GNI-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(13)

 VALUE IS SPACES.

 01 GNI-HOST-NAME-OK.

 05 FILLER PIC X(19)

 VALUE IS ’CLIENTS HOST NAME: ’.

Figure 179. EZACIC6S IPv6 iterative server sample (Part 3 of 24)

508 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

05 GNI-HOST-NAME PIC X(255) DISPLAY

 VALUE IS SPACES.

 01 GNI-SERVICE-NAME-OK.

 05 FILLER PIC X(22)

 VALUE IS ’CLIENTS SERVICE NAME: ’.

 05 GNI-SERVICE-NAME PIC X(32) DISPLAY

 VALUE IS SPACES.

 01 GPN-ERR.

 05 GPN-ERR-M PIC X(30)

 VALUE IS ’SOCKET CALL FAIL - GETPEERNAME’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 GPN-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(13)

 VALUE IS SPACES.

 01 BIND-ERR.

 05 BIND-ERR-M PIC X(25)

 VALUE IS ’SOCKET CALL FAIL - BIND’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 BIND-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(13)

 VALUE IS SPACES.

 01 CLOSE-ERR.

 05 CLOSE-ERR-M PIC X(30)

 VALUE IS ’CLOSE SOCKET DESCRIPTOR FAILED’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 CLOSE-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(8)

 VALUE IS SPACES.

 01 DB2END.

 05 FILLER PIC X(16)

 VALUE IS ’DB2 PROCESS ENDS’.

 05 FILLER PIC X(39)

 VALUE IS SPACES.

 01 DB2-CAF-ERR.

 05 FILLER PIC X(24)

 VALUE IS ’CONNECT NOT ESTABLISHED ’.

 05 FILLER PIC X(30)

 VALUE IS ’ATTACHMENT FACILITY NOT ACTIVE’.

 05 FILLER PIC X(1)

 VALUE IS SPACES.

 01 DB2MSG.

 05 DB2-ACT PIC X(6) VALUE SPACES.

 88 DAINSERT VALUE ’INSERT’.

 88 DADELETE VALUE ’DELETE’.

 88 DAUPDATE VALUE ’UPDATE’.

 05 DB2M PIC X(18)

 VALUE IS ’ COMPLETE - #ROWS ’.

 05 DB2M-VAR PIC X(10).

 05 FILLER PIC X(2) VALUE SPACES.

 05 DB2CODE PIC -(9)9.

 05 FILLER PIC X(11)

 VALUE IS SPACES.

Figure 179. EZACIC6S IPv6 iterative server sample (Part 4 of 24)

Appendix E. Sample programs 509

01 INITAPI-ERR.

 05 INITAPI-ERR-M PIC X(35)

 VALUE IS ’INITAPI FAILED - SERVER NOT STARTED’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 INIT-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(3)

 VALUE IS SPACES.

 01 LISTEN-ERR.

 05 LISTEN-ERR-M PIC X(25)

 VALUE IS ’SOCKET CALL FAIL - LISTEN’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 LISTEN-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(13)

 VALUE IS SPACES.

 01 LISTEN-SUCC.

 05 FILLER PIC X(34)

 VALUE IS ’READY TO ACCEPT REQUEST ON PORT: ’.

 05 BIND-PORT PIC X(4).

 05 FILLER PIC X(10) VALUE SPACES.

 05 FILLER PIC X(7)

 VALUE IS SPACES.

 01 PORTNUM-ERR.

 05 INVALID-PORT PIC X(33)

 VALUE IS ’SERVER NOT STARTED - INVALID PORT’.

 05 FILLER PIC X(10)

 VALUE IS ’ NUMBER = ’.

 05 PORT-ERRNUM PIC X(4).

 05 FILLER PIC X(8)

 VALUE IS SPACES.

 01 RECVFROM-ERR.

 05 RECVFROM-ERR-M PIC X(24)

 VALUE IS ’RECEIVE SOCKET CALL FAIL’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 RECVFROM-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(14)

 VALUE IS SPACES.

 01 SELECT-ERR.

 05 SELECT-ERR-M PIC X(24)

 VALUE IS ’SELECT CALL FAIL ’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 SELECT-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(14)

 VALUE IS SPACES.

 01 SQL-ERROR.

 05 FILLER PIC X(35)

 VALUE IS ’SQLERR -PROG TERMINATION,SQLCODE = ’.

 05 SQL-ERR-CODE PIC -(9)9.

 05 FILLER PIC X(11)

 VALUE IS SPACES.

 01 SOCKET-ERR.

 05 SOCKET-ERR-M PIC X(25)

Figure 179. EZACIC6S IPv6 iterative server sample (Part 5 of 24)

510 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

VALUE IS ’SOCKET CALL FAIL - SOCKET’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 SOCKET-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(13)

 VALUE IS SPACES.

 01 TAKE-ERR.

 05 TAKE-ERR-M PIC X(17)

 VALUE IS ’TAKESOCKET FAILED’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 TAKE-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(21)

 VALUE IS SPACES.

 01 WRITE-ERR.

 05 WRITE-ERR-M PIC X(33)

 VALUE IS ’WRITE SOCKET FAIL’.

 05 FILLER PIC X(9)

 VALUE IS ’ ERRNO = ’.

 05 WRITE-ERRNO PIC 9(8) DISPLAY.

 05 FILLER PIC X(21)

 VALUE IS SPACES.

 * PROGRAM’S CONSTANTS *

 77 CTOB PIC X(4) VALUE ’CTOB’.

 77 DEL-ID PIC X(1) VALUE ’,’.

 77 BACKLOG PIC 9(8) COMP VALUE 5.

 77 NONZERO-FWRD PIC 9(8) VALUE 256.

 77 TCP-FLAG PIC 9(8) COMP VALUE 0.

 77 SOCK-TYPE PIC 9(8) COMP VALUE 1.

 77 AF-INET6 PIC 9(8) COMP VALUE 19.

 77 NUM-FDS PIC 9(8) COMP VALUE 5.

 77 LOM PIC 9(4) COMP VALUE 4.

 77 CECI-LENG PIC 9(8) COMP VALUE 5.

 77 BUFFER-LENG PIC 9(8) COMP VALUE 55.

 77 GWLENG PIC 9(4) COMP VALUE 256.

 77 DEFAULT-PORT PIC X(4) VALUE ’????’.

 88 DEFAULT-SPECIFIED VALUE ’1950’.

 01 IN6ADDR-ANY.

 05 FILLER PIC 9(16) BINARY VALUE 0.

 05 FILLER PIC 9(16) BINARY VALUE 0.

 01 SOKET-FUNCTIONS.

 02 SOKET-ACCEPT PIC X(16) VALUE ’ACCEPT ’.

 02 SOKET-BIND PIC X(16) VALUE ’BIND ’.

 02 SOKET-CLOSE PIC X(16) VALUE ’CLOSE ’.

 02 SOKET-CONNECT PIC X(16) VALUE ’CONNECT ’.

 02 SOKET-FCNTL PIC X(16) VALUE ’FCNTL ’.

 02 SOKET-GETCLIENTID PIC X(16) VALUE ’GETCLIENTID ’.

 02 SOKET-GETHOSTBYADDR PIC X(16) VALUE ’GETHOSTBYADDR ’.

 02 SOKET-GETHOSTBYNAME PIC X(16) VALUE ’GETHOSTBYNAME ’.

 02 SOKET-GETHOSTID PIC X(16) VALUE ’GETHOSTID ’.

 02 SOKET-GETHOSTNAME PIC X(16) VALUE ’GETHOSTNAME ’.

Figure 179. EZACIC6S IPv6 iterative server sample (Part 6 of 24)

Appendix E. Sample programs 511

|

02 SOKET-GETPEERNAME PIC X(16) VALUE ’GETPEERNAME ’.

 02 SOKET-GETNAMEINFO PIC X(16) VALUE ’GETNAMEINFO ’.

 02 SOKET-GETSOCKNAME PIC X(16) VALUE ’GETSOCKNAME ’.

 02 SOKET-GETSOCKOPT PIC X(16) VALUE ’GETSOCKOPT ’.

 02 SOKET-GIVESOCKET PIC X(16) VALUE ’GIVESOCKET ’.

 02 SOKET-INITAPI PIC X(16) VALUE ’INITAPI ’.

 02 SOKET-IOCTL PIC X(16) VALUE ’IOCTL ’.

 02 SOKET-LISTEN PIC X(16) VALUE ’LISTEN ’.

 02 SOKET-NTOP PIC X(16) VALUE ’NTOP ’.

 02 SOKET-READ PIC X(16) VALUE ’READ ’.

 02 SOKET-RECV PIC X(16) VALUE ’RECV ’.

 02 SOKET-RECVFROM PIC X(16) VALUE ’RECVFROM ’.

 02 SOKET-SELECT PIC X(16) VALUE ’SELECT ’.

 02 SOKET-SEND PIC X(16) VALUE ’SEND ’.

 02 SOKET-SENDTO PIC X(16) VALUE ’SENDTO ’.

 02 SOKET-SETSOCKOPT PIC X(16) VALUE ’SETSOCKOPT ’.

 02 SOKET-SHUTDOWN PIC X(16) VALUE ’SHUTDOWN ’.

 02 SOKET-SOCKET PIC X(16) VALUE ’SOCKET ’.

 02 SOKET-TAKESOCKET PIC X(16) VALUE ’TAKESOCKET ’.

 02 SOKET-TERMAPI PIC X(16) VALUE ’TERMAPI ’.

 02 SOKET-WRITE PIC X(16) VALUE ’WRITE ’.

 * PROGRAM’S VARIABLES *

 77 PROTOCOL PIC 9(8) COMP VALUE 0.

 77 SRV-SOCKID PIC 9(4) COMP VALUE 0.

 77 SRV-SOCKID-FWD PIC 9(8) COMP VALUE 0.

 77 CLI-SOCKID PIC 9(4) COMP VALUE 0.

 77 CLI-SOCKID-FWD PIC S9(8) COMP VALUE 0.

 77 LENG PIC 9(4) COMP.

 77 WSLENG PIC 9(4) COMP.

 77 RESPONSE PIC 9(9) COMP.

 77 TSTAMP PIC 9(8).

 77 TASK-FLAG PIC X(1) VALUE ’0’.

 88 TASK-END VALUE ’1’.

 88 TASK-TERM VALUE ’2’.

 77 GWPTR PIC S9(8) COMP.

 77 WSPTR PIC S9(8) COMP.

 77 TCP-INDICATOR PIC X(1) VALUE IS SPACE.

 77 TAKESOCKET-SWITCH PIC X(1) VALUE IS SPACE.

 88 DOTAKESOCKET VALUE ’1’.

 77 TCPLENG PIC 9(8) COMP VALUE 0.

 77 ERRNO PIC 9(8) COMP.

 77 RETCODE PIC S9(8) COMP.

 77 TRANS PIC X(4).

 01 CLIENTID-LSTN.

 05 CID-DOMAIN-LSTN PIC 9(8) COMP VALUE 19.

 05 CID-LSTN-INFO.

 10 CID-NAME-LSTN PIC X(8).

 10 CID-SUBTNAM-LSTN PIC X(8).

 05 CID-RES-LSTN PIC X(20) VALUE LOW-VALUES.

 01 INIT-SUBTASKID.

 05 SUBTASKNO PIC X(7) VALUE LOW-VALUES.

Figure 179. EZACIC6S IPv6 iterative server sample (Part 7 of 24)

512 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

05 SUBT-CHAR PIC A(1) VALUE ’L’.

 01 IDENT.

 05 TCPNAME PIC X(8) VALUE ’TCPCS ’.

 05 ADSNAME PIC X(8) VALUE ’EZACIC6S’.

 01 MAXSOC PIC 9(4) BINARY VALUE 0.

 01 MAXSNO PIC 9(8) BINARY VALUE 0.

 01 NFDS PIC 9(8) BINARY.

 01 PORT-RECORD.

 05 PORT PIC X(4).

 05 FILLER PIC X(36).

 01 SELECT-CSOCKET.

 05 READMASK PIC X(4) VALUE LOW-VALUES.

 05 DUMYMASK PIC X(4) VALUE LOW-VALUES.

 05 REPLY-RDMASK PIC X(4) VALUE LOW-VALUES.

 05 REPLY-RDMASK-FF PIC X(4).

 01 SOCKADDR-IN.

 05 SAIN-FAMILY PIC 9(4) BINARY.

 88 SAIN-FAMILY-IS-AFINET VALUE 2.

 88 SAIN-FAMILY-IS-AFINET6 VALUE 19.

 05 SAIN-DATA PIC X(26).

 05 SAIN-SIN REDEFINES SAIN-DATA.

 10 SAIN-SIN-PORT PIC 9(4) BINARY.

 10 SAIN-SIN-ADDR PIC 9(8) BINARY.

 10 FILLER PIC X(8).

 10 FILLER PIC X(12).

 05 SAIN-SIN6 REDEFINES SAIN-DATA.

 10 SAIN-SIN6-PORT PIC 9(4) BINARY.

 10 SAIN-SIN6-FLOWINFO PIC 9(8) BINARY.

 10 SAIN-SIN6-ADDR.

 15 FILLER PIC 9(16) BINARY.

 15 FILLER PIC 9(16) BINARY.

 10 SAIN-SIN6-SCOPEID PIC 9(8) BINARY.

 01 SOCKADDR-PEER.

 05 PEER-FAMILY PIC 9(4) BINARY.

 88 PEER-FAMILY-IS-AFINET VALUE 2.

 88 PEER-FAMILY-IS-AFINET6 VALUE 19.

 05 PEER-DATA PIC X(26).

 05 PEER-SIN REDEFINES PEER-DATA.

 10 PEER-SIN-PORT PIC 9(4) BINARY.

 10 PEER-SIN-ADDR PIC 9(8) BINARY.

 10 FILLER PIC X(8).

 10 FILLER PIC X(12).

 05 PEER-SIN6 REDEFINES PEER-DATA.

 10 PEER-SIN6-PORT PIC 9(4) BINARY.

 10 PEER-SIN6-FLOWINFO PIC 9(8) BINARY.

 10 PEER-SIN6-ADDR.

 15 FILLER PIC 9(16) BINARY.

 15 FILLER PIC 9(16) BINARY.

 10 PEER-SIN6-SCOPEID PIC 9(8) BINARY.

 01 NTOP-FAMILY PIC 9(8) BINARY.

 01 PTON-FAMILY PIC 9(8) BINARY.

 01 PRESENTABLE-ADDR PIC X(45) VALUE SPACES.

 01 PRESENTABLE-ADDR-LEN PIC 9(4) BINARY VALUE 45.

 01 NUMERIC-ADDR.

 05 FILLER PIC 9(16) BINARY VALUE 0.

Figure 179. EZACIC6S IPv6 iterative server sample (Part 8 of 24)

Appendix E. Sample programs 513

05 FILLER PIC 9(16) BINARY VALUE 0.

 01 NAME-LEN PIC 9(8) BINARY.

 01 HOST-NAME PIC X(255).

 01 HOST-NAME-LEN PIC 9(8) BINARY.

 01 SERVICE-NAME PIC X(32).

 01 SERVICE-NAME-LEN PIC 9(8) BINARY.

 01 NAME-INFO-FLAGS PIC 9(8) BINARY VALUE 0.

 01 NI-NOFQDN PIC 9(8) BINARY VALUE 1.

 01 NI-NUMERICHOST PIC 9(8) BINARY VALUE 2.

 01 NI-NAMEREQD PIC 9(8) BINARY VALUE 4.

 01 NI-NUMERICSERV PIC 9(8) BINARY VALUE 8.

 01 NI-DGRAM PIC 9(8) BINARY VALUE 16.

 01 HOST-NAME-CHAR-COUNT PIC 9(4) COMP.

 01 HOST-NAME-UNSTRUNG PIC X(255) VALUE SPACES.

 01 SERVICE-NAME-CHAR-COUNT PIC 9(4) COMP.

 01 SERVICE-NAME-UNSTRUNG PIC X(32) VALUE SPACES.

 01 SOCKET-CONV.

 05 SOCKET-TBL OCCURS 6 TIMES.

 10 SOCK-CHAR PIC X(1) VALUE ’0’.

 01 TCP-BUF.

 05 TCP-BUF-H PIC X(3).

 05 TCP-BUF-DATA PIC X(52).

 01 TCPCICS-MSG-AREA.

 02 TCPCICS-MSG-1.

 05 MSGDATE PIC 9(8).

 05 FILLER PIC X(2) VALUE SPACES.

 05 MSGTIME PIC 9(8).

 05 FILLER PIC X(2) VALUE SPACES.

 05 MODULE PIC X(10) VALUE ’EZACIC6S: ’.

 02 TCPCICS-MSG-2.

 05 MSG-AREA PIC X(55) VALUE SPACES.

 01 TCP-INPUT-DATA PIC X(85) VALUE LOW-VALUES.

 01 TCPSOCKET-PARM REDEFINES TCP-INPUT-DATA.

 05 GIVE-TAKE-SOCKET PIC 9(8) COMP.

 05 CLIENTID-PARM.

 10 LSTN-NAME PIC X(8).

 10 LSTN-SUBTASKNAME PIC X(8).

 05 CLIENT-DATA-FLD.

 10 CLIENT-IN-DATA PIC X(35).

 10 FILLER PIC X(1).

 05 TCPSOCKADDR-IN.

 10 SOCK-FAMILY PIC 9(4) BINARY.

 88 SOCK-FAMILY-IS-AFINET VALUE 2.

 88 SOCK-FAMILY-IS-AFINET6 VALUE 19.

 10 SOCK-DATA PIC X(26).

 10 SOCK-SIN REDEFINES SOCK-DATA.

 15 SOCK-SIN-PORT PIC 9(4) BINARY.

 15 SOCK-SIN-ADDR PIC 9(8) BINARY.

 15 FILLER PIC X(8).

 15 FILLER PIC X(12).

 10 SOCK-SIN6 REDEFINES SOCK-DATA.

 15 SOCK-SIN6-PORT PIC 9(4) BINARY.

 15 SOCK-SIN6-FLOWINFO PIC 9(8) BINARY.

 15 SOCK-SIN6-ADDR.

 20 FILLER PIC 9(16) BINARY.

Figure 179. EZACIC6S IPv6 iterative server sample (Part 9 of 24)

514 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

20 FILLER PIC 9(16) BINARY.

 15 SOCK-SIN6-SCOPEID PIC 9(8) BINARY.

 05 FILLER PIC X(68).

 05 CLIENT-IN-DATA-LENGTH PIC 9(4) COMP.

 05 CLIENT-IN-DATA-2 PIC X(999).

 01 SOCK-TO-RECV-FWD.

 02 FILLER PIC 9(4) BINARY.

 02 SOCK-TO-RECV PIC 9(4) BINARY.

 01 TIMEVAL.

 02 TVSEC PIC 9(8) COMP VALUE 180.

 02 TVUSEC PIC 9(8) COMP VALUE 0.

 01 ZERO-PARM PIC X(16) VALUE LOW-VALUES.

 01 ZERO-FLD REDEFINES ZERO-PARM.

 02 ZERO-8 PIC X(8).

 02 ZERO-DUM PIC X(2).

 02 ZERO-HWRD PIC 9(4) COMP.

 02 ZERO-FWRD PIC 9(8) COMP.

 * *** *

 * INPUT FORMAT FOR UPDATING THE SAMPLE DB2 TABLE *

 * *** *

 01 INPUT-DEPT.

 05 IN-ACT PIC X(3).

 05 IN-DEPTNO PIC X(3).

 05 IN-DEPTN PIC X(36).

 05 IN-MGRNO PIC X(6).

 05 IN-ADMRDEPT PIC X(3).

 * SQL STATEMENTS: SQL COMMUNICATION AREA *

 *** EXEC SQL INCLUDE SQLCA END-EXEC.

 * SQL STATEMENTS: DEPARTMENT TABLE CREATE STATEMENT FOR DB2 *

 * *

 * CREATE TABLE TCPCICS.DEPT *

 * (DEPTNO CHAR(03), *

 * DEPTNAME CHAR(36), *

 * MGRNO CHAR(06), *

 * ADMRDEPT CHAR(03)); *

 * *

 * DCLGEN GENERATED FROM DB2 FOR THE DEPARTMENT TABLE. *

 * ***EXEC SQL INCLUDE DCLDEPT END-EXEC.

 **

 * DCLGEN TABLE(TCPCICS.DEPT) *

 * LIBRARY(SYSADM.CICS.SPUFI(DCLDEPT)) *

 * LANGUAGE(COBOL) *

 * QUOTE *

 * ... IS THE DCLGEN COMMAND THAT MADE THE FOLLOWING STATEMENTS *

 **

 *** EXEC SQL DECLARE TCPCICS.DEPT TABLE

 *** (DEPTNO CHAR(3),

 *** DEPTNAME CHAR(36),

Figure 179. EZACIC6S IPv6 iterative server sample (Part 10 of 24)

Appendix E. Sample programs 515

|
|
|

*** MGRNO CHAR(6),

 *** ADMRDEPT CHAR(3)

 ***) END-EXEC.

 **

 * COBOL DECLARATION FOR TABLE TCPCICS.DEPT *

 **

 01 DCLDEPT.

 10 DEPTNO PIC X(3).

 10 DEPTNAME PIC X(36).

 10 MGRNO PIC X(6).

 10 ADMRDEPT PIC X(3).

 **

 * THE NUMBER OF COLUMNS DESCRIBED BY THIS DECLARATION IS 4 *

 **

 PROCEDURE DIVISION.

 *** EXEC SQL WHENEVER SQLERROR GO TO SQL-ERROR-ROU END-EXEC.

 *** EXEC SQL WHENEVER SQLWARNING GO TO SQL-ERROR-ROU END-EXEC.

 EXEC CICS IGNORE CONDITION TERMERR

 EOC

 SIGNAL

 END-EXEC.

 EXEC CICS HANDLE CONDITION ENDDATA (ENDDATA-SEC)

 IOERR (IOERR-SEC)

 LENGERR (LENGERR-SEC)

 NOSPACE (NOSPACE-ERR-SEC)

 QIDERR (QIDERR-SEC)

 END-EXEC.

 MOVE START-MSG TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 * *

 * BEFORE SERVER STARTS, TRUE MUST BE ACTIVE. ISSUE ’EXTRACT *

 * EXIT’ COMMAND TO CHECK IF TRUE IS ACTIVE OR NOT *

 * *

 EXEC CICS PUSH HANDLE END-EXEC.

 EXEC CICS HANDLE CONDITION

 INVEXITREQ(TCP-TRUE-REQ)

 END-EXEC.

 EXEC CICS EXTRACT EXIT

 PROGRAM (’EZACIC01’)

 GASET (GWPTR)

 GALENGTH(GWLENG)

 END-EXEC.

 EXEC CICS POP HANDLE END-EXEC.

 * *

 * CICS ATTACH FACILITY MUST BE STARTED FOR THE APPROPRIATE DB2 *

 * SUBSYSTEM BEFORE YOU EXECUTE CICS TRANSACTIONS REQUIRING *

 * ACCESS TO DB2 DATABASES. *

 * *

 * EXEC CICS PUSH HANDLE END-EXEC.

 *

 * EXEC CICS HANDLE CONDITION

Figure 179. EZACIC6S IPv6 iterative server sample (Part 11 of 24)

516 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

* INVEXITREQ(DB2-TRUE-REQ)

 * END-EXEC.

 *

 * EXEC CICS EXTRACT EXIT

 * PROGRAM (’DSNCEXT1’)

 * ENTRYNAME (’DSNCSQL’)

 * GASET (WSPTR)

 * GALENGTH (WSLENG)

 * END-EXEC.

 *

 * EXEC CICS POP HANDLE END-EXEC.

 *

 *

 * *

 * AT START UP THE SERVER REQUIRES THE PORT NUMBER FOR TCP/IP *

 * IT WILL USE. THE PORT NUMBER SUPPORTED BY THIS SAMPLE IS *

 * 4 DIGITS IN LENGTH. *

 * *

 * INVOCATION: <server>,<port number> *

 * LISTENER => SRV2,4000 - OR - SRV2,4 - *

 * CECI => CECI START TR(SRV2) FROM(4000) *

 * *

 * THE LEADING SPACES ARE SIGNIFICANT. *

 * *

 MOVE EIBTRNID TO TRANS.

 EXEC CICS RETRIEVE

 INTO (TCP-INPUT-DATA)

 LENGTH (LENG)

 END-EXEC.

 * *** *

 * THE PORT CAN SPECIFIED IN THE FROM(????) OPTION OF THE CECI *

 * COMMAND OR THE DEFAULT PORT IS USED. *

 * THE PORT FOR THE LISTENER STARTED SERVER IS THE PORT *

 * SPECIFIED IN THE CLIENT-DATA-FLD OR THE DEFAULT PORT *

 * IS USED. *

 * *** *

 * THE DEFAULT PORT MUST BE SET, BY THE PROGRAMMER. *

 * *** *

 IF LENG < CECI-LENG

 THEN MOVE TCP-INPUT-DATA TO PORT

 ELSE

 MOVE CLIENT-DATA-FLD TO PORT-RECORD

 MOVE ’1’ TO TAKESOCKET-SWITCH

 END-IF.

 INSPECT PORT REPLACING LEADING SPACES BY ’0’.

 IF PORT IS NUMERIC

 THEN MOVE PORT TO BIND-PORT

 ELSE

 IF DEFAULT-SPECIFIED

 THEN MOVE DEFAULT-PORT TO PORT

 BIND-PORT

 ELSE

 MOVE PORT TO PORT-ERRNUM

Figure 179. EZACIC6S IPv6 iterative server sample (Part 12 of 24)

Appendix E. Sample programs 517

MOVE PORTNUM-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT

 END-IF

 END-IF.

 IF DOTAKESOCKET

 THEN PERFORM LISTENER-STARTED-TASK THRU

 LISTENER-STARTED-TASK-EXIT

 ELSE PERFORM INIT-SOCKET THRU

 INIT-SOCKET-EXIT

 END-IF.

 PERFORM SCKET-BIND-LSTN THRU SCKET-BIND-LSTN-EXIT.

 MOVE 2 TO CLI-SOCKID

 CLI-SOCKID-FWD.

 MOVE LISTEN-SUCC TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 COMPUTE NFDS = NUM-FDS + 1.

 MOVE LOW-VALUES TO READMASK.

 MOVE 6 TO TCPLENG.

 CALL ’EZACIC06’ USING CTOB

 READMASK

 SOCKET-CONV

 TCPLENG

 RETCODE.

 IF RETCODE = -1

 THEN

 MOVE BITMASK-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 ELSE

 PERFORM ACCEPT-CLIENT-REQ THRU

 ACCEPT-CLIENT-REQ-EXIT

 UNTIL TASK-TERM

 END-IF.

 PERFORM CLOSE-SOCKET THRU CLOSE-SOCKET-EXIT.

 MOVE TCP-SERVER-OFF TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 * *

 * END OF PROGRAM *

 * *

 PGM-EXIT.

 EXEC CICS

 RETURN

 END-EXEC.

 GOBACK.

 * *

 * TRUE IS NOT ENABLED *

 * *

 TCP-TRUE-REQ.

 MOVE TCP-EXIT-ERR TO MSG-AREA.

Figure 179. EZACIC6S IPv6 iterative server sample (Part 13 of 24)

518 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 * *

 * DB2 CALL ATTACH FACILITY IS NOT ENABLED *

 * *

 DB2-TRUE-REQ.

 MOVE DB2-CAF-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 * *

 * LISTENER STARTED TASK *

 * *

 LISTENER-STARTED-TASK.

 MOVE CLIENTID-PARM TO CID-LSTN-INFO.

 MOVE GIVE-TAKE-SOCKET TO SOCK-TO-RECV-FWD.

 CALL ’EZASOKET’ USING SOKET-TAKESOCKET

 SOCK-TO-RECV

 CLIENTID-LSTN

 ERRNO

 RETCODE.

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO TAKE-ERRNO

 MOVE TAKE-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT

 ELSE

 MOVE BUFFER-LENG TO TCPLENG

 MOVE START-MSG TO TCP-BUF

 MOVE RETCODE TO SRV-SOCKID

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG

 CALL ’EZASOKET’ USING SOKET-WRITE

 SRV-SOCKID

 TCPLENG

 TCP-BUF

 ERRNO

 RETCODE

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO WRITE-ERRNO

 MOVE WRITE-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU

 HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT

 ELSE

Figure 179. EZACIC6S IPv6 iterative server sample (Part 14 of 24)

Appendix E. Sample programs 519

|

|

|

CALL ’EZASOKET’ USING SOKET-CLOSE

 SRV-SOCKID

 ERRNO

 RETCODE

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO CLOSE-ERRNO

 MOVE CLOSE-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU

 HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT

 ELSE NEXT SENTENCE

 END-IF

 END-IF

 END-IF.

 MOVE LOW-VALUES TO TCP-BUF.

 LISTENER-STARTED-TASK-EXIT.

 EXIT.

 * *

 * START SERVER PROGRAM *

 * *

 INIT-SOCKET.

 MOVE EIBTASKN TO SUBTASKNO.

 CALL ’EZASOKET’ USING SOKET-INITAPI

 MAXSOC

 IDENT

 INIT-SUBTASKID

 MAXSNO

 ERRNO

 RETCODE.

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO INIT-ERRNO

 MOVE INITAPI-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT

 ELSE

 MOVE INIT-MSG TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 END-IF.

 INIT-SOCKET-EXIT.

 EXIT.

 SCKET-BIND-LSTN.

 MOVE -1 TO SRV-SOCKID-FWD.

 --

 * *

 * CREATING A SOCKET TO ALLOCATE *

 * AN OPEN SOCKET FOR INCOMING CONNECTIONS *

 * *

 --

 CALL ’EZASOKET’ USING SOKET-SOCKET

 AF-INET6

 SOCK-TYPE

Figure 179. EZACIC6S IPv6 iterative server sample (Part 15 of 24)

520 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

PROTOCOL

 ERRNO

 RETCODE.

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO SOCKET-ERRNO

 MOVE SOCKET-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT

 ELSE MOVE RETCODE TO SRV-SOCKID

 MOVE ’1’ TO SOCK-CHAR(RETCODE + 1)

 END-IF.

 --

 * *

 * BIND THE SOCKET TO THE SERVICE PORT *

 * TO ESTABLISH A LOCAL ADDRESS FOR PROCESSING INCOMING *

 * CONNECTIONS. *

 * *

 --

 MOVE AF-INET6 TO SAIN-FAMILY.

 MOVE ZEROS TO SAIN-SIN6-FLOWINFO.

 MOVE IN6ADDR-ANY TO SAIN-SIN6-ADDR.

 MOVE ZEROS TO SAIN-SIN6-SCOPEID.

 MOVE PORT TO SAIN-SIN6-PORT.

 CALL ’EZASOKET’ USING SOKET-BIND

 SRV-SOCKID

 SOCKADDR-IN

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO BIND-ERRNO

 MOVE BIND-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT.

 --

 * *

 * CALL THE LISTEN COMMAND TO ALLOWS SERVERS TO *

 * PREPARE A SOCKET FOR INCOMING CONNECTIONS AND SET MAXIMUM *

 * CONNECTIONS. *

 * *

 --

 CALL ’EZASOKET’ USING SOKET-LISTEN

 SRV-SOCKID

 BACKLOG

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO LISTEN-ERRNO

 MOVE LISTEN-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT.

 SCKET-BIND-LSTN-EXIT.

 EXIT.

 --

 * *

Figure 179. EZACIC6S IPv6 iterative server sample (Part 16 of 24)

Appendix E. Sample programs 521

* SOCKET HAS BEEN SET UP, THEN CALL ’ACCEPT’ TO *

 * ACCEPT A REQUEST WHEN A CONNECTION ARRIVES. *

 * *

 * THIS SAMPLE PROGRAM WILL ONLY USE 5 SOCKETS. *

 * *

 --

 ACCEPT-CLIENT-REQ.

 CALL ’EZASOKET’ USING SOKET-SELECT

 NFDS

 TIMEVAL

 READMASK

 DUMYMASK

 DUMYMASK

 REPLY-RDMASK

 DUMYMASK

 DUMYMASK

 ERRNO

 RETCODE.

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO SELECT-ERRNO

 MOVE SELECT-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT.

 IF RETCODE = 0

 THEN GO TO ACCEPT-CLIENT-REQ-EXIT.

 --

 * *

 * ACCEPT REQUEST *

 * *

 --

 CALL ’EZASOKET’ USING SOKET-ACCEPT

 SRV-SOCKID

 SOCKADDR-IN

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO ACCEPT-ERRNO

 MOVE ACCEPT-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT.

 MOVE RETCODE TO CLI-SOCKID.

 PERFORM GET-NAME-INFO THRU GET-NAME-INFO-EXIT.

 PERFORM ACCEPT-RECV THRU ACCEPT-RECV-EXIT

 UNTIL TASK-END OR TASK-TERM.

 MOVE DB2END TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 CALL ’EZASOKET’ USING SOKET-CLOSE

 CLI-SOCKID

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO CLOSE-ERRNO

 MOVE CLOSE-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

Figure 179. EZACIC6S IPv6 iterative server sample (Part 17 of 24)

522 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

IF NOT TASK-TERM

 MOVE ’0’ TO TASK-FLAG.

 ACCEPT-CLIENT-REQ-EXIT.

 EXIT.

 --

 * *

 * DETERMINE THE CONNECTED HOST NAME BY ISSUING THE *

 * GETNAMEINFO COMMAND. *

 * *

 --

 GET-NAME-INFO.

 MOVE SAIN-SIN6-ADDR TO NUMERIC-ADDR.

 MOVE 45 TO PRESENTABLE-ADDR-LEN.

 MOVE SPACES TO PRESENTABLE-ADDR.

 CALL ’EZASOKET’ USING SOKET-NTOP AF-INET6

 NUMERIC-ADDR

 PRESENTABLE-ADDR PRESENTABLE-ADDR-LEN

 ERRNO RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO NTOP-ERRNO

 MOVE NTOP-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 MOVE PRESENTABLE-ADDR TO NTOP-PRESENTABLE-ADDR.

 MOVE NTOP-OK TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 CALL ’EZASOKET’ USING SOKET-GETPEERNAME

 CLI-SOCKID

 SOCKADDR-PEER

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO GPN-ERRNO

 MOVE GPN-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT

 GO TO PGM-EXIT.

 MOVE 28 TO NAME-LEN.

 MOVE 255 TO HOST-NAME-LEN.

 MOVE 32 TO SERVICE-NAME-LEN.

 MOVE ZEROS TO NAME-INFO-FLAGS.

 CALL ’EZASOKET’ USING SOKET-GETNAMEINFO

 SOCKADDR-PEER

 NAME-LEN

 HOST-NAME

 HOST-NAME-LEN

 SERVICE-NAME

 SERVICE-NAME-LEN

 NAME-INFO-FLAGS

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO GNI-ERRNO

 MOVE GNI-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 MOVE 0 TO HOST-NAME-CHAR-COUNT.

 INSPECT HOST-NAME TALLYING HOST-NAME-CHAR-COUNT

Figure 179. EZACIC6S IPv6 iterative server sample (Part 18 of 24)

Appendix E. Sample programs 523

FOR CHARACTERS BEFORE X’00’.

 UNSTRING HOST-NAME DELIMITED BY X’00’

 INTO HOST-NAME-UNSTRUNG

 COUNT IN HOST-NAME-CHAR-COUNT.

 STRING HOST-NAME-UNSTRUNG DELIMITED BY ’ ’

 INTO GNI-HOST-NAME.

 MOVE GNI-HOST-NAME-OK TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 MOVE 0 TO SERVICE-NAME-CHAR-COUNT.

 INSPECT SERVICE-NAME TALLYING SERVICE-NAME-CHAR-COUNT

 FOR CHARACTERS BEFORE X’00’.

 UNSTRING SERVICE-NAME DELIMITED BY X’00’

 INTO SERVICE-NAME-UNSTRUNG

 COUNT IN SERVICE-NAME-CHAR-COUNT.

 STRING SERVICE-NAME-UNSTRUNG DELIMITED BY ’ ’

 INTO GNI-SERVICE-NAME.

 MOVE GNI-SERVICE-NAME-OK TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 DISPLAY ’HOST NAME = ’ HOST-NAME.

 DISPLAY ’SERVICE = ’ SERVICE-NAME.

 GET-NAME-INFO-EXIT.

 EXIT.

 --

 * *

 * RECEIVING DATA THROUGH A SOCKET BY ISSUING ’RECVFROM’ *

 * COMMAND. *

 * *

 --

 ACCEPT-RECV.

 MOVE ’T’ TO TCP-INDICATOR.

 MOVE BUFFER-LENG TO TCPLENG.

 MOVE LOW-VALUES TO TCP-BUF.

 CALL ’EZASOKET’ USING SOKET-RECVFROM

 CLI-SOCKID

 TCP-FLAG

 TCPLENG

 TCP-BUF

 SOCKADDR-IN

 ERRNO

 RETCODE.

 IF RETCODE EQUAL 0 AND TCPLENG EQUAL 0

 THEN NEXT SENTENCE

 ELSE

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO RECVFROM-ERRNO

 MOVE RECVFROM-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU

 HANDLE-TCPCICS-EXIT

 MOVE ’1’ TO TASK-FLAG

 ELSE

 CALL ’EZACIC05’ USING TCP-BUF TCPLENG

 IF TCP-BUF-H = LOW-VALUES OR SPACES

Figure 179. EZACIC6S IPv6 iterative server sample (Part 19 of 24)

524 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

THEN

 MOVE NULL-DATA TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU

 HANDLE-TCPCICS-EXIT

 ELSE

 IF TCP-BUF-H = ’END’

 THEN MOVE ’1’ TO TASK-FLAG

 ELSE IF TCP-BUF-H = ’TRM’

 THEN MOVE ’2’ TO TASK-FLAG

 ELSE PERFORM TALK-CLIENT THRU

 TALK-CLIENT-EXIT

 END-IF

 END-IF

 END-IF

 END-IF

 END-IF.

 ACCEPT-RECV-EXIT.

 EXIT.

 **

 ** PROCESSES TALKING TO CLIENT THAT WILL UPDATE DB2 **

 ** TABLES. **

 **

 ** DATA PROCESS: **

 ** **

 ** INSERT REC - INS,X81,TEST DEPT,A0213B,Y94 **

 ** UPDATE REC - UPD,X81,,A1234C, **

 ** DELETE REC - DEL,X81,,, **

 ** END CLIENT - END,{end client connection } **

 ** END SERVER - TRM,{terminate server } **

 ** **

 **

 TALK-CLIENT.

 UNSTRING TCP-BUF DELIMITED BY DEL-ID OR ALL ’*’

 INTO IN-ACT

 IN-DEPTNO

 IN-DEPTN

 IN-MGRNO

 IN-ADMRDEPT.

 IF IN-ACT EQUAL ’END’

 THEN

 MOVE ’1’ TO TASK-FLAG

 ELSE

 IF IN-ACT EQUAL ’U’ OR EQUAL ’UPD’

 THEN

 *** EXEC SQL UPDATE TCPCICS.DEPT

 *** SET MGRNO = :IN-MGRNO

 *** WHERE DEPTNO = :IN-DEPTNO

 *** END-EXEC

 MOVE ’UPDATE’ TO DB2-ACT

 MOVE ’UPDATED: ’ TO DB2M-VAR

 ELSE

 IF IN-ACT EQUAL ’I’ OR EQUAL ’INS’

 THEN

 *** EXEC SQL INSERT

 *** INTO TCPCICS.DEPT (DEPTNO, DEPTNAME,

Figure 179. EZACIC6S IPv6 iterative server sample (Part 20 of 24)

Appendix E. Sample programs 525

*** MGRNO, ADMRDEPT)

 *** VALUES (:IN-DEPTNO, :IN-DEPTN,

 *** :IN-MGRNO, :IN-ADMRDEPT)

 *** END-EXEC

 MOVE ’INSERT’ TO DB2-ACT

 MOVE ’INSERTED: ’ TO DB2M-VAR

 ELSE

 IF IN-ACT EQUAL ’D’ OR EQUAL ’DEL’

 THEN

 *** EXEC SQL DELETE

 *** FROM TCPCICS.DEPT

 *** WHERE DEPTNO = :IN-DEPTNO

 *** END-EXEC

 MOVE ’DELETE’ TO DB2-ACT

 MOVE ’DELETED: ’ TO DB2M-VAR

 ELSE

 MOVE KEYWORD-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU

 HANDLE-TCPCICS-EXIT

 END-IF

 END-IF

 END-IF

 END-IF.

 IF DADELETE OR DAINSERT OR DAUPDATE

 THEN

 * MOVE SQLERRD(3) TO DB2CODE

 MOVE DB2MSG TO MSG-AREA

 MOVE LENGTH OF TCPCICS-MSG-AREA TO LENG

 EXEC CICS SYNCPOINT END-EXEC

 EXEC CICS WRITEQ TD

 QUEUE (’CSMT’)

 FROM (TCPCICS-MSG-AREA)

 LENGTH (LENG)

 NOHANDLE

 END-EXEC

 **

 ** WRITE THE DB2 MESSAGE TO CLIENT. **

 **

 MOVE TCPCICS-MSG-2 TO TCP-BUF

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG

 CALL ’EZASOKET’ USING SOKET-WRITE

 CLI-SOCKID

 TCPLENG

 TCP-BUF

 ERRNO

 RETCODE

 MOVE LOW-VALUES TO TCP-BUF

 TCP-INDICATOR

 DB2-ACT

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO WRITE-ERRNO

 MOVE WRITE-ERR TO MSG-AREA

Figure 179. EZACIC6S IPv6 iterative server sample (Part 21 of 24)

526 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

PERFORM HANDLE-TCPCICS THRU

 HANDLE-TCPCICS-EXIT

 MOVE ’1’ TO TASK-FLAG

 END-IF

 END-IF.

 TALK-CLIENT-EXIT.

 EXIT.

 * *

 * CLOSE ORIGINAL SOCKET DESCRIPTOR *

 * *

 CLOSE-SOCKET.

 CALL ’EZASOKET’ USING SOKET-CLOSE

 SRV-SOCKID

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO CLOSE-ERRNO

 MOVE CLOSE-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 CLOSE-SOCKET-EXIT.

 EXIT.

 * *

 * SEND TCP/IP ERROR MESSAGE *

 * *

 HANDLE-TCPCICS.

 MOVE LENGTH OF TCPCICS-MSG-AREA TO LENG.

 EXEC CICS ASKTIME

 ABSTIME (TSTAMP)

 NOHANDLE

 END-EXEC.

 EXEC CICS FORMATTIME

 ABSTIME (TSTAMP)

 MMDDYY (MSGDATE)

 TIME (MSGTIME)

 DATESEP (’/’)

 TIMESEP (’:’)

 NOHANDLE

 END-EXEC.

 EXEC CICS WRITEQ TD

 QUEUE (’CSMT’)

 FROM (TCPCICS-MSG-AREA)

 RESP (RESPONSE)

 LENGTH (LENG)

 END-EXEC.

 IF RESPONSE = DFHRESP(NORMAL)

 THEN NEXT SENTENCE

 ELSE

 IF RESPONSE = DFHRESP(INVREQ)

 THEN MOVE TS-INVREQ-ERR TO MSG-AREA

 ELSE

 IF RESPONSE = DFHRESP(NOTAUTH)

Figure 179. EZACIC6S IPv6 iterative server sample (Part 22 of 24)

Appendix E. Sample programs 527

THEN MOVE TS-NOTAUTH-ERR TO MSG-AREA

 ELSE

 IF RESPONSE = DFHRESP(IOERR)

 THEN MOVE TS-IOERR-ERR TO MSG-AREA

 ELSE MOVE WRITETS-ERR TO MSG-AREA

 END-IF

 END-IF

 END-IF

 END-IF.

 IF TCP-INDICATOR = ’T’ THEN

 MOVE BUFFER-LENG TO TCPLENG

 MOVE LOW-VALUES TO TCP-BUF

 MOVE TCPCICS-MSG-2 TO TCP-BUF

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG

 MOVE ’ ’ TO TCP-INDICATOR

 CALL ’EZASOKET’ USING SOKET-WRITE

 CLI-SOCKID

 TCPLENG

 TCP-BUF

 ERRNO

 RETCODE

 IF RETCODE < 0

 THEN

 MOVE ERRNO TO WRITE-ERRNO

 MOVE WRITE-ERR TO MSG-AREA

 EXEC CICS WRITEQ TD

 QUEUE (’CSMT’)

 FROM (TCPCICS-MSG-AREA)

 LENGTH (LENG)

 NOHANDLE

 END-EXEC

 IF TASK-TERM OR TASK-END

 THEN NEXT SENTENCE

 ELSE MOVE ’1’ TO TASK-FLAG

 END-IF

 END-IF.

 MOVE SPACES TO MSG-AREA.

 HANDLE-TCPCICS-EXIT.

 EXIT.

 * *

 * SEND DB2 ERROR MESSAGE *

 * *

 SQL-ERROR-ROU.

 * MOVE SQLCODE TO SQL-ERR-CODE.

 MOVE SPACES TO MSG-AREA.

 * MOVE SQL-ERROR TO MSG-AREA.

 EXEC CICS WRITEQ TD

 QUEUE (’CSMT’)

 FROM (TCPCICS-MSG-AREA)

 RESP (RESPONSE)

 LENGTH (LENG)

Figure 179. EZACIC6S IPv6 iterative server sample (Part 23 of 24)

528 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

EZACICAC

The following Assembler socket program is in the SEZAINST data set.

 END-EXEC.

 MOVE LOW-VALUES TO TCP-BUF.

 MOVE TCPCICS-MSG-2 TO TCP-BUF.

 CALL ’EZACIC04’ USING TCP-BUF TCPLENG.

 CALL ’EZASOKET’ USING SOKET-WRITE

 CLI-SOCKID

 TCPLENG

 TCP-BUF

 ERRNO

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ERRNO TO WRITE-ERRNO

 MOVE WRITE-ERR TO MSG-AREA

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 SQL-ERROR-ROU-EXIT.

 EXIT.

 * *

 * OTHER ERRORS (HANDLE CONDITION) *

 * *

 INVREQ-ERR-SEC.

 MOVE TCP-EXIT-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 IOERR-SEC.

 MOVE IOERR-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 LENGERR-SEC.

 MOVE LENGERR-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 NOSPACE-ERR-SEC.

 MOVE NOSPACE-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 QIDERR-SEC.

 MOVE QIDERR-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 ITEMERR-SEC.

 MOVE ITEMERR-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

 ENDDATA-SEC.

 MOVE ENDDATA-ERR TO MSG-AREA.

 PERFORM HANDLE-TCPCICS THRU HANDLE-TCPCICS-EXIT.

 GO TO PGM-EXIT.

Figure 179. EZACIC6S IPv6 iterative server sample (Part 24 of 24)

Appendix E. Sample programs 529

|

* *

* Module Name: EZACICAC - This is a very simple child server *

* *

* Copyright: Licensed Materials - Property of IBM *

* *

* "Restricted Materials of IBM" *

* *

* 5694-A01 *

* *

* Copyright IBM Corp. 2003, 2007 *

* *

* US Government Users Restricted Rights - *

* Use, duplication or disclosure restricted by *

* GSA ADP Schedule Contract with IBM Corp. *

* *

* Status: CSV1R9 *

* *

* *

* LANGUAGE: ASSEMBLER *

* *

* ATTRIBUTES: NON-REUSEABLE *

* *

* REGISTER USAGE: *

* R1 = *

* R2 = *

* R3 = *

* R4 = *

* R5 = *

* R6 = *

* R7 = *

* R8 = *

* R9 = *

* R10 = *

* R11 = *

* R12 = *

* R13 = *

* R14 = *

* R15 = *

* *

* INPUT: *

* *

* OUTPUT: *

* *

* $MOD(EZACICAC),COMP(CICS),PROD(TCPIP): *

* *

* *

DFHEISTG DSECT

Figure 180. EZACICAC assembler child server sample (Part 1 of 10)

530 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|

SOCSTG DS 0F PROGRAM STORAGE

*

* Storage to format messages

*

TDMSG DS 0F WRITEQ TD Message area

TDDATE DS CL8 MM/DD/YY

TDFILL1 DS CL2

TDTIME DS CL8 HH:MM:SS

TDFILL2 DS CL2

TDTEXT DS CL40 TDTEXT

*

 ORG TDTEXT

TDTEXT0 DS 0CL40

TDCMD DS CL16 COMMAND ISSUED

TDRESULT DS CL24 SUCCESSFUL/UNSUCCESSFUL

TDMSGE EQU * End of message

TDMSGL EQU TDMSGE-TDMSG Length of TD message text

*

* Message to display the clients host name

*

 ORG TDTEXT

TDHOSTMSG DS 0CL40

TDHOSTLIT DS CL9

TDHOST DS CL31

*

* Message to display the clients service name

*

 ORG TDTEXT

TDSERVMSG DS 0CL40

TDSERVLIT DS CL8

TDSERV DS CL32

*

TDLEN DS H Length of TD message text

*

* Working storage fields

*

CLENG DS H Length of data to RETRIEVE

UTIME DS PL8 ABSTIME data area

DWORK DS D Double work work area

UNPKWRK DS CL15 For packing/unpacking

PARMLIST DS 20F Parm list for EZASOKET calls

*

SOCDESC DS H Socket Descriptor

*

ERRNO DS F ERRNO

RETCODE DS F Return code

*

* Storage to map the clientid structure.

*

CLIENTID DS 0CL40

GIVE_DOM DS F Domain of socket given/taken

AS_NAME DS CL8 Address space name

TASK_ID DS CL8 Task identifier

 DS CL20 Reserved

*

Figure 180. EZACICAC assembler child server sample (Part 2 of 10)

Appendix E. Sample programs 531

* Storage to address the Transaction Input Message from the Listener.

*

SOKTIM DS 0CL1153

SOKDESC DS F Socket descriptor given

SOKLASID DS CL8 Listener address space name

SOKLTID DS CL8 Listener task identifier

SOKDATA1 DS CL35 Client input data

SOKTSI DS CL1 Threadsafe inidicator

SOKADDR DS 0F Clients socket address

SOKFAM DS H Address family

SOK_DATA DS 0C Protocol specific area

SOK#LEN EQU *-SOKADDR

 ORG SOK_DATA Start of AF_INET unique area

SOK_SIN DS 0C

SOK_SIN_PORT DS H Clients port number

SOK_SIN_CIPAD DS F Clients INET address (netid)

 DS CL8 Reserved area not used

 DS 20F

SOK_SIN#LEN EQU *-SOK_SIN Length of AF_INET area

 ORG SOK_DATA Start of AF_INET6 unique area

SOK_SIN6 DS 0C

SOK_SIN6_PORT DS H Clients port number

SOK_SIN6_FLOWINFO DS CL4 Flow information

SOK_SIN6_CIPAD DS CL16 Clients INET address (netid)

SOK_SIN6_SCOPE_ID DS CL4 Scope Id

SOK_SIN6#LEN EQU *-SOK_SIN6 Length of AF_INET6 area

 ORG

 DS CL68 Reserved

SOKDATAL DS H Length of data area 2

SOKDATA2 DS CL999 Data area 2

*

* Program storage marker

*

SOCSTGE EQU * End of Program Storage

SOCSTGL EQU SOCSTGE-SOCSTG Length of Program Storage

*

* Beginning of program

*

EZACICAC CSECT

EZACICAC AMODE ANY Addressing mode ...

EZACICAC RMODE ANY Residency mode ...

SOC0000 DS 0H

 B SOC00100 Branch to startup address

 DC CL17’EZACICAC-EYECATCH’

SOC00100 DS 0H Beginning of program

 LA R10,SOCSTG Address Pgm Dynamic Stg

 USING SOCSTG,R10 Tell Assembler about storage

 MVC TDTEXT(40),STARTED_MSG Move STARTED message to TD area

 BAL R7,WRITEQ Write to TD Queue

 MVC CLENG,=H’72’ Length for standard listener

 MVC CLENG,=H’1153’ Length for enhanced listener

*

* Retrieve the Task Input Message(TIM) from the Listener

*

 EXEC CICS RETRIEVE INTO(SOKTIM) LENGTH(CLENG)

Figure 180. EZACICAC assembler child server sample (Part 3 of 10)

532 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

*

* Issue the ’TAKESOCKET’ call to acquire the socket which was

* given by the listener program.

*

 XC CLIENTID,CLIENTID Clear the clientid structure

 MVC GIVE_DOM+2,SOKFAM Based on the AF in the TIM

 MVC AS_NAME,SOKLASID Set the address space name

 MVC TASK_ID,SOKLTID and the subtask identifier

 MVC SOCDESC,SOKDESC+2 and the socket descriptor.

*

 CALL EZASOKET,(SOCTSOCK,SOCDESC,CLIENTID, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 C R6,=F’0’ Is the call successful?

 BL SOCERR No! Go display error and terminate

 MVC SOCDESC,RETCODE+2 Yes, format the return code and

 MVC TDCMD,SOCTSOCK the API function performed.

 MVC TDRESULT(24),SUCC Move SUCCESSFUL msg to TD area

 MVC TDTEXT(40),TDTEXT0 Move message to TD area

 BAL R7,WRITEQ Write to TD Queue

*

 XC TCP_BUF,TCP_BUF Clear the buffer storage

 MVC TCP_BUF(L’TASK_START),TASK_START Set the message

 L R8,=F’50’ Set the

 ST R8,TCPLENG message length.

*

* Remove the following call to EZACIC04 if using an EBCDIC client.

*

 CALL EZACIC04,(TCP_BUF,TCPLENG),VL,MF=(E,PARMLIST)

*

* Notify client the the child subtask has started.

*

 CALL EZASOKET,(SOCWRITE,SOCDESC,TCPLENG,TCP_BUF, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 C R6,=F’0’ Is the call successful?

 BL SOCERR No! Go display error and terminate

 MVC TDCMD,SOCWRITE the API function performed.

 MVC TDRESULT(24),SUCC Move SUCCESSFUL msg to TD area

 MVC TDTEXT(40),TDTEXT0 Move message to TD area

 BAL R7,WRITEQ Write to TD Queue

*

* Get our peers’ socket address

*

 CALL EZASOKET,(SOCGPNA,SOCDESC,PEERADDR, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 C R6,=F’0’ Is the call successful?

Figure 180. EZACICAC assembler child server sample (Part 4 of 10)

Appendix E. Sample programs 533

|

BL SOCERR No! Go display error and terminate

 MVC TDCMD,SOCGPNA the API function performed.

 MVC TDRESULT(24),SUCC Move SUCCESSFUL msg to TD area

 MVC TDTEXT(40),TDTEXT0 Move message to TD area

 BAL R7,WRITEQ Write to TD Queue

*

* Get our client’s host name and service name

*

 L R8,=F’16’ Set the sockaddr length to IPv4

 CLC SOKFAM,=AL2(AF_INET) Is the client AF_INET ?

 BE SET_SOCKADDR_LEN Yes. Go store the length.

 L R8,=F’28’ Set the sockaddr length to IPv6

SET_SOCKADDR_LEN DS 0H

 ST R8,PEERADDR_LEN Save the value of the sockaddr length

 L R8,=F’0’ Clear the

 ST R8,GNI_FLAGS flags

 XC PEER_HOSTNAME,PEER_HOSTNAME Clear the host name storage

 L R8,=F’255’ Set the length of

 ST R8,PEER_HOSTNAMELEN the host name storage

 XC PEER_SERVICENAME,PEER_SERVICENAME Clear the service X

 name storage

 L R8,=F’32’ Set the length of

 ST R8,PEER_SERVICENAMELEN the service name storage

*

 CALL EZASOKET,(SOCGNI,PEERADDR,PEERADDR_LEN, X

 PEER_HOSTNAME,PEER_HOSTNAMELEN, X

 PEER_SERVICENAME,PEER_SERVICENAMELEN, X

 GNI_FLAGS, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 C R6,=F’0’ Is the call successful?

 BL SOCERR No! Go display error and terminate

 MVC TDCMD,SOCGNI the API function performed.

 MVC TDRESULT(24),SUCC Move SUCCESSFUL msg to TD area

 MVC TDTEXT(40),TDTEXT0 Move message to TD area

 BAL R7,WRITEQ Write to TD Queue

*

* Display the host name

*

 MVC TDHOSTLIT,=C’HOSTNAME=’

 MVC TDHOST(L’TDHOST),PEER_HOSTNAME

 MVC TDTEXT(40),TDHOSTMSG Move message to TD area

 BAL R7,WRITEQ Write to TD Queue

*

* Display the service name

*

 MVC TDHOSTLIT,=C’SERVICE=’

 MVC TDSERV(L’TDSERV),PEER_SERVICENAME

 MVC TDTEXT(40),TDSERVMSG Move message to TD area

 BAL R7,WRITEQ Write to TD Queue

*

* Receive data from the client

*

Figure 180. EZACICAC assembler child server sample (Part 5 of 10)

534 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

AGAIN1 DS 0H

*

 XC TCP_BUF,TCP_BUF Clear the buffer storage

*

 CALL EZASOKET,(SOCRECV,SOCDESC,RECV_FLAG,TCPLENG,TCP_BUF, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 C R6,=F’0’ Is the call successful?

 BL SOCERR No! Go display error and terminate

 MVC TDCMD,SOCRECV the API function performed.

 MVC TDRESULT(24),SUCC Move SUCCESSFUL msg to TD area

 MVC TDTEXT(40),TDTEXT0 Move message to TD area

 BAL R7,WRITEQ Write to TD Queue

*

* Remove the following call to EZACIC05 if using an EBCDIC client.

*

 CALL EZACIC05,(TCP_BUF,TCPLENG),VL,MF=(E,PARMLIST)

*

* Determine whether the client is finished sending data

*

 CLC TCP_BUF_H,=C’END’

 BE SIGNAL_CLOSING

 CLC TCP_BUF_H,=C’end’

 BE SIGNAL_CLOSING

*

* Remove the following call to EZACIC04 if using an EBCDIC client.

*

 CALL EZACIC04,(TCP_BUF,TCPLENG),VL,MF=(E,PARMLIST)

*

* Echo the data received back to the client

*

 CALL EZASOKET,(SOCWRITE,SOCDESC,TCPLENG,TCP_BUF, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 C R6,=F’0’ Is the call successful?

 BL SOCERR No! Go display error and terminate

 MVC TDCMD,SOCWRITE the API function performed.

 MVC TDRESULT(24),SUCC Move SUCCESSFUL msg to TD area

 MVC TDTEXT(40),TDTEXT0 Move message to TD area

 BAL R7,WRITEQ Write to TD Queue

*

* Go receive another message

*

 B AGAIN1

*

Figure 180. EZACICAC assembler child server sample (Part 6 of 10)

Appendix E. Sample programs 535

|

|

|
|
|
|

* Tell client the connection will close.

*

SIGNAL_CLOSING DS 0H

 XC TCP_BUF,TCP_BUF Clear the buffer storage

 MVC TCP_BUF(L’WRKEND),WRKEND Set the message

 L R8,=F’50’ Set the

 ST R8,TCPLENG message length.

*

* Remove the following call to EZACIC04 if using an EBCDIC client.

*

 CALL EZACIC04,(TCP_BUF,TCPLENG),VL,MF=(E,PARMLIST)

*

* Notify the client that the connection will end.

*

 CALL EZASOKET,(SOCWRITE,SOCDESC,TCPLENG,TCP_BUF, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 C R6,=F’0’ Is the call successful?

 BL SOCERR No! Go display error and terminate

 MVC TDCMD,SOCWRITE the API function performed.

 MVC TDRESULT(24),SUCC Move SUCCESSFUL msg to TD area

 MVC TDTEXT(40),TDTEXT0 Move message to TD area

 BAL R7,WRITEQ Write to TD Queue

*

* Close the socket

*

 CALL EZASOKET,(SOCCLOSE,SOCDESC, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 C R6,=F’0’ Is the call successful?

 BL SOCERR No! Go display error and terminate

 MVC TDCMD,SOCCLOSE Yes, format the API function performed

 MVC TDRESULT(24),SUCC Move SUCCESSFUL msg to TD area

 MVC TDTEXT(40),TDTEXT0 Move message to TD area

 BAL R7,WRITEQ Write to TD Queue

 B SOCRET Go return to CICS

*

* Error routine for all socket calls

*

SOCERR DS 0H

 MVI FORCEMSG,C’Y’ Indicate message should be forced

 MVC TDTEXT(40),=C’SOCKET ERROR ’

 BAL R7,WRITEQ Write to TD Queue

 L R6,RETCODE Pick up the return code value

 L R5,ERRNO Pick up the ERRNO value

*

 CVD R6,DWORK Format the return code

 UNPK TDRETC,DWORK+4(4) for printing to the

 OI TDRETC+6,X’F0’ TD queue

Figure 180. EZACICAC assembler child server sample (Part 7 of 10)

536 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

*

 CVD R5,DWORK Format the ERRNO

 UNPK TDERRNO,DWORK+4(4) for printing to the

 OI TDERRNO+6,X’F0’ TD queue

*

 MVC TDTEXT(40),TDTEXT5 Move the return code and ERRNO to

 BAL R7,WRITEQ the TD queue. Write to the TD queue

*

 B SOCRET Go return to CICS

*

* Subroutine to write messages to the destination "CSMT" for logging

*

WRITEQ DS 0H

 CLI SOKTSI,C’1’ Is interface using OTE ?

 BNE WRITEQ01 No, write message.

 CLI FORCEMSG,C’Y’ Is this an error message ?

 BNE WRITEQ02 Yes, bypass writing message.

WRITEQ01 DS 0H

 EXEC CICS ASKTIME ABSTIME(UTIME)

 EXEC CICS FORMATTIME ABSTIME(UTIME) X

 DATESEP(’/’) DDMMYY(TDDATE) X

 TIME(TDTIME) TIMESEP

 LA R6,TDMSGL

 STH R6,TDLEN

 EXEC CICS WRITEQ TD QUEUE(’CSMT’) X

 FROM(TDMSG) X

 LENGTH(TDLEN)

WRITEQ02 DS 0H

 XC TDMSG,TDMSG

 BR R7 Return to caller

*

* Socket family values

*

AFINET DC F’2’ AF_INET

AFINET6 DC F’19’ AF_INET6

AF_INET EQU 2

AF_INET6 EQU 19

*

* Socket protocol values

*

SSTREAM DC F’1’ socket type stream

SDATAGRM DC F’2’ socket type datagram

SRAW DC F’3’ socket type raw

*

* IP CICS Socket API functions

*

SOCACCT DC CL16’ACCEPT ’

SOCBIND DC CL16’BIND ’

SOCCLOSE DC CL16’CLOSE ’

SOCCONNT DC CL16’CONNECT ’

SOCFCNTL DC CL16’FCNTL ’

SOCGCLID DC CL16’GETCLIENTID ’

SOCGTHBA DC CL16’GETHOSTBYADDR ’

SOCGTHBN DC CL16’GETHOSTBYNAME ’

SOCGTHID DC CL16’GETHOSTID ’

Figure 180. EZACICAC assembler child server sample (Part 8 of 10)

Appendix E. Sample programs 537

SOCGTHN DC CL16’GETHOSTNAME ’

SOCGPNA DC CL16’GETPEERNAME ’

SOCGNI DC CL16’GETNAMEINFO ’

SOCFAI DC CL16’FREEADDRINFO ’

SOCGAI DC CL16’GETADDRINFO ’

SOCGTSN DC CL16’GETSOCKNAME ’

SOCGSOPT DC CL16’GETSOCKOPT ’

SOCGSOCK DC CL16’GIVESOCKET ’

SOCINIT DC CL16’INITAPI ’

SOCIOCTL DC CL16’IOCTL ’

SOCLISTN DC CL16’LISTEN ’

SOCNTOP DC CL16’NTOP ’

SOCPTON DC CL16’PTON ’

SOCREAD DC CL16’READ ’

SOCREADV DC CL16’READV ’

SOCRECV DC CL16’RECV ’

SOCRECVF DC CL16’RECVFROM ’

SOCRECVM DC CL16’RECVMSG ’

SOCSELCT DC CL16’SELECT ’

SOCSELX DC CL16’SELECTEX ’

SOCSEND DC CL16’SEND ’

SOCSENDM DC CL16’SENDMSG ’

SOCSENDT DC CL16’SENDTO ’

SOCSSOPT DC CL16’SETSOCKOPT ’

SOCSHUTD DC CL16’SHUTDOWN ’

SOCSOKET DC CL16’SOCKET ’

SOCTSOCK DC CL16’TAKESOCKET ’

SOCTERM DC CL16’TERMAPI ’

SOCWRITE DC CL16’WRITE ’

SOCWRITV DC CL16’WRITEV ’

ZERO DC F’0’

*

* Message(s) written to the transient data queue

*

STARTED_MSG DC CL40’EZACICAC Started successfully ’

STOPPED_MSG DC CL40’EZACICAC Stopped successfully ’

NOCOMMAREA DC CL40’EZACICAC ***ERROR*** NO COMMAREA PASSED!’

TASK_START DC CL40’TASK STARTING THRU CICS/TCPIP INTERFACE ’

WRKEND DC CL20’CONNECTION END ’

*

* Message buffer for data from/to client

*

TCP_BUF DS 0CL200 Buffer

TCP_BUF_H DC CL3’ ’

TCP_BUF_DATA DC CL197’ ’

TCPLENG DC F’200’ Length of buffer

*

* Peers sockaddr

*

PEERADDR DS 0F Clients socket address

PEERFAM DS H Address family

PEER_DATA DS 0C Protocol specific area

PEER#LEN EQU *-PEERADDR

Figure 180. EZACICAC assembler child server sample (Part 9 of 10)

538 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

ORG PEER_DATA Start of AF_INET unique area

PEER_SIN DS 0C

PEER_SIN_PORT DS H Clients port number

PEER_SIN_ADDR DS F Clients INET address (netid)

 DS CL8 Reserved area not used

 DS 20F

PEER_SIN#LEN EQU *-PEER_SIN Length of AF_INET area

 ORG PEER_DATA Start of AF_INET6 unique area

PEER_SIN6 DS 0C

PEER_SIN6_PORT DS H Clients port number

PEER_SIN6_FLOWINFO DS CL4 Flow information

PEER_SIN6_ADDR DS CL16 Clients INET address (netid)

PEER_SIN6_SCOPE_ID DS CL4 Scope Id

PEER_SIN6#LEN EQU *-PEER_SIN6 Length of AF_INET6 area

*

PEERADDR_LEN DS F

*

* Peers HOST/SERVICE NAME/LEN

*

PEER_HOSTNAME DS CL255

PEER_HOSTNAMELEN DS F

PEER_SERVICENAME DS CL32

PEER_SERVICENAMELEN DS F

*

* Receive Flag

*

GNI_FLAGS DS F GETNAMEINFO flags

*

* Receive Flag

*

RECV_FLAG DS F RECEIVE flags

*

*

*

TDTEXT5 DS 0CL40

 DC CL10’Retcode = ’

TDRETC DC CL7’ ’ Printable RETCODE

 DC CL3’ ’

 DC CL9’ERRNO = ’

TDERRNO DC CL7’ ’ Printable ERRNO

 DC CL4’ ’

*

*

*

SUCC DC CL24’Successful ’

NOTSUCC DC CL24’Not successful ’

FORCEMSG DS CL1 Used to force the message when threadsafe

 LTORG

 YREGS

*

* All done. Return to CICS...

*

SOCRET DS 0H

 MVC TDTEXT(40),STOPPED_MSG Move STOPPED message to TD area

 BAL R7,WRITEQ Write to TD Queue

 EXEC CICS RETURN

 END

Figure 180. EZACICAC assembler child server sample (Part 10 of 10)

Appendix E. Sample programs 539

EZACICAS

The following Assembler socket program is in the SEZAINST data set.

*ASM XOPTS(NOPROLOG)

* *

* Module Name: EZACICAS - This is a sample iterative server *

* *

* Copyright: Licensed Materials - Property of IBM *

* *

* "Restricted Materials of IBM" *

* *

* 5694-A01 *

* *

* Copyright IBM Corp. 2003, 2007 *

* *

* US Government Users Restricted Rights - *

* Use, duplication or disclosure restricted by *

* GSA ADP Schedule Contract with IBM Corp. *

* *

* Status: CSV1R9 *

* *

* *

* LANGUAGE: ASSEMBLER *

* *

* ATTRIBUTES: NON-REUSEABLE *

* *

* REGISTER USAGE: *

* R1 = *

* R2 = *

* R3 = BASE REGISTER *

* R4 = BASE REGISTER *

* R5 = *

* R6 = WORK *

* R7 = SUBROUTINE *

* R8 = WORK *

* R9 = GWA REGISTER *

* R10 = *

* R11 = EIB REGISTER *

* R12 = *

* R13 = DATA REGISTER *

* R14 = *

* R15 = *

* *

* INPUT: *

* *

* OUTPUT: *

* *

* $MOD(EZACICAS),COMP(CICS),PROD(TCPIP): *

* *

* *

Figure 181. EZACICAS assembler iterative server sample (Part 1 of 20)

540 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

|

EZACICAS CSECT

 DFHEIENT CODEREG=(3,4), Base registers for the program X

 DATAREG=(13), Base register for data X

 EIBREG=(11) Base register for CICS EIB

EZACICAS AMODE ANY ADDRESSING MODE ...

EZACICAS RMODE ANY RESIDENCY MODE ...

 B SRV60000 Branch to startup address

 DC CL17’EZACICAS-EYECATCH’

SRV60000 DS 0H Beginning of program

 USING GWA0000,R9 Address GWA storage

 MVC MODULE,=C’EZACICAS: ’

*

* Establish conditions to be ignored

*

 EXEC CICS IGNORE CONDITION TERMERR EOC SIGNAL NOTALLOC

*

* Establish conditions to be handled

*

 EXEC CICS HANDLE CONDITION ENDDATA(ENDDATA_ERR), X

 IOERR(IOERR_ERR), X

 LENGERR(LENGERR_ERR), X

 NOSPACE(NOSPACE_ERR), X

 QIDERR(QIDERR_ERR)

*

* Send message that server has started.

*

* XC MSGAREA,MSGAREA Clear the message buffer

 MVC MSGAREA(L’STARTOK),STARTOK Move STARTED message

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Determine the CICS Applid

*

 EXEC CICS ASSIGN APPLID(APPLID)

*

* Before the server can start, determine whether the IP CICS Sockets

* interface is active.

*

 EXEC CICS PUSH HANDLE

 EXEC CICS HANDLE CONDITION INVEXITREQ(TCP_TRUE_REQ), X

 NOTAUTH(NOTAUTH_ERR)

 EXEC CICS EXTRACT EXIT PROGRAM(’EZACIC01’), X

 GASET(R9) GALENGTH(GWALEN)

*

 EXEC CICS POP HANDLE

*

* At startup , the server requires the port number which it will use

* for its passive socket.

*

* Invocation: <server>,<port number>

* where server is the CICS Transaction name assigned to EZACICAS

* and port number is a port to which EZACICA will bind as its

* passive socket.

* TERMINAL => SRV6 04000

* LISTENER => SRV6,04000

* CECI => CECI START TR(SRV6) FROM(04000)

Figure 181. EZACICAS assembler iterative server sample (Part 2 of 20)

Appendix E. Sample programs 541

*

* THE LEADING SPACES ARE SIGNIFICANT.

*

 XC TCP_INPUT_DATA,TCP_INPUT_DATA Clear input data area

 L R8,ZERO

 STH R8,TRMNL_LEN

 L R8,TEN Look for up to ten bytes data

 STH R8,TRMNL_MAXLEN from the terminal

*

 EXEC CICS RECEIVE INTO(TCP_INPUT_DATA) LENGTH(TRMNL_LEN) X

 MAXLENGTH(TRMNL_MAXLEN)

*

 LH R8,TRMNL_LEN Check the amount of data received

 C R8,TEN from the terminal. Was it 10?

 BE USE_RECEIVED_PORT Yes, go determine the port number

*

 XC TCP_INPUT_DATA,TCP_INPUT_DATA Clear input data area

 L R8,=F’1153’

 STH R8,RETRIEVE_LEN from The Listener

 MVC TRANS,EIBTRNID Copy the passed trans

*

 EXEC CICS RETRIEVE INTO(TCP_INPUT_DATA) LENGTH(RETRIEVE_LEN)

*

* Determine if the server was started by CECI or a listener.

*

 LH R8,RETRIEVE_LEN Load the RETRIEVED length

 C R8,CECI_LEN Is it less than 5?

 BNH USE_RETRIEVED_PORT Yes. Go use the RETRIEVE’d port

 OI TAKESOCKET_SWITCH,X’01’ Otherwise indicate the server X

 was started by the Listener

 MVC BIND_PORT(5),CLIENT_IN_DATA For the LISTEN message

 PACK DWORK(8),CLIENT_IN_DATA(5) Use port from TIM

 B CONVERT_PORT Go convert it to binary format

USE_RECEIVED_PORT DS 0H

 MVC BIND_PORT(5),TCP_INPUT_DATA+5 For the LISTEN message

 PACK DWORK(8),TCP_INPUT_DATA+5(5) Use the port RECEIVE’d

 B CONVERT_PORT

USE_RETRIEVED_PORT DS 0H

 MVC BIND_PORT(5),TCP_INPUT_DATA For the LISTEN message

 PACK DWORK(8),TCP_INPUT_DATA(5) Use the port RETRIEVE’d

CONVERT_PORT DS 0H

 CVB R8,DWORK Convert user supplied port to binary

 STH R8,PORT and save it for the passive socket

*

* If the server was started by a listener, then we must take the socket

* given. Otherwise, we should proceed with an INITAPI.

*

 TM TAKESOCKET_SWITCH,X’01’ Do we need to use TAKESOCKET ?

 BO LISTENER_STARTED_TASK Yes. Go issue TAKESOCKET

*

* Since the server was not started by a listener, we should initialize

* the IP CICS Sockets interface.

*

INIT_SOCKETS DS 0H

 MVC SUBTASKNO,EIBTASKN Use the CICS task number

Figure 181. EZACICAS assembler iterative server sample (Part 3 of 20)

542 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

*

 CALL EZASOKET,(SOCINIT,MAXSOC,IDENT,INIT_SUBTASKID,MAXSNO, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Check for successful call

 L R6,RETCODE Check for successful call

 MVC MSGCMD,SOCINIT Show the API command

 C R6,ZERO Is it less than zero

 BL SOCERR Yes, go display error and terminate

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

 MVI TERMAPI_REQUIRED_SW,C’Y’ Since we did an INITAPI.

*

* Get an AF_INET6 socket. If unsuccessful, then get an AF_INET socket.

*

SOCKET_BIND_LISTEN DS 0H

*

 CALL EZASOKET,(SOCSOKET,AFINET6,SSTREAM,ZERO, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Check for successful call

 L R6,RETCODE Check for successful call

 MVC MSGCMD,SOCSOKET Show the API command

 C R6,ZERO Is it less than zero

 BL GET_IPV4_SOCKET Yes, go get an IPv4 socket

 STH R6,SRV_SOCKID Save the new socket descriptor

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Setup an IPv6 sockaddr.

*

 MVC SAIN_SOCK_FAMILY,=AL2(AF_INET6) Set family to AF_INET6

 XC SAIN_SOCK_SIN6_FLOWINFO,SAIN_SOCK_SIN6_FLOWINFO X

 Flow info is zeros

 MVC SAIN_SOCK_SIN6_ADDR,IN6ADDR_ANY Use IN6ADDR_ANY

 XC SAIN_SOCK_SIN6_SCOPE_ID,SAIN_SOCK_SIN6_SCOPE_ID X

 Scope ID is zeros

 MVC SAIN_SOCK_SIN6_PORT,PORT Use the user specified port

 B BIND_SERVER_SOCKET Now go issue a BIND

*

GET_IPV4_SOCKET DS 0H

 CALL EZASOKET,(SOCSOKET,AFINET,SSTREAM,ZERO, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Check for successful call

 L R6,RETCODE Check for successful call

 MVC MSGCMD,SOCSOKET

 C R6,ZERO Is it less than zero

 BL SOCERR Yes, go display error and terminate

 STH R6,SRV_SOCKID Save the new socket descriptor

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Setup an IPv4 sockaddr

*

Figure 181. EZACICAS assembler iterative server sample (Part 4 of 20)

Appendix E. Sample programs 543

XC SOCKADDR_IN(28),SOCKADDR_IN Clear the sockaddr storage

 MVC SAIN_SOCK_FAMILY,=AL2(AF_INET) Set family to AF_INET

 MVC SAIN_SOCK_SIN_ADDR,INADDR_ANY Use INADDR_ANY

 MVC SAIN_SOCK_SIN_PORT,PORT Use the user specified port

*

* Bind the socket to the service port to establish a local address for

* processing incoming connections.

*

BIND_SERVER_SOCKET DS 0H

*

 CALL EZASOKET,(SOCBIND,SRV_SOCKID,SOCKADDR_IN, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Check for successful call

 L R6,RETCODE Check for successful call

 MVC MSGCMD,SOCBIND

 C R6,ZERO Is it less than zero

 BL SOCERR Yes, go dispay error and terminate

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Call the LISTEN command to allow server to prepare a socket for

* incomming connections and set the maximum number of connections.

*

 MVC BACKLOG,TEN Set backlog to 10

*

 CALL EZASOKET,(SOCLISTN,SRV_SOCKID,BACKLOG, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Check for successful call

 L R6,RETCODE Check for successful call

 MVC MSGCMD,SOCLISTN

 C R6,ZERO Is it less than zero

 BL SOCERR Yes, go dispay error and terminate

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Show server is ready to process client connections.

*

 L R6,TWO Force client socket desctiptor

 STH R6,CLI_SOCKID to be 2.

 MVC MSGAREA(L’LISTEN_SUCC),LISTEN_SUCC

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Create a read mask for the SELECT command

*

 L R8,NUM_FDS Get the number of allowed FD’s

 A R8,ONE and add one

 ST R8,NFDS for the SELECT call.

*

* Determine status IP CICS Sockets Interface

*

 CLI GWATSTAT,GWATIMED Are we in immediate termination

 BE SOCRET Return if so

 CLI GWATSTAT,GWATQUIE Are we in quiesceent termination

Figure 181. EZACICAS assembler iterative server sample (Part 5 of 20)

544 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

BNE SET_SELECT_BIT_MASK No, continue with SELECT

 B CLOSEDOWN

*

* Create the read bitmask

*

SET_SELECT_BIT_MASK DS 0H

 LH R6,SRV_SOCKID Get the servers socket desciptor

 SRDL R6,5 Compute the word number

 SRL R7,27 Compute the socket number within the X

 mask word.

 SLR R8,R8 Clear work register

 LA R8,1 Set high-order bit

 SLL R8,0(R7) Create mask word

 ST R8,SAVER8 Save mask word

 SLL R6,2 Compute the offset

 LA R7,READMASK Address the read mask storage

 LA R7,0(R6,R7) Point to the word

 OC 0(4,R7),SAVER8 Turn on bits

*

* SELECT client connections

*

ACCEPT_CLIENT_REQ DS 0H

*

 CALL EZASOKET,(SOCSELCT,NFDS,TIMEVAL, X

 READMASK,DUMYMASK,DUMYMASK, X

 REPLY_RDMASK,DUMYMASK,DUMYMASK, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Check for successful call

 L R6,RETCODE Check for successful call

 ST R6,SELECT_RETCODE Save the SELECT return code

 MVC MSGCMD,SOCSELCT

 C R6,ZERO Is it less than zero

 BL SOCERR Yes, go display error and terminate

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Check the return code to determine if any sockets are ready to be

* accepted. If RETCODE is zero then there are no sockets ready.

*

 L R6,SELECT_RETCODE Retrieve the SELECT return code

 C R6,ZERO Any sockets ready ?

 BE ACCEPT_CLIENT_REQ No. Go back and SELECT again

*

* Accept the client request.

*

 CALL EZASOKET,(SOCACCT,SRV_SOCKID,SOCKADDR_IN, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Check for successful call

 L R6,RETCODE Check for successful call

 MVC MSGCMD,SOCACCT

 C R6,ZERO Is it less than zero

 BL SOCERR Yes, go display error and terminate

 STH R6,CLI_SOCKID Save the new socket descriptor

Figure 181. EZACICAS assembler iterative server sample (Part 6 of 20)

Appendix E. Sample programs 545

MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Get our peers’ socket address

*

 CALL EZASOKET,(SOCGPEER,CLI_SOCKID,SOCKADDR_PEER, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 MVC MSGCMD,SOCGPEER the API function performed.

 C R6,ZERO Is the call successful?

 BL SOCERR No! Go display error and terminate

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Get our client’s host name and service name

*

 L R8,=F’16’ Set the sockaddr length to IPv4

 CLC PEER_SOCK_FAMILY,=AL2(AF_INET) Is the client AF_INET ?

 BE SET_SOCKADDR_LEN Yes. Go store the length.

 L R8,=F’28’ Set the sockaddr length to IPv6

SET_SOCKADDR_LEN DS 0H

 ST R8,PEERADDR_LEN Save the value of the sockaddr length

 L R8,ZERO Clear the

 ST R8,GNI_FLAGS GETNAMEINFO flags

 XC PEER_HOSTNAME,PEER_HOSTNAME Clear the host name storage

 L R8,=F’255’ Set the length of

 ST R8,PEER_HOSTNAMELEN the host name storage

 XC PEER_SERVICENAME,PEER_SERVICENAME Clear the service X

 name storage

 L R8,=F’32’ Set the length of

 ST R8,PEER_SERVICENAMELEN the service name storage

*

 CALL EZASOKET,(SOCGNI,SOCKADDR_PEER,PEERADDR_LEN, X

 PEER_HOSTNAME,PEER_HOSTNAMELEN, X

 PEER_SERVICENAME,PEER_SERVICENAMELEN, X

 GNI_FLAGS, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 MVC MSGCMD,SOCGNI the API function performed.

 C R6,ZERO Is the call successful?

 BL SOCERR No! Go display error and terminate

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Display the host name

*

 MVC TDHOST(L’TDHOST),PEER_HOSTNAME

 MVC MSGAREA(L’TDHOSTMSG),TDHOSTMSG Move message to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Display the service name

Figure 181. EZACICAS assembler iterative server sample (Part 7 of 20)

546 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

*

 MVC TDSERV(L’TDSERV),PEER_SERVICENAME

 MVC MSGAREA(L’TDSERVMSG),TDSERVMSG Move message to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Receiving data through a socket by issuing the RECVFROM command.

*

ACCEPT_RECEIVE DS 0H

 MVI TCP_INDICATOR,C’T’

 MVC TCPLENG,BUFFER_LENG

 XC TCP_BUF,TCP_BUF Clear the buffer storage

*

 CALL EZASOKET,(SOCRECVF,CLI_SOCKID,RCVFM_FLAG,TCPLENG, X

 TCP_BUF,SOCKADDR_IN, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 ST R6,RECVFROM_RETCODE Save the RECVFROM return code

 C R6,ZERO Is the call successful?

 BL RECVFROM_ERROR No!

*

* If the RECVFROM return code is zero and the number of bytes received

* is also zero, then there is nothing further to process.

*

 BE CHECK_NBYTES Yes. Go check number bytes received

 B RECVFROM_OK NO. Go interpret clients data

CHECK_NBYTES DS 0H

 L R6,TCPLENG Check number of bytes received

 C R6,ZERO Is it zero ?

 BE ACCEPT_RECEIVE Yes. Go issue RECVFROM again.

 B RECVFROM_OK No. Must have received something.

RECVFROM_ERROR DS 0H

 MVC MSGAREA(L’RECVFROM_ERR),RECVFROM_ERR

 BAL R7,HANDLE_TCPCICS Write to TD Queue

 MVI TASK_FLAG,C’1’ Force the Client connection to end

 B CLOSE_CLIENT Go close clients socket

RECVFROM_OK DS 0H

*

* Interpret the clients request.

*

* Remove the following call to EZACIC05 if using an EBCDIC client.

*

* CALL EZACIC05,(TCP_BUF,TCPLENG),VL,MF=(E,PARMLIST)

*

 CLC TCP_BUF_H,TCP_BUF_H_LOW_VALUES Display data received

 BE COMMAND_IS_LOW_VALUES from the client as blanks.

 CLC TCP_BUF_H,TCP_BUF_H_SPACES Display data received from

 BE COMMAND_IS_SPACES the client as blanks

 CLC TCP_BUF_H,TCP_BUF_H_END End client connection?

 BE SET_END Yes.

 CLC TCP_BUF_H,TCP_BUF_H_TRM Terminate server?

 BE SET_TERM Yes.

Figure 181. EZACICAS assembler iterative server sample (Part 8 of 20)

Appendix E. Sample programs 547

|

*

* Inform the cleint that the server has process the message

*

 XC MSGAREA,MSGAREA

 MVC MSGAREA(L’SERVER_PROC_MSG),SERVER_PROC_MSG

*

 EXEC CICS SYNCPOINT

*

 EXEC CICS ASKTIME ABSTIME(UTIME) NOHANDLE

 EXEC CICS FORMATTIME ABSTIME(UTIME) X

 DATESEP(’/’) MMDDYY(MSGDATE) X

 TIME(MSGTIME) TIMESEP(’:’) NOHANDLE

 LA R6,TCPCICS_MSG_AREA_LEN

 STH R6,TDLEN

 EXEC CICS WRITEQ TD QUEUE(’CSMT’) X

 FROM(TCPCICS_MSG_AREA) X

 LENGTH(TDLEN)

*

 MVC TCP_BUF,TCPCICS_MSG_AREA_2

*

* Remove the following call to EZACIC04 if using an EBCDIC client.

*

* CALL EZACIC04,(TCP_BUF,TCPLENG),VL,MF=(E,PARMLIST)

*

* Write the server process message back to the client

*

 CALL EZASOKET,(SOCWRITE,CLI_SOCKID,TCPLENG,TCP_BUF, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 MVC MSGCMD,SOCWRITE the API function performed.

 C R6,ZERO Is the call successful?

 BL TALK_CLIENT_BAD No! Go display error

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

*

 XC TCP_BUF,TCP_BUF

 MVI TCP_INDICATOR,X’00’

 B ACCEPT_RECEIVE Go receive more client data

TALK_CLIENT_BAD DS 0H

 MVI TASK_FLAG,C’1’ Force client connection to end.

 B CLOSE_CLIENT

*

* Process command from client

*

COMMAND_IS_LOW_VALUES DS 0H

COMMAND_IS_SPACES DS 0H

 XC MSGRESULT,MSGRESULT

 MVC MSGCMD,SOCRECVF

 MVC MSGRESULT(37),=C’CLIENT COMMAND IS BLANKS OR LOWVALUES’

 BAL R7,HANDLE_TCPCICS Write to TD Queue

 B ACCEPT_RECEIVE Go receive more data from client

SET_END DS 0H

Figure 181. EZACICAS assembler iterative server sample (Part 9 of 20)

548 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

MVI TASK_FLAG,C’1’

 B CLOSE_CLIENT

SET_TERM DS 0H

 MVI TASK_FLAG,C’2’

 B CLOSE_CLIENT

*

* CLOSE CLIENT SOCKET DESCRIPTOR

*

CLOSE_CLIENT DS 0H

 CALL EZASOKET,(SOCCLOSE,CLI_SOCKID, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

 L R5,ERRNO Check for successful call

 L R6,RETCODE Check for successful call

 MVC MSGCMD,SOCCLOSE

 C R6,ZERO Is it less than zero

 BL SOCERR Yes, go display error and terminat

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Determine whether we should select another socket

*

 CLI TASK_FLAG,C’2’ Terminate server?

 BE CLOSEDOWN Yes. Go close passive socket

 MVI TASK_FLAG,C’0’ Reset the task flag for next client

 B ACCEPT_CLIENT_REQ Go select new connection.

*

CLOSEDOWN DS 0H

*

* CLOSE SOCKET DESCRIPTOR

*

* SET THE SERVER SOCKET TO NOT LINGER ON THE CLOSE

*

 CALL EZASOKET,(SOCSETSO,SRV_SOCKID,SOCK#SO_LINGER,ON_ZERO, X

 EIGHT,ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

* CLOSE THE SERVER PASSIVE SOCKET

*

 CALL EZASOKET,(SOCCLOSE,SRV_SOCKID, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

 L R5,ERRNO Check for successful call

 L R6,RETCODE Check for successful call

 MVC MSGCMD,SOCCLOSE

 C R6,ZERO Is it less than zero

 BL SOCERR Yes, go display error and terminat

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

 CLI TERMAPI_REQUIRED_SW,C’Y’ A TERMAPI needed ?

 BE TERM_API Yes, go issue TERMAPI

 B SOCRET No, return to CICS

*

* Terminate IP CICS Sockets API

*

TERM_API DS 0H

 CALL EZASOKET,(SOCTERM),VL,MF=(E,PARMLIST)

 MVC MSGCMD,SOCTERM

Figure 181. EZACICAS assembler iterative server sample (Part 10 of 20)

Appendix E. Sample programs 549

MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

 B SOCRET

*

* Listener Started Task routine.

*

LISTENER_STARTED_TASK DS 0H

*

* Take the socket which was given by the listener.

*

 L R8,GIVE_TAKE_SOCKET Use the socket descriptor from the

 STH R8,SOCKET_TO_TAKE TIM for the TAKESOCKET

 XC CLIENTID_LSTN,CLIENTID_LSTN Clear the clientid

 LH R8,STIM_FAMILY Get the domain from the TIM

 ST R8,CID_DOMAIN_LSTN Set the domain

 MVC CID_LSTN_INFO,CLIENTID_PARM Set the Address space and X

 subtask name.

*

 CALL EZASOKET,(SOCTSOCK,SOCKET_TO_TAKE,CLIENTID_LSTN, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Check for successful call

 L R6,RETCODE Check for successful call

 MVC MSGCMD,SOCTSOCK Set the API name

 C R6,ZERO Is it less than zero

 BL SOCERR Yes, go display error and terminate

 STH R6,SRV_SOCKID Save the taken socket descriptor

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Inform the client that the server has started.

*

 MVC TCPLENG,BUFFER_LENG Set the message length

 XC TCP_BUF,TCP_BUF Clear the buffer

 MVC TCP_BUF(L’STARTOK),STARTOK Move STARTED message

*

* Remove the following call to EZACIC04 if using an EBCDIC client.

*

* CALL EZACIC04,(TCP_BUF,TCPLENG),VL,MF=(E,PARMLIST)

*

* Notify client the the child subtask has started.

*

 CALL EZASOKET,(SOCWRITE,SRV_SOCKID,TCPLENG,TCP_BUF, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 MVC MSGCMD,SOCWRITE the API function performed.

 C R6,ZERO Is the call successful?

 BL SOCERR No! Go display error and terminate

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

Figure 181. EZACICAS assembler iterative server sample (Part 11 of 20)

550 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

*

* Close the taken socket descriptor

*

 CALL EZASOKET,(SOCCLOSE,SRV_SOCKID, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

 L R5,ERRNO Check for successful call

 L R6,RETCODE Check for successful call

 MVC MSGCMD,SOCCLOSE

 C R6,ZERO Is it less than zero

 BL SOCERR Yes, go display error and terminat

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

*

* Continue with server startup

*

 B SOCKET_BIND_LISTEN Go continue the server startup

*

* Various routines to process error conditions

*

TCP_TRUE_REQ DS 0H

 MVC MSGAREA(L’TCP_EXIT_MSG),TCP_EXIT_MSG

 B SEND_ERR_MSG

NOTAUTH_ERR DS 0H

 MVC MSGAREA(L’NOTAUTH_MSG),NOTAUTH_MSG

 B SEND_ERR_MSG

INVREQ_ERR DS 0H

 MVC MSGAREA(L’TCP_EXIT_MSG),TCP_EXIT_MSG

 B SEND_ERR_MSG

IOERR_ERR DS 0H

 MVC MSGAREA(L’IOERR_MSG),IOERR_MSG

 B SEND_ERR_MSG

LENGERR_ERR DS 0H

 MVC MSGAREA(L’LENGERR_MSG),LENGERR_MSG

 B SEND_ERR_MSG

NOSPACE_ERR DS 0H

 MVC MSGAREA(L’NOSPACE_MSG),NOSPACE_MSG

 B SEND_ERR_MSG

QIDERR_ERR DS 0H

 MVC MSGAREA(L’QIDERR_MSG),QIDERR_MSG

 B SEND_ERR_MSG

ITEMERR_ERR DS 0H

 MVC MSGAREA(L’ITEMERR_MSG),ITEMERR_MSG

 B SEND_ERR_MSG

ENDDATA_ERR DS 0H

 MVC MSGAREA(L’ENDDATA_MSG),ENDDATA_MSG

 B SEND_ERR_MSG

SEND_ERR_MSG DS 0H

 BAL R7,HANDLE_TCPCICS Write to TD Queue

 B SOCRET Return to CICS!

*

* Error on EZASOKET call

*

SOCERR DS 0H

 MVC MSGAREA(L’MSGCMD),MSGCMD

 MVC MSGAREA+16(L’SOCKET_ERR),SOCKET_ERR

Figure 181. EZACICAS assembler iterative server sample (Part 12 of 20)

Appendix E. Sample programs 551

BAL R7,HANDLE_TCPCICS Write to TD Queue

*

 L R6,RETCODE Pick up the RETCODE value

 L R5,ERRNO Pick up the ERRNO value

 CVD R6,DWORK Format the RETCODE

 UNPK TDRETC,DWORK+4(4) for printing to the

 OI TDRETC+6,X’F0’ TD queue

*

 CVD R5,DWORK Format the ERRNO

 UNPK TDERRNO,DWORK+4(4) for printing to the

 OI TDERRNO+6,X’F0’ TD queue

*

 MVC MSGAREA(L’TDTEXT5),TDTEXT5 Move the RETCODE and ERRNO X

 to the TD queue area

 BAL R7,HANDLE_TCPCICS Write the message to the TD queue

*

 B SOCRET Return to CICS

*

* Write a message to the "CSMT" destination queue for logging

*

HANDLE_TCPCICS DS 0H

 EXEC CICS ASKTIME ABSTIME(UTIME) NOHANDLE

 EXEC CICS FORMATTIME ABSTIME(UTIME) X

 DATESEP(’/’) MMDDYY(MSGDATE) X

 TIME(MSGTIME) TIMESEP(’:’) NOHANDLE

 LA R6,TCPCICS_MSG_AREA_LEN

 STH R6,TDLEN

 EXEC CICS WRITEQ TD QUEUE(’CSMT’) X

 FROM(TCPCICS_MSG_AREA) X

 LENGTH(TDLEN)

*

* Tell the client?

*

 CLI TCP_INDICATOR,C’T’

 BNE HANDLE_TCPCICS_RETURN

 MVC TCPLENG,BUFFER_LENG

 XC TCP_BUF,TCP_BUF

 MVC TCP_BUF,TCPCICS_MSG_AREA_2

*

* Remove the following call to EZACIC04 if using an EBCDIC client.

*

* CALL EZACIC04,(TCP_BUF,TCPLENG),VL,MF=(E,PARMLIST)

 MVI TCP_INDICATOR,C’ ’

*

* Notify client the the child subtask has started.

*

 CALL EZASOKET,(SOCWRITE,CLI_SOCKID,TCPLENG,TCP_BUF, X

 ERRNO,RETCODE),VL,MF=(E,PARMLIST)

*

 L R5,ERRNO Capture the ERRNO and

 L R6,RETCODE the return code.

 MVC MSGCMD,SOCWRITE the API function performed.

 C R6,ZERO Is the call successful?

Figure 181. EZACICAS assembler iterative server sample (Part 13 of 20)

552 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

BL HANDLE_TCPCICS_RETURN

 MVC MSGRESULT(L’SUCC),SUCC Move SUCCESSFUL msg to TD area

*

 EXEC CICS ASKTIME ABSTIME(UTIME) NOHANDLE

 EXEC CICS FORMATTIME ABSTIME(UTIME) X

 DATESEP(’/’) MMDDYY(MSGDATE) X

 TIME(MSGTIME) TIMESEP(’:’) NOHANDLE

 LA R6,TCPCICS_MSG_AREA_LEN

 STH R6,TDLEN

 EXEC CICS WRITEQ TD QUEUE(’CSMT’) X

 FROM(TCPCICS_MSG_AREA) X

 LENGTH(TDLEN)

*

HANDLE_TCPCICS_RETURN DS 0H

 XC MSGAREA,MSGAREA

 BR R7 Return to caller

*

* ALL DONE.

*

SOCRET DS 0H

 MVC MSGAREA(L’STOPOK),STOPOK Move STOPPED msg to TD area

 BAL R7,HANDLE_TCPCICS Write to TD Queue

 EXEC CICS RETURN

*

* INITAPI parameters

*

MAXSOC DC H’0’ MAXSOC value, use the default

IDENT DC 0CL16’ ’

TCPNAME DC CL8’TCPCS ’ Name of the TCP

APPLID DC CL8’CICS ’ Address space name

INIT_SUBTASKID DS 0CL8 Subtask for INITAPI

SUBTASKNO DC CL7’ ’ from EIBTASKN

SUBT_CHAR DC CL1’L’ Make server use a non-reusable subtask

MAXSNO DC F’0’ Highest socket descriptor available

*

* Sockets address family

*

AFINET DC F’2’ AF_INET

AFINET6 DC F’19’ AF_INET6

*

* SOCKET FUNCTIONS

*

SOCACCT DC CL16’ACCEPT ’

SOCBIND DC CL16’BIND ’

SOCCLOSE DC CL16’CLOSE ’

SOCCONNT DC CL16’CONNECT ’

SOCFCNTL DC CL16’FCNTL ’

SOCFAI DC CL16’FREEADDRINFO ’

SOCGCLID DC CL16’GETCLIENTID ’

SOCGAI DC CL16’GETADDRINFO ’

SOCGNI DC CL16’GETNAMEINFO ’

SOCGTHID DC CL16’GETHOSTID ’

SOCGTHN DC CL16’GETHOSTNAME ’

SOCGPEER DC CL16’GETPEERNAME ’

SOCGTSN DC CL16’GETSOCKNAME ’

Figure 181. EZACICAS assembler iterative server sample (Part 14 of 20)

Appendix E. Sample programs 553

SOCGETSO DC CL16’GETSOCKOPT ’

SOCGSOCK DC CL16’GIVESOCKET ’

SOCINIT DC CL16’INITAPI ’

SOCIOCTL DC CL16’IOCTL ’

SOCLISTN DC CL16’LISTEN ’

SOCNTOP DC CL16’NTOP ’

SOCPTON DC CL16’PTON ’

SOCREAD DC CL16’READ ’

SOCREADV DC CL16’READV ’

SOCRECV DC CL16’RECV ’

SOCRECVF DC CL16’RECVFROM ’

SOCRECVM DC CL16’RECVMSG ’

SOCSELCT DC CL16’SELECT ’

SOCSELX DC CL16’SELECTEX ’

SOCSEND DC CL16’SEND ’

SOCSENDM DC CL16’SENDMSG ’

SOCSENDT DC CL16’SENDTO ’

SOCSETSO DC CL16’SETSOCKOPT ’

SOCSOKET DC CL16’SOCKET ’

SOCTSOCK DC CL16’TAKESOCKET ’

SOCTERM DC CL16’TERMAPI ’

SOCWRITE DC CL16’WRITE ’

SOCWRITV DC CL16’WRITEV ’

*

* SELECT parms

*

NUM_FDS DC F’5’ Number of file descriptors

NFDS DS F

TIMEVAL DC AL4(180),AL4(0)

SELECT_CSOCKET DS 0CL12

READMASK DC XL4’00’ SELECT read mask

DUMYMASK DC XL4’00’ mask set to binary zeros

REPLY_RDMASK DC XL4’00’ SELECT reply read mask

REPLY_RDMASK_FF DS XL4

SELECT_RETCODE DS F Sum of all ready sockets in masks

*

TCPLENG DC F’0’

*

SSTREAM DC F’1’ socket type stream

ZERO DC F’0’

ONE DC F’1’

TWO DC F’2’

SIX DC F’6’

EIGHT DC F’8’

TEN DC F’10’

*

* Data for RETRIEVE

*

TRANS DS CL4 Transaction retrieved

LENG DS H Length of data retreived

CECI_LEN DC F’5’ Length of Port from CICS Start

TAKESOCKET_SWITCH DC X’00’ Used to drive a TAKESOCKET

TCP_INDICATOR DC CL1’ ’

Figure 181. EZACICAS assembler iterative server sample (Part 15 of 20)

554 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

|

TASK_FLAG DC CL1’0’ Server task flag

*

TCP_BUF DS 0CL55 Buffer

TCP_BUF_H DC CL3’ ’ Used to pass the server commands

TCP_BUF_DATA DC CL52’ ’

TCP_BUF_H_END DC CL3’END’ Command to end the client connection

TCP_BUF_H_LOW_VALUES DC XL3’000000’ Client sent command=low values

TCP_BUF_H_SPACES DC CL3’ ’ Client sent command=spaces

TCP_BUF_H_TRM DC CL3’TRM’ Command to terminate the server

BUFFER_LENG DC F’55’ Length of buffer

*

* LISTEN parms

*

BACKLOG DC F’0’ Backlog for LISTEN

*

* RECVFROM parms

*

RCVFM_FLAG DC F’0’ RECVFROM flag

*

* MESSAGE(S) WRITTEN TO TRANSIENT DATA QUEUE

*

BITMASK_ERR DC CL36’BITMASK CONVERSION - FAILED’

LISTEN_SUCC DS 0CL46

 DC CL34’READY TO ACCEPT REQUESTS ON PORT: ’

BIND_PORT DC CL5’ ’

 DC CL7’ ’

ENDDATA_MSG DC CL30’RETRIEVE DATA CAN NOT BE FOUND’

IOERR_MSG DC CL12’IOERR OCCURS’

ITEMERR_MSG DC CL13’ITEMERR ERROR’

LENGERR_MSG DC CL13’LENGERR ERROR’

NOSPACE_MSG DC CL17’NOSPACE CONDITION’

RECVFROM_ERR DC CL36’RECVFROM SOCKET CALL FAILED’

QIDERR_MSG DC CL30’TRANSIENT DATA QUEUE NOT FOUND’

SERVER_PROC_MSG DC CL55’SERVER PROCESSED MESSAGE’

SOCKET_ERR DC CL15’EZASOKET ERROR!’

STARTOK DC CL27’SERVER STARTED SUCCESSFULLY’

STOPOK DC CL27’SERVER STOPPED SUCCESSFULLY’

TCP_EXIT_MSG DC CL31’SERVER STOPPED:TRUE NOT ACTIVE’

NOTAUTH_MSG DC CL31’SERVER STOPPED: NOT AUTHORIZED’

*

* Message to display the clients host name

*

TDHOSTMSG DS 0CL55

TDHOSTLIT DC CL9’HOSTNAME=’

TDHOST DC CL46’ ’

*

* Message to display the clients service name

*

TDSERVMSG DS 0CL55

TDSERVLIT DC CL8’SERVICE=’

TDSERV DC CL32’ ’

 DC CL15’ ’

*

* Message to display EZASOKET RETCODE and ERRNO

*

Figure 181. EZACICAS assembler iterative server sample (Part 16 of 20)

Appendix E. Sample programs 555

TDTEXT5 DS 0CL40

 DC CL10’RETCODE = ’

TDRETC DC CL7’ ’ Printable RETCODE

 DC CL3’ ’

 DC CL9’ERRNO = ’

TDERRNO DC CL7’ ’ Printable ERRNO

 DC CL4’ ’

*

* Misc

*

SUCC DC CL10’SUCCESSFUL’

NOTSUCC DC CL14’NOT SUCCESSFUL’

TERMAPI_REQUIRED_SW DC CL1’N’

ON_ZERO DS 0C

LINGERON DC F’1’ On/Off

LINGERTIME DC F’0’ Linger time

 LTORG

*

* DSECTs

*

 EZACICA TYPE=DSECT,AREA=GWA

 EZACICA TYPE=DSECT,AREA=TIE

 DFHEISTG

SRV6SAVE DS 18F Register Save Area

SRV6STRSV DS F Save area for start subroutine

*

* Socket address structure

*

 CNOP 0,8 DOUBLEWORD BOUNDARY

SOCKADDR_IN DS 0F Socket address structure

SAIN_SOCK_FAMILY DS H Address Family

SAIN_SOCK_DATA DS 0C Protocol specific area

 ORG SAIN_SOCK_DATA Start of AF_INET unique area

SAIN_SOCK_SIN DS 0C

SAIN_SOCK_SIN_PORT DS H Port number

SAIN_SOCK_SIN_ADDR DS CL4 IPv4 address

 DS CL8 Reserved area not used

 ORG SAIN_SOCK_DATA Start of AF_INET6 area

SAIN_SOCK_SIN6 DS 0C

SAIN_SOCK_SIN6_PORT DS H Port number

SAIN_SOCK_SIN6_FLOWINFO DS CL4 Flow Information

SAIN_SOCK_SIN6_ADDR DS CL16 IPv6 address

SAIN_SOCK_SIN6_SCOPE_ID DS CL4 Scope id

*

* Peers address structure

*

 CNOP 0,8 DOUBLEWORD BOUNDARY

SOCKADDR_PEER DS 0F Socket address structure

PEER_SOCK_FAMILY DS H Address Family

PEER_SOCK_DATA DS 0C Protocol specific area

 ORG PEER_SOCK_DATA Start of AF_INET unique area

PEER_SOCK_SIN DS 0C

PEER_SOCK_SIN_PORT DS H Port number

PEER_SOCK_SIN_ADDR DS CL4 IPv4 address

 DS CL8 Reserved area not used

Figure 181. EZACICAS assembler iterative server sample (Part 17 of 20)

556 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

ORG PEER_SOCK_DATA Start of AF_INET6 area

PEER_SOCK_SIN6 DS 0C

PEER_SOCK_SIN6_PORT DS H Port number

PEER_SOCK_SIN6_FLOWINFO DS CL4 Flow Information

PEER_SOCK_SIN6_ADDR DS CL16 IPv6 address

PEER_SOCK_SIN6_SCOPE_ID DS CL4 Scope id

*

PEERADDR_LEN DS F Length of Peers sockaddr

*

* Peers HOST/SERVICE NAME/LEN

*

PEER_HOSTNAME DS CL255 Peers Host name

PEER_HOSTNAMELEN DS F Peers Host name length

PEER_SERVICENAME DS CL32 Peers Service name

PEER_SERVICENAMELEN DS F Peers Service name length

*

* Receive Flag

*

GNI_FLAGS DS F GETNAMEINFO flags

*

* User supplied port to listen on

*

PORT DS H User supplied port

*

* Storage used to create a message to be written to the CSMT TD Queue

*

TCPCICS_MSG_AREA DS 0F TD Message area

TCPCICS_MSG_AREA_1 DS 0C

MSGDATE DS CL8 MM/DD/YY

MSGFILR1 DS CL2

MSGTIME DS CL8 HH:MM:SS

MSGFILR2 DS CL2

MODULE DS CL10 "EZACICAS: "

TCPCICS_MSG_AREA_2 DS 0C

MSGAREA DS CL55

 ORG MSGAREA

MSGCMD DS CL16 EZASOKET command issued

MSGRESULT DS CL39 Outcome of the command issued

TCPCICS_MSG_AREA_END EQU * End of message

TCPCICS_MSG_AREA_LEN EQU TCPCICS_MSG_AREA_END-TCPCICS_MSG_AREA X

 Length of TD message text

*

TDLEN DS H Length of TD message text

*

* Various other working storage areas

*

UTIME DS PL8 ABSTIME data area

DWORK DS D Double word work area

UNPKWRK DS CL15 Unpack work area

PARMLIST DS 20F

*

* Error numbers and return codes

*

ERRNO DS F ERRNO

RETCODE DS F Return Code

Figure 181. EZACICAS assembler iterative server sample (Part 18 of 20)

Appendix E. Sample programs 557

RECVFROM_RETCODE DS F

*

* Client ID from Listener to be used by the TAKESOKET command

*

CLIENTID_LSTN DS 0CL40

CID_DOMAIN_LSTN DS F Domain

CID_LSTN_INFO DS 0CL16

CID_NAME_LSTN DS CL8 Address space name

CID_SUBTNAM_LSTN DS CL8 Subtask name

CID_RES_LSTN DS CL20

*

SOCKET_TO_TAKE DS H Socket descriptor to take

*

* Data from the CICS RECIEVE command

*

TRMNL_LEN DS H Length of data RECEIVE’d

TRMNL_MAXLEN DS H

*

* Data from the CICS RETRIEVE command

*

RETRIEVE_LEN DS H Length of data RETRIEVE’d

*

* Socket descriptors

*

SRV_SOCKID DS H Server socket descriptor

CLI_SOCKID DS H Client socket descriptor

*

* For saving R8

*

SAVER8 DS F

*

* Server data

*

 CNOP 0,8 DOUBLEWORD BOUNDARY

TCP_INPUT_DATA DS CL85 Data retrieved

 ORG TCP_INPUT_DATA

*

* The Listeners Task Input Message (TIM)

*

TCPSOCKET_PARM DS 0C

GIVE_TAKE_SOCKET DS F

CLIENTID_PARM DS 0CL16

LSTN_NAME DS CL8

LSTN_SUBNAME DS CL8

CLIENT_IN_DATA DS CL35

 DS CL1

SOCKADDR_TIM DS 0F

STIM_FAMILY DS H

STIM_DATA DS 0C

STIM#LEN EQU *-SOCKADDR_TIM

 ORG STIM_DATA

STIM_SIN DS 0C

STIM_SIN_PORT DS H

STIM_SIN_ADDR DS CL4

 DS CL8

Figure 181. EZACICAS assembler iterative server sample (Part 19 of 20)

558 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

SELECTEX

The following sample displays COBOL code issuing the SELECTEX socket call:

 This is sample COBOL code issuing the SELECTEX socket call:

--

* Here is a anotated SAMPLE code from a test tool used to test *

* the SELECTEX: *

--

 WORKING-STORAGE SECTION.

 01 SELECT-BITMASK PIC 9(16) BINARY VALUE 0.

 01 SELECT-BITMASK-LEN PIC 9(8) BINARY VALUE 0.

 01 SELECT-CHAR-STRING PIC X(64).

 01 SELECT-MAXSOC PIC 9(8) BINARY VALUE 0.

 01 SELECT-TIMEOUT.

 03 SELECT-TIMEOUT-SECONDS PIC S9(8) BINARY VALUE 0.

 03 SELECT-TIMEOUT-MICROSEC PIC S9(8) BINARY VALUE 0.

 01 SELECT-RSNDMSK PIC 9(16) BINARY.

 01 SELECT-WSNDMSK PIC 9(16) BINARY.

 01 SELECT-ESNDMSK PIC 9(16) BINARY.

 01 SELECT-RRETMSK PIC 9(16) BINARY.

 01 SELECT-WRETMSK PIC 9(16) BINARY.

 01 SELECT-ERETMSK PIC 9(16) BINARY.

 77 SELECT-ECB-PTR USAGE IS POINTER.

 LINKAGE SECTION.

 01 SELECT-ECB PIC 9(8) BINARY.

 PROCEDURE DIVISION USING L1.

 PROCESS-SELECTEX.

 *

 * GET SHARED STORAGE FOR ECB.

 *

 EXEC CICS GETMAIN SHARED

 SET (SELECT-ECB-PTR)

 FLENGTH (4)

 DS 20F

STIM_SIN#LEN EQU *-STIM_SIN

 ORG STIM_DATA

STIM_SIN6 DS 0C

STIM_SIN6_PORT DS H

STIM_SIN6_FLOWINFO DS CL4

STIM_SIN6_ADDR DS CL16

STIM_SIN6_SCOPE_ID DS CL4

STIM_SIN6#LEN EQU *-STIM_SIN6

 ORG

 DS CL68

CLIENT_IN_DATA_LENGTH DS H

CLIENT_IN_DATA_2 DS 0C

*

* Fields for EXTRACT EXIT to determine if IP CICS Sockets interface

* is active.

*

GWALEN DS H

*

 EZBREHST DSECT=NO,LIST=YES,HOSTENT=NO,ADRINFO=NO

 BPXYSOCK DSECT=NO,LIST=YES

 DFHEIEND TERMINATE EXECUTE INTERFACE DYNAMIC STORAGE

 YREGS

 END EZACICAS

Figure 181. EZACICAS assembler iterative server sample (Part 20 of 20)

Appendix E. Sample programs 559

|

INITIMG (’00’)

 END-EXEC.

 SET ADDRESS OF SELECT-ECB TO SELECT-ECB-PTR.

 INITIALIZE SELECT-ECB.

 *

 * WRITE ECB ADDRESS TO TS QUEUE

 *

 EXEC CICS WRITEQ TS

 QUEUE (’POSTECB@’)

 FROM (SELECT-ECB-PTR)

 LENGTH (4)

 END-EXEC.

 *

 * SOCKET CALL SELECTEX

 *

 MOVE 10 TO SELECT-MAXSOC.

 MOVE -1 TO SELECT-TIMEOUT-SECONDS.

 MOVE -1 TO SELECT-TIMEOUT-MICROSEC.

 MOVE read-send-maskTO SELECT-CHAR-STRING.

 MOVE 64 TO SELECT-BITMASK-LEN.

 CALL ’EZACIC06’ USING CTOB

 SELECT-BITMASK

 SELECT-CHAR-STRING

 SELECT-BITMASK-LEN

 RETCODE.

 MOVE SELECT-BITMASK TO SELECT-RSNDMSK.

 MOVE write-send-maskTO SELECT-CHAR-STRING.

 MOVE 64 TO SELECT-BITMASK-LEN.

 CALL ’EZACIC06’ USING CTOB

 SELECT-BITMASK

 SELECT-CHAR-STRING

 SELECT-BITMASK-LEN

 RETCODE.

 MOVE SELECT-BITMASK TO SELECT-WSNDMSK.

 MOVE exception-send-maskTO SELECT-CHAR-STRING.

 MOVE 64 TO SELECT-BITMASK-LEN.

 CALL ’EZACIC06’ USING CTOB

 SELECT-BITMASK

 SELECT-CHAR-STRING

 SELECT-BITMASK-LEN

 RETCODE.

 MOVE SELECT-BITMASK TO SELECT-ESNDMSK.

 CALL ’EZASOKET’ USING SOKET-SELECTEX

 SELECT-MAXSOC

 SELECT-TIMEOUT

 SELECT-RSNDMSK

 SELECT-WSNDMSK

 SELECT-ESNDMSK

 SELECT-RRETMSK

 SELECT-WRETMSK

 SELECT-ERETMSK

 SELECT-ECB

 ERRNO

 RETCODE.

560 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

*

 * FREE THE STORAGE FOR THE ECB

 *

 EXEC CICS FREEMAIN

 DATAPOINTER(SELECT-ECB-PTR)

 END-EXEC.

 *

 * DELETE THE TS QUEUE

 *

 EXEC CICS DELETEQ TS

 QUEUE (’POSTECB@’)

 END-EXEC.

 IF RETCODE < 0 THEN

 MOVE ’SELECTEX FAILED’ TO MSG1

 ELSE

 MOVE ’SELECTEX PROCESSED’ TO MSG1.

 MOVE SELECT-RRETMSK TO SELECT-BITMASK.

 CALL ’EZACIC06’ USING BTOC

 SELECT-BITMASK

 SELECT-CHAR-STRING

 SELECT-BITMASK-LEN

 RETCODE.

 MOVE SELECT-CHAR-STRING TO read-returned-mask.

 MOVE SELECT-WRETMSK TO SELECT-BITMASK.

 CALL ’EZACIC06’ USING BTOC

 SELECT-BITMASK

 SELECT-CHAR-STRING

 SELECT-BITMASK-LEN

 RETCODE.

 MOVE SELECT-CHAR-STRING TO write-returned-mask.

 MOVE SELECT-ERETMSK TO SELECT-BITMASK.

 CALL ’EZACIC06’ USING BTOC

 SELECT-BITMASK

 SELECT-CHAR-STRING

 SELECT-BITMASK-LEN

 RETCODE.

 MOVE SELECT-CHAR-STRING TO exception-returned-mask.

 PROCESS-SELECTEX-EXIT.

 EXIT.

--

* Here is the anotated SAMPLE code from a test tool used to *

* call the subroutine used to post the ECB: *

--

 WORKING-STORAGE SECTION.

 01 POST-ECB-ADDRESS PIC 9(8) BINARY.

 01 POST-ECB-LEN PIC 9(4) BINARY.

 PROCEDURE DIVISION USING L1.

 PROCESS-POSTECB.

 *

 * LOOK FOR THE ADDRESS OF THE ECB IN TEMP STORAGE

 *

 MOVE 4 TO POST-ECB-LEN.

 EXEC CICS READQ TS

Appendix E. Sample programs 561

ITEM (1)

 QUEUE (’POSTECB@’)

 INTO (POST-ECB-ADDRESS)

 LENGTH (POST-ECB-LEN)

 END-EXEC.

 CALL ’POSTECB’ USING POST-ECB-ADDRESS

 RETCODE.

 IF RETCODE < 0 THEN

 MOVE ’POSTECB FAILED’

 TO MSG1

 ELSE

 MOVE ’POSTECB PROCESSED’

 TO MSG.

 PROCESS-POSTECB-EXIT.

 EXIT.

--

* Here is a sample assembler program that can be used to post the *

* SELECTEX ECB: *

--

 TITLE ’POSTECB’

POSTECB CSECT , ENTRY POINT OF THIS CONTROL SECTION

POSTECB AMODE ANY ADDRESSING MODE...

POSTECB RMODE ANY RESIDENCY MODE...

 USING POSTECB,R15 USE ENTRY REGISTER AS BASE

POSTECB MODID EYECATCHER INFO

 SAVE (14,12) SAVE THE CALLERS REGISTERS

 LR R9,R15

 DROP R15

 USING POSTECB,R9 USE R90 AS BASE REGISTER

 L R12,0(R1) LOAD ECB ADDRESS

 L R10,0(0,R12) LOAD CONTENTS OF ECB

 L R12,0(0,R12) LOAD CONTENTS OF ECB

 L R11,NEWECB LOAD CONTENTS OF NEW ECB

 TM 0(R12),X’80’ CHECK IF WAIT ISSUED

 BO POST0100 IF YES, ISSUE POST MACRO

 CS R10,R11,0(R12) IF NO, TRY QUICK POST

 BC 4,POST0100 IF UNSUCCESSFUL, ISSUE POST MACRO

 B POST9999 RETURN TO CALLER

POST0100 DS 0H

 POST (R12),255

POST9999 DS 0H

 RETURN (14,12) RETURN TO CALLER

ECBADDR DS F

NEWECB DC X’400000FF’ ECB WITH POST BIT ON AND CC=255

 LTORG

 YREGS

 END

562 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Appendix F. Related protocol specifications

This appendix lists the related protocol specifications (RFCs) for TCP/IP. The

Internet Protocol suite is still evolving through requests for comments (RFC). New

protocols are being designed and implemented by researchers and are brought to

the attention of the Internet community in the form of RFCs. Some of these

protocols are so useful that they become recommended protocols. That is, all future

implementations for TCP/IP are recommended to implement these particular

functions or protocols. These become the de facto standards, on which the TCP/IP

protocol suite is built.

You can request RFCs through electronic mail, from the automated Network

Information Center (NIC) mail server, by sending a message to

service@nic.ddn.mil with a subject line of RFC nnnn for text versions or a subject

line of RFC nnnn.PS for PostScript versions. To request a copy of the RFC index,

send a message with a subject line of RFC INDEX.

For more information, contact nic@nic.ddn.mil or at:

Government Systems, Inc.

Attn: Network Information Center

14200 Park Meadow Drive

Suite 200

Chantilly, VA 22021

Hard copies of all RFCs are available from the NIC, either individually or by

subscription. Online copies are available at the following Web address:

http://www.rfc-editor.org/rfc.html.

See “Internet drafts” on page 578 for draft RFCs implemented in this and previous

Communications Server releases.

Many features of TCP/IP Services are based on the following RFCs:

RFC Title and Author

RFC 652 Telnet output carriage-return disposition option D. Crocker

RFC 653 Telnet output horizontal tabstops option D. Crocker

RFC 654 Telnet output horizontal tab disposition option D. Crocker

RFC 655 Telnet output formfeed disposition option D. Crocker

RFC 657 Telnet output vertical tab disposition option D. Crocker

RFC 658 Telnet output linefeed disposition D. Crocker

RFC 698 Telnet extended ASCII option T. Mock

RFC 726 Remote Controlled Transmission and Echoing Telnet option J. Postel, D.

Crocker

RFC 727 Telnet logout option M.R. Crispin

RFC 732 Telnet Data Entry Terminal option J.D. Day

RFC 733 Standard for the format of ARPA network text messages D. Crocker, J.

Vittal, K.T. Pogran, D.A. Henderson

© Copyright IBM Corp. 1994, 2007 563

http://www.rfc-editor.org/rfc.html

RFC 734 SUPDUP Protocol M.R. Crispin

RFC 735 Revised Telnet byte macro option D. Crocker, R.H. Gumpertz

RFC 736 Telnet SUPDUP option M.R. Crispin

RFC 749 Telnet SUPDUP—Output option B. Greenberg

RFC 765 File Transfer Protocol specification J. Postel

RFC 768 User Datagram Protocol J. Postel

RFC 779 Telnet send-location option E. Killian

RFC 783 TFTP Protocol (revision 2) K.R. Sollins

RFC 791 Internet Protocol J. Postel

RFC 792 Internet Control Message Protocol J. Postel

RFC 793 Transmission Control Protocol J. Postel

RFC 820 Assigned numbers J. Postel

RFC 821 Simple Mail Transfer Protocol J. Postel

RFC 822 Standard for the format of ARPA Internet text messages D. Crocker

RFC 823 DARPA Internet gateway R. Hinden, A. Sheltzer

RFC 826 Ethernet Address Resolution Protocol: Or converting network protocol

addresses to 48.bit Ethernet address for transmission on Ethernet

hardware D. Plummer

RFC 854 Telnet Protocol Specification J. Postel, J. Reynolds

RFC 855 Telnet Option Specification J. Postel, J. Reynolds

RFC 856 Telnet Binary Transmission J. Postel, J. Reynolds

RFC 857 Telnet Echo Option J. Postel, J. Reynolds

RFC 858 Telnet Suppress Go Ahead Option J. Postel, J. Reynolds

RFC 859 Telnet Status Option J. Postel, J. Reynolds

RFC 860 Telnet Timing Mark Option J. Postel, J. Reynolds

RFC 861 Telnet Extended Options: List Option J. Postel, J. Reynolds

RFC 862 Echo Protocol J. Postel

RFC 863 Discard Protocol J. Postel

RFC 864 Character Generator Protocol J. Postel

RFC 865 Quote of the Day Protocol J. Postel

RFC 868 Time Protocol J. Postel, K. Harrenstien

RFC 877 Standard for the transmission of IP datagrams over public data networks

J.T. Korb

RFC 883 Domain names: Implementation specification P.V. Mockapetris

RFC 884 Telnet terminal type option M. Solomon, E. Wimmers

RFC 885 Telnet end of record option J. Postel

RFC 894 Standard for the transmission of IP datagrams over Ethernet networks C.

Hornig

RFC 896 Congestion control in IP/TCP internetworks J. Nagle

564 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

RFC 903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J. Mogul,

M. Theimer

RFC 904 Exterior Gateway Protocol formal specification D. Mills

RFC 919 Broadcasting Internet Datagrams J. Mogul

RFC 922 Broadcasting Internet datagrams in the presence of subnets J. Mogul

RFC 927 TACACS user identification Telnet option B.A. Anderson

RFC 933 Output marking Telnet option S. Silverman

RFC 946 Telnet terminal location number option R. Nedved

RFC 950 Internet Standard Subnetting Procedure J. Mogul, J. Postel

RFC 951 Bootstrap Protocol W.J. Croft, J. Gilmore

RFC 952 DoD Internet host table specification K. Harrenstien, M. Stahl, E.

Feinler

RFC 959 File Transfer Protocol J. Postel, J.K. Reynolds

RFC 961 Official ARPA-Internet protocols J.K. Reynolds, J. Postel

RFC 974 Mail routing and the domain system C. Partridge

RFC 1001 Protocol standard for a NetBIOS service on a TCP/UDP transport:

Concepts and methods NetBios Working Group in the Defense

Advanced Research Projects Agency, Internet Activities Board,

End-to-End Services Task Force

RFC 1002 Protocol Standard for a NetBIOS service on a TCP/UDP transport:

Detailed specifications NetBios Working Group in the Defense

Advanced Research Projects Agency, Internet Activities Board,

End-to-End Services Task Force

RFC 1006 ISO transport services on top of the TCP: Version 3 M.T. Rose, D.E.

Cass

RFC 1009 Requirements for Internet gateways R. Braden, J. Postel

RFC 1011 Official Internet protocols J. Reynolds, J. Postel

RFC 1013 X Window System Protocol, version 11: Alpha update April 1987 R.

Scheifler

RFC 1014 XDR: External Data Representation standard Sun Microsystems

RFC 1027 Using ARP to implement transparent subnet gateways S. Carl-Mitchell,

J. Quarterman

RFC 1032 Domain administrators guide M. Stahl

RFC 1033 Domain administrators operations guide M. Lottor

RFC 1034 Domain names—concepts and facilities P.V. Mockapetris

RFC 1035 Domain names—implementation and specification P.V. Mockapetris

RFC 1038 Draft revised IP security option M. St. Johns

RFC 1041 Telnet 3270 regime option Y. Rekhter

RFC 1042 Standard for the transmission of IP datagrams over IEEE 802 networks J.

Postel, J. Reynolds

RFC 1043 Telnet Data Entry Terminal option: DODIIS implementation A. Yasuda,

T. Thompson

Appendix F. Related protocol specifications 565

RFC 1044 Internet Protocol on Network System’s HYPERchannel: Protocol

specification K. Hardwick, J. Lekashman

RFC 1053 Telnet X.3 PAD option S. Levy, T. Jacobson

RFC 1055 Nonstandard for transmission of IP datagrams over serial lines: SLIP J.

Romkey

RFC 1057 RPC: Remote Procedure Call Protocol Specification: Version 2 Sun

Microsystems

RFC 1058 Routing Information Protocol C. Hedrick

RFC 1060 Assigned numbers J. Reynolds, J. Postel

RFC 1067 Simple Network Management Protocol J.D. Case, M. Fedor, M.L.

Schoffstall, J. Davin

RFC 1071 Computing the Internet checksum R.T. Braden, D.A. Borman, C.

Partridge

RFC 1072 TCP extensions for long-delay paths V. Jacobson, R.T. Braden

RFC 1073 Telnet window size option D. Waitzman

RFC 1079 Telnet terminal speed option C. Hedrick

RFC 1085 ISO presentation services on top of TCP/IP based internets M.T. Rose

RFC 1091 Telnet terminal-type option J. VanBokkelen

RFC 1094 NFS: Network File System Protocol specification Sun Microsystems

RFC 1096 Telnet X display location option G. Marcy

RFC 1101 DNS encoding of network names and other types P. Mockapetris

RFC 1112 Host extensions for IP multicasting S.E. Deering

RFC 1113 Privacy enhancement for Internet electronic mail: Part I — message

encipherment and authentication procedures J. Linn

RFC 1118 Hitchhikers Guide to the Internet E. Krol

RFC 1122 Requirements for Internet Hosts—Communication Layers R. Braden,

Ed.

RFC 1123 Requirements for Internet Hosts—Application and Support R. Braden,

Ed.

RFC 1146 TCP alternate checksum options J. Zweig, C. Partridge

RFC 1155 Structure and identification of management information for TCP/IP-based

internets M. Rose, K. McCloghrie

RFC 1156 Management Information Base for network management of TCP/IP-based

internets K. McCloghrie, M. Rose

RFC 1157 Simple Network Management Protocol (SNMP) J. Case, M. Fedor, M.

Schoffstall, J. Davin

RFC 1158 Management Information Base for network management of TCP/IP-based

internets: MIB-II M. Rose

RFC 1166 Internet numbers S. Kirkpatrick, M.K. Stahl, M. Recker

RFC 1179 Line printer daemon protocol L. McLaughlin

RFC 1180 TCP/IP tutorial T. Socolofsky, C. Kale

566 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

RFC 1183 New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann,

P.V. Mockapetris

RFC 1184 Telnet Linemode Option D. Borman

RFC 1186 MD4 Message Digest Algorithm R.L. Rivest

RFC 1187 Bulk Table Retrieval with the SNMP M. Rose, K. McCloghrie, J. Davin

RFC 1188 Proposed Standard for the Transmission of IP Datagrams over FDDI

Networks D. Katz

RFC 1190 Experimental Internet Stream Protocol: Version 2 (ST-II) C. Topolcic

RFC 1191 Path MTU discovery J. Mogul, S. Deering

RFC 1198 FYI on the X window system R. Scheifler

RFC 1207 FYI on Questions and Answers: Answers to commonly asked

“experienced Internet user” questions G. Malkin, A. Marine, J.

Reynolds

RFC 1208 Glossary of networking terms O. Jacobsen, D. Lynch

RFC 1213 Management Information Base for Network Management of

TCP/IP-based internets: MIB-II K. McCloghrie, M.T. Rose

RFC 1215 Convention for defining traps for use with the SNMP M. Rose

RFC 1227 SNMP MUX protocol and MIB M.T. Rose

RFC 1228 SNMP-DPI: Simple Network Management Protocol Distributed Program

Interface G. Carpenter, B. Wijnen

RFC 1229 Extensions to the generic-interface MIB K. McCloghrie

RFC 1230 IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

RFC 1231 IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

RFC 1236 IP to X.121 address mapping for DDN L. Morales, P. Hasse

RFC 1256 ICMP Router Discovery Messages S. Deering, Ed.

RFC 1267 Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

RFC 1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P.

Gross

RFC 1269 Definitions of Managed Objects for the Border Gateway Protocol: Version

3 S. Willis, J. Burruss

RFC 1270 SNMP Communications Services F. Kastenholz, ed.

RFC 1285 FDDI Management Information Base J. Case

RFC 1315 Management Information Base for Frame Relay DTEs C. Brown, F.

Baker, C. Carvalho

RFC 1321 The MD5 Message-Digest Algorithm R. Rivest

RFC 1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D.

Borman

RFC 1325 FYI on Questions and Answers: Answers to Commonly Asked ″New

Internet User″ Questions G. Malkin, A. Marine

RFC 1327 Mapping between X.400 (1988)/ISO 10021 and RFC 822 S.

Hardcastle-Kille

Appendix F. Related protocol specifications 567

RFC 1340 Assigned Numbers J. Reynolds, J. Postel

RFC 1344 Implications of MIME for Internet Mail Gateways N. Bornstein

RFC 1349 Type of Service in the Internet Protocol Suite P. Almquist

RFC 1350 The TFTP Protocol (Revision 2) K.R. Sollins

RFC 1351 SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

RFC 1352 SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

RFC 1353 Definitions of Managed Objects for Administration of SNMP Parties K.

McCloghrie, J. Davin, J. Galvin

RFC 1354 IP Forwarding Table MIB F. Baker

RFC 1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A.

Malis, D. Robinson, R. Ullmann

RFC 1358 Charter of the Internet Architecture Board (IAB) L. Chapin

RFC 1363 A Proposed Flow Specification C. Partridge

RFC 1368 Definition of Managed Objects for IEEE 802.3 Repeater Devices D.

McMaster, K. McCloghrie

RFC 1372 Telnet Remote Flow Control Option C. L. Hedrick, D. Borman

RFC 1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

RFC 1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

RFC 1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop

RFC 1387 RIP Version 2 Protocol Analysis G. Malkin

RFC 1388 RIP Version 2 Carrying Additional Information G. Malkin

RFC 1389 RIP Version 2 MIB Extensions G. Malkin, F. Baker

RFC 1390 Transmission of IP and ARP over FDDI Networks D. Katz

RFC 1393 Traceroute Using an IP Option G. Malkin

RFC 1398 Definitions of Managed Objects for the Ethernet-Like Interface Types F.

Kastenholz

RFC 1408 Telnet Environment Option D. Borman, Ed.

RFC 1413 Identification Protocol M. St. Johns

RFC 1416 Telnet Authentication Option D. Borman, ed.

RFC 1420 SNMP over IPX S. Bostock

RFC 1428 Transition of Internet Mail from Just-Send-8 to 8bit-SMTP/MIME G.

Vaudreuil

RFC 1442 Structure of Management Information for version 2 of the Simple

Network Management Protocol (SNMPv2) J. Case, K. McCloghrie, M.

Rose, S. Waldbusser

RFC 1443 Textual Conventions for version 2 of the Simple Network Management

Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1445 Administrative Model for version 2 of the Simple Network Management

Protocol (SNMPv2) J. Galvin, K. McCloghrie

RFC 1447 Party MIB for version 2 of the Simple Network Management Protocol

(SNMPv2) K. McCloghrie, J. Galvin

568 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

RFC 1448 Protocol Operations for version 2 of the Simple Network Management

Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1464 Using the Domain Name System to Store Arbitrary String Attributes R.

Rosenbaum

RFC 1469 IP Multicast over Token-Ring Local Area Networks T. Pusateri

RFC 1483 Multiprotocol Encapsulation over ATM Adaptation Layer 5 Juha

Heinanen

RFC 1497 BOOTP Vendor Information Extensions J. Reynolds

RFC 1514 Host Resources MIB P. Grillo, S. Waldbusser

RFC 1516 Definitions of Managed Objects for IEEE 802.3 Repeater Devices D.

McMaster, K. McCloghrie

RFC 1521 MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms

for Specifying and Describing the Format of Internet Message Bodies N.

Borenstein, N. Freed

RFC 1533 DHCP Options and BOOTP Vendor Extensions S. Alexander, R.

Droms

RFC 1534 Interoperation Between DHCP and BOOTP R. Droms

RFC 1535 A Security Problem and Proposed Correction With Widely Deployed

DNS Software E. Gavron

RFC 1536 Common DNS Implementation Errors and Suggested Fixes A. Kumar, J.

Postel, C. Neuman, P. Danzig, S. Miller

RFC 1537 Common DNS Data File Configuration Errors P. Beertema

RFC 1540 Internet Official Protocol Standards J. Postel

RFC 1541 Dynamic Host Configuration Protocol R. Droms

RFC 1542 Clarifications and Extensions for the Bootstrap Protocol W. Wimer

RFC 1571 Telnet Environment Option Interoperability Issues D. Borman

RFC 1572 Telnet Environment Option S. Alexander

RFC 1573 Evolution of the Interfaces Group of MIB-II K. McCloghrie, F.

Kastenholz

RFC 1577 Classical IP and ARP over ATM M. Laubach

RFC 1583 OSPF Version 2 J. Moy

RFC 1591 Domain Name System Structure and Delegation J. Postel

RFC 1592 Simple Network Management Protocol Distributed Protocol Interface

Version 2.0 B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters

RFC 1594 FYI on Questions and Answers— Answers to Commonly Asked ″New

Internet User″ Questions A. Marine, J. Reynolds, G. Malkin

RFC 1644 T/TCP — TCP Extensions for Transactions Functional Specification R.

Braden

RFC 1646 TN3270 Extensions for LUname and Printer Selection C. Graves, T.

Butts, M. Angel

RFC 1647 TN3270 Enhancements B. Kelly

Appendix F. Related protocol specifications 569

RFC 1652 SMTP Service Extension for 8bit-MIMEtransport J. Klensin, N. Freed,

M. Rose, E. Stefferud, D. Crocker

RFC 1664 Using the Internet DNS to Distribute RFC1327 Mail Address Mapping

Tables C. Allochio, A. Bonito, B. Cole, S. Giordano, R. Hagens

RFC 1693 An Extension to TCP: Partial Order Service T. Connolly, P. Amer, P.

Conrad

RFC 1695 Definitions of Managed Objects for ATM Management Version 8.0 using

SMIv2 M. Ahmed, K. Tesink

RFC 1701 Generic Routing Encapsulation (GRE) S. Hanks, T. Li, D. Farinacci, P.

Traina

RFC 1702 Generic Routing Encapsulation over IPv4 networks S. Hanks, T. Li, D.

Farinacci, P. Traina

RFC 1706 DNS NSAP Resource Records B. Manning, R. Colella

RFC 1712 DNS Encoding of Geographical Location C. Farrell, M. Schulze, S.

Pleitner D. Baldoni

RFC 1713 Tools for DNS debugging A. Romao

RFC 1723 RIP Version 2—Carrying Additional Information G. Malkin

RFC 1752 The Recommendation for the IP Next Generation Protocol S. Bradner, A.

Mankin

RFC 1766 Tags for the Identification of Languages H. Alvestrand

RFC 1771 A Border Gateway Protocol 4 (BGP-4) Y. Rekhter, T. Li

RFC 1794 DNS Support for Load Balancing T. Brisco

RFC 1819 Internet Stream Protocol Version 2 (ST2) Protocol Specification—Version

ST2+ L. Delgrossi, L. Berger Eds.

RFC 1826 IP Authentication Header R. Atkinson

RFC 1828 IP Authentication using Keyed MD5 P. Metzger, W. Simpson

RFC 1829 The ESP DES-CBC Transform P. Karn, P. Metzger, W. Simpson

RFC 1830 SMTP Service Extensions for Transmission of Large and Binary MIME

Messages G. Vaudreuil

RFC 1831 RPC: Remote Procedure Call Protocol Specification Version 2 R.

Srinivasan

RFC 1832 XDR: External Data Representation Standard R. Srinivasan

RFC 1833 Binding Protocols for ONC RPC Version 2 R. Srinivasan

RFC 1850 OSPF Version 2 Management Information Base F. Baker, R. Coltun

RFC 1854 SMTP Service Extension for Command Pipelining N. Freed

RFC 1869 SMTP Service Extensions J. Klensin, N. Freed, M. Rose, E. Stefferud,

D. Crocker

RFC 1870 SMTP Service Extension for Message Size Declaration J. Klensin, N.

Freed, K. Moore

RFC 1876 A Means for Expressing Location Information in the Domain Name

System C. Davis, P. Vixie, T. Goodwin, I. Dickinson

RFC 1883 Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

570 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

RFC 1884 IP Version 6 Addressing Architecture R. Hinden, S. Deering, Eds.

RFC 1886 DNS Extensions to support IP version 6 S. Thomson, C. Huitema

RFC 1888 OSI NSAPs and IPv6 J. Bound, B. Carpenter, D. Harrington, J.

Houldsworth, A. Lloyd

RFC 1891 SMTP Service Extension for Delivery Status Notifications K. Moore

RFC 1892 The Multipart/Report Content Type for the Reporting of Mail System

Administrative Messages G. Vaudreuil

RFC 1894 An Extensible Message Format for Delivery Status NotificationsK.

Moore, G. Vaudreuil

RFC 1901 Introduction to Community-based SNMPv2 J. Case, K. McCloghrie, M.

Rose, S. Waldbusser

RFC 1902 Structure of Management Information for Version 2 of the Simple

Network Management Protocol (SNMPv2) J. Case, K. McCloghrie, M.

Rose, S. Waldbusser

RFC 1903 Textual Conventions for Version 2 of the Simple Network Management

Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1904 Conformance Statements for Version 2 of the Simple Network

Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.

Waldbusser

RFC 1905 Protocol Operations for Version 2 of the Simple Network Management

Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1906 Transport Mappings for Version 2 of the Simple Network Management

Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1907 Management Information Base for Version 2 of the Simple Network

Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.

Waldbusser

RFC 1908 Coexistence between Version 1 and Version 2 of the Internet-standard

Network Management Framework J. Case, K. McCloghrie, M. Rose, S.

Waldbusser

RFC 1912 Common DNS Operational and Configuration Errors D. Barr

RFC 1918 Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D.

Karrenberg, G.J. de Groot, E. Lear

RFC 1928 SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D.

Koblas, L. Jones

RFC 1930 Guidelines for creation, selection, and registration of an Autonomous

System (AS) J. Hawkinson, T. Bates

RFC 1939 Post Office Protocol-Version 3 J. Myers, M. Rose

RFC 1981 Path MTU Discovery for IP version 6 J. McCann, S. Deering, J. Mogul

RFC 1982 Serial Number Arithmetic R. Elz, R. Bush

RFC 1985 SMTP Service Extension for Remote Message Queue Starting J. De

Winter

RFC 1995 Incremental Zone Transfer in DNS M. Ohta

RFC 1996 A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)

P. Vixie

Appendix F. Related protocol specifications 571

RFC 2010 Operational Criteria for Root Name Servers B. Manning, P. Vixie

RFC 2011 SNMPv2 Management Information Base for the Internet Protocol using

SMIv2 K. McCloghrie, Ed.

RFC 2012 SNMPv2 Management Information Base for the Transmission Control

Protocol using SMIv2 K. McCloghrie, Ed.

RFC 2013 SNMPv2 Management Information Base for the User Datagram Protocol

using SMIv2 K. McCloghrie, Ed.

RFC 2018 TCP Selective Acknowledgement Options M. Mathis, J. Mahdavi, S.

Floyd, A. Romanow

RFC 2026 The Internet Standards Process — Revision 3 S. Bradner

RFC 2030 Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI

D. Mills

RFC 2033 Local Mail Transfer Protocol J. Myers

RFC 2034 SMTP Service Extension for Returning Enhanced Error CodesN. Freed

RFC 2040 The RC5, RC5–CBC, RC-5–CBC-Pad, and RC5–CTS AlgorithmsR.

Baldwin, R. Rivest

RFC 2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of

Internet Message Bodies N. Freed, N. Borenstein

RFC 2052 A DNS RR for specifying the location of services (DNS SRV) A.

Gulbrandsen, P. Vixie

RFC 2065 Domain Name System Security Extensions D. Eastlake 3rd, C.

Kaufman

RFC 2066 TELNET CHARSET Option R. Gellens

RFC 2080 RIPng for IPv6 G. Malkin, R. Minnear

RFC 2096 IP Forwarding Table MIB F. Baker

RFC 2104 HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M.

Bellare, R. Canetti

RFC 2119 Keywords for use in RFCs to Indicate Requirement Levels S. Bradner

RFC 2132 DHCP Options and BOOTP Vendor Extensions S. Alexander, R.

Droms

RFC 2133 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.

Bound, W. Stevens

RFC 2136 Dynamic Updates in the Domain Name System (DNS UPDATE) P.

Vixie, Ed., S. Thomson, Y. Rekhter, J. Bound

RFC 2137 Secure Domain Name System Dynamic Update D. Eastlake 3rd

RFC 2163 Using the Internet DNS to Distribute MIXER Conformant Global

Address Mapping (MCGAM) C. Allocchio

RFC 2168 Resolution of Uniform Resource Identifiers using the Domain Name

System R. Daniel, M. Mealling

RFC 2178 OSPF Version 2 J. Moy

RFC 2181 Clarifications to the DNS Specification R. Elz, R. Bush

572 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

RFC 2205 Resource ReSerVation Protocol (RSVP)—Version 1 Functional

Specification R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S.

Jamin

RFC 2210 The Use of RSVP with IETF Integrated Services J. Wroclawski

RFC 2211 Specification of the Controlled-Load Network Element Service J.

Wroclawski

RFC 2212 Specification of Guaranteed Quality of Service S. Shenker, C. Partridge,

R. Guerin

RFC 2215 General Characterization Parameters for Integrated Service Network

Elements S. Shenker, J. Wroclawski

RFC 2217 Telnet Com Port Control Option G. Clarke

RFC 2219 Use of DNS Aliases for Network Services M. Hamilton, R. Wright

RFC 2228 FTP Security Extensions M. Horowitz, S. Lunt

RFC 2230 Key Exchange Delegation Record for the DNS R. Atkinson

RFC 2233 The Interfaces Group MIB using SMIv2 K. McCloghrie, F. Kastenholz

RFC 2240 A Legal Basis for Domain Name Allocation O. Vaughn

RFC 2246 The TLS Protocol Version 1.0 T. Dierks, C. Allen

RFC 2251 Lightweight Directory Access Protocol (v3) M. Wahl, T. Howes, S. Kille

RFC 2253 Lightweight Directory Access Protocol (v3): UTF-8 String Representation

of Distinguished Names M. Wahl, S. Kille, T. Howes

RFC 2254 The String Representation of LDAP Search Filters T. Howes

RFC 2261 An Architecture for Describing SNMP Management Frameworks D.

Harrington, R. Presuhn, B. Wijnen

RFC 2262 Message Processing and Dispatching for the Simple Network

Management Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B.

Wijnen

RFC 2271 An Architecture for Describing SNMP Management Frameworks D.

Harrington, R. Presuhn, B. Wijnen

RFC 2273 SNMPv3 Applications D. Levi, P. Meyer, B. Stewartz

RFC 2274 User-based Security Model (USM) for version 3 of the Simple Network

Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 2275 View-based Access Control Model (VACM) for the Simple Network

Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 2279 UTF-8, a transformation format of ISO 10646 F. Yergeau

RFC 2292 Advanced Sockets API for IPv6 W. Stevens, M. Thomas

RFC 2308 Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

RFC 2317 Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

RFC 2320 Definitions of Managed Objects for Classical IP and ARP Over ATM

Using SMIv2 (IPOA-MIB) M. Greene, J. Luciani, K. White, T. Kuo

RFC 2328 OSPF Version 2 J. Moy

RFC 2345 Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G.

Oglesby

Appendix F. Related protocol specifications 573

RFC 2352 A Convention for Using Legal Names as Domain Names O. Vaughn

RFC 2355 TN3270 Enhancements B. Kelly

RFC 2358 Definitions of Managed Objects for the Ethernet-like Interface Types J.

Flick, J. Johnson

RFC 2373 IP Version 6 Addressing Architecture R. Hinden, S. Deering

RFC 2374 An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M.

O’Dell, S. Deering

RFC 2375 IPv6 Multicast Address Assignments R. Hinden, S. Deering

RFC 2385 Protection of BGP Sessions via the TCP MD5 Signature OptionA.

Hefferman

RFC 2389 Feature negotiation mechanism for the File Transfer Protocol P.

Hethmon, R. Elz

RFC 2401 Security Architecture for Internet Protocol S. Kent, R. Atkinson

RFC 2402 IP Authentication Header S. Kent, R. Atkinson

RFC 2403 The Use of HMAC-MD5–96 within ESP and AH C. Madson, R. Glenn

RFC 2404 The Use of HMAC-SHA–1–96 within ESP and AH C. Madson, R.

Glenn

RFC 2405 The ESP DES-CBC Cipher Algorithm With Explicit IV C. Madson, N.

Doraswamy

RFC 2406 IP Encapsulating Security Payload (ESP) S. Kent, R. Atkinson

RFC 2407 The Internet IP Security Domain of Interpretation for ISAKMPD. Piper

RFC 2408 Internet Security Association and Key Management Protocol (ISAKMP)

D. Maughan, M. Schertler, M. Schneider, J. Turner

RFC 2409 The Internet Key Exchange (IKE) D. Harkins, D. Carrel

RFC 2410 The NULL Encryption Algorithm and Its Use With IPsec R. Glenn, S.

Kent,

RFC 2428 FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C.

Metz

RFC 2445 Internet Calendaring and Scheduling Core Object Specification

(iCalendar) F. Dawson, D. Stenerson

RFC 2459 Internet X.509 Public Key Infrastructure Certificate and CRL Profile R.

Housley, W. Ford, W. Polk, D. Solo

RFC 2460 Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 2461 Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark,

W. Simpson

RFC 2462 IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

RFC 2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol

Version 6 (IPv6) Specification A. Conta, S. Deering

RFC 2464 Transmission of IPv6 Packets over Ethernet Networks M. Crawford

RFC 2466 Management Information Base for IP Version 6: ICMPv6 Group D.

Haskin, S. Onishi

RFC 2476 Message Submission R. Gellens, J. Klensin

574 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

RFC 2487 SMTP Service Extension for Secure SMTP over TLS P. Hoffman

RFC 2505 Anti-Spam Recommendations for SMTP MTAs G. Lindberg

RFC 2523 Photuris: Extended Schemes and Attributes P. Karn, W. Simpson

RFC 2535 Domain Name System Security Extensions D. Eastlake 3rd

RFC 2538 Storing Certificates in the Domain Name System (DNS) D. Eastlake

3rd, O. Gudmundsson

RFC 2539 Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D.

Eastlake 3rd

RFC 2540 Detached Domain Name System (DNS) Information D. Eastlake 3rd

RFC 2554 SMTP Service Extension for Authentication J. Myers

RFC 2570 Introduction to Version 3 of the Internet-standard Network Management

Framework J. Case, R. Mundy, D. Partain, B. Stewart

RFC 2571 An Architecture for Describing SNMP Management Frameworks B.

Wijnen, D. Harrington, R. Presuhn

RFC 2572 Message Processing and Dispatching for the Simple Network

Management Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B.

Wijnen

RFC 2573 SNMP Applications D. Levi, P. Meyer, B. Stewart

RFC 2574 User-based Security Model (USM) for version 3 of the Simple Network

Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 2575 View-based Access Control Model (VACM) for the Simple Network

Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 2576 Co-Existence between Version 1, Version 2, and Version 3 of the

Internet-standard Network Management Framework R. Frye, D. Levi, S.

Routhier, B. Wijnen

RFC 2578 Structure of Management Information Version 2 (SMIv2) K.

McCloghrie, D. Perkins, J. Schoenwaelder

RFC 2579 Textual Conventions for SMIv2 K. McCloghrie, D. Perkins, J.

Schoenwaelder

RFC 2580 Conformance Statements for SMIv2 K. McCloghrie, D. Perkins, J.

Schoenwaelder

RFC 2581 TCP Congestion Control M. Allman, V. Paxson, W. Stevens

RFC 2583 Guidelines for Next Hop Client (NHC) Developers R. Carlson, L.

Winkler

RFC 2591 Definitions of Managed Objects for Scheduling Management Operations

D. Levi, J. Schoenwaelder

RFC 2625 IP and ARP over Fibre Channel M. Rajagopal, R. Bhagwat, W.

Rickard

RFC 2635 Don’t SPEW A Set of Guidelines for Mass Unsolicited Mailings and

Postings (spam*) S. Hambridge, A. Lunde

RFC 2637 Point-to-Point Tunneling Protocol K. Hamzeh, G. Pall, W. Verthein, J.

Taarud, W. Little, G. Zorn

RFC 2640 Internationalization of the File Transfer Protocol B. Curtin

Appendix F. Related protocol specifications 575

RFC 2665 Definitions of Managed Objects for the Ethernet-like Interface Types J.

Flick, J. Johnson

RFC 2671 Extension Mechanisms for DNS (EDNS0) P. Vixie

RFC 2672 Non-Terminal DNS Name Redirection M. Crawford

RFC 2675 IPv6 Jumbograms D. Borman, S. Deering, R. Hinden

RFC 2710 Multicast Listener Discovery (MLD) for IPv6 S. Deering, W. Fenner, B.

Haberman

RFC 2711 IPv6 Router Alert Option C. Partridge, A. Jackson

RFC 2740 OSPF for IPv6 R. Coltun, D. Ferguson, J. Moy

RFC 2753 A Framework for Policy-based Admission Control R. Yavatkar, D.

Pendarakis, R. Guerin

RFC 2782 A DNS RR for specifying the location of services (DNS SRV) A.

Gubrandsen, P. Vixix, L. Esibov

RFC 2821 Simple Mail Transfer Protocol J. Klensin, Ed.

RFC 2822 Internet Message Format P. Resnick, Ed.

RFC 2840 TELNET KERMIT OPTION J. Altman, F. da Cruz

RFC 2845 Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O.

Gudmundsson, D. Eastlake 3rd, B. Wellington

RFC 2851 Textual Conventions for Internet Network Addresses M. Daniele, B.

Haberman, S. Routhier, J. Schoenwaelder

RFC 2852 Deliver By SMTP Service Extension D. Newman

RFC 2874 DNS Extensions to Support IPv6 Address Aggregation and Renumbering

M. Crawford, C. Huitema

RFC 2915 The Naming Authority Pointer (NAPTR) DNS Resource Record M.

Mealling, R. Daniel

RFC 2920 SMTP Service Extension for Command Pipelining N. Freed

RFC 2930 Secret Key Establishment for DNS (TKEY RR) D. Eastlake, 3rd

RFC 2941 Telnet Authentication Option T. Ts’o, ed., J. Altman

RFC 2942 Telnet Authentication: Kerberos Version 5 T. Ts’o

RFC 2946 Telnet Data Encryption Option T. Ts’o

RFC 2952 Telnet Encryption: DES 64 bit Cipher Feedback T. Ts’o

RFC 2953 Telnet Encryption: DES 64 bit Output Feedback T. Ts’o

RFC 2992 Analysis of an Equal-Cost Multi-Path Algorithm C. Hopps

RFC 3019 IP Version 6 Management Information Base for The Multicast Listener

Discovery Protocol B. Haberman, R. Worzella

RFC 3060 Policy Core Information Model—Version 1 Specification B. Moore, E.

Ellesson, J. Strassner, A. Westerinen

RFC 3152 Delegation of IP6.ARPA R. Bush

RFC 3164 The BSD Syslog Protocol C. Lonvick

RFC 3291 Textual Conventions for Internet Network Addresses M. Daniele, B.

Haberman, S. Routhier, J. Schoenwaelder

576 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

RFC 3363 Representing Internet Protocol version 6 (IPv6) Addresses in the Domain

Name System R. Bush, A. Durand, B. Fink, O. Gudmundsson, T.

Hain

RFC 3376 Internet Group Management Protocol, Version 3 B. Cain, S. Deering, I.

Kouvelas, B. Fenner, A. Thyagarajan

RFC 3390 Increasing TCP’s Initial Window M. Allman, S. Floyd, C. Partridge

RFC 3410 Introduction and Applicability Statements for Internet-Standard

Management Framework J. Case, R. Mundy, D. Partain, B. Stewart

RFC 3411 An Architecture for Describing Simple Network Management Protocol

(SNMP) Management Frameworks D. Harrington, R. Presuhn, B.

Wijnen

RFC 3412 Message Processing and Dispatching for the Simple Network

Management Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B.

Wijnen

RFC 3413 Simple Network Management Protocol (SNMP) Applications D. Levi, P.

Meyer, B. Stewart

RFC 3414 User-based Security Model (USM) for version 3 of the Simple Network

Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 3415 View-based Access Control Model (VACM) for the Simple Network

Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 3419 Textual Conventions for Transport Addresses M. Daniele, J.

Schoenwaelder

RFC 3484 Default Address Selection for Internet Protocol version 6 (IPv6) R.

Draves

RFC 3493 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.

Bound, J. McCann, W. Stevens

RFC 3513 Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden,

S. Deering

RFC 3526 More Modular Exponential (MODP) Diffie-Hellman groups for Internet

Key Exchange (IKE) T. Kivinen, M. Kojo

RFC 3542 Advanced Sockets Application Programming Interface (API) for IPv6 W.

Richard Stevens, M. Thomas, E. Nordmark, T. Jinmei

RFC 3569 An Overview of Source-Specific Multicast (SSM) S. Bhattacharyya, Ed.

RFC 3584 Coexistence between Version 1, Version 2, and Version 3 of the

Internet-standard Network Management Framework R. Frye, D. Levi, S.

Routhier, B. Wijnen

RFC 3602 The AES-CBC Cipher Algorithm and Its Use with IPsec S. Frankel, R.

Glenn, S. Kelly

RFC 3629 UTF-8, a transformation format of ISO 10646 R. Kermode, C. Vicisano

RFC 3658 Delegation Signer (DS) Resource Record (RR) O. Gudmundsson

RFC 3678 Socket Interface Extensions for Multicast Source Filters D. Thaler, B.

Fenner, B. Quinn

RFC 3715 IPsec-Network Address Translation (NAT) Compatibility Requirements B.

Aboba, W. Dixon

Appendix F. Related protocol specifications 577

||
|

||

||
|

RFC 3810 Multicast Listener Discovery Version 2 (MLDv2) for IPv6 R. Vida, Ed.,

L. Costa, Ed.

RFC 3947 Negotiation of NAT-Traversal in the IKE T. Kivinen, B. Swander, A.

Huttunen, V. Volpe

RFC 3948 UDP Encapsulation of IPsec ESP Packets A. Huttunen, B. Swander, V.

Volpe, L. DiBurro, M. Stenberg

RFC 4007 IPv6 Scoped Address Architecture S. Deering, B. Haberman, T. Jinmei,

E. Nordmark, B. Zill

RFC 4217 Securing FTP with TLS P. Ford-Hutchinson

Internet drafts

Internet drafts are working documents of the Internet Engineering Task Force

(IETF), its areas, and its working groups. Other groups may also distribute

working documents as Internet drafts. You can see Internet drafts at

http://www.ietf.org/ID.html.

Several areas of IPv6 implementation include elements of the following Internet

drafts and are subject to change during the RFC review process.

Draft Title and Author

draft-bivens-sasp-02

Server/Application State Protocol v1 A. Bivens

draft-ietf-ipngwg-icmp-v3-07

Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6

(IPv6) Specification A. Conta, S. Deering

draft-ietf-ipsec-esp-v3-10

IP Encapsulating Security Payload (ESP) S. Kent

draft-ietf-ipsec-rfc2402bis-11

IP Authentication Header S. Kent

draft-ietf-ipsec-rfc2401bis-06

Security Architecture for the Internet Protocol S. Kent, K. Seo

draft-ietf-ospf-ospfv3-auth-07

Authentication/Confidentiality for OSPFv3 M. Gupta, N. Melam

578 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||
|

||
|

||

http://www.ietf.org/ID.html

Appendix G. Information APARs and technotes

This appendix lists information APARs for IP and SNA documents.

Note:

1. Information APARs contain updates to previous editions of the

documents listed in Table 28 and Table 29 on page 580. Documents

updated for V1R9 are complete except for the updates contained in the

information APARs that might be issued after V1R9 documents went to

press.

2. Information APARs are predefined for z/OS V1R9 Communications

Server and might not contain updates.

3. Information APARs for z/OS documents are in the document called z/OS

and z/OS.e DOC APAR and PTF ++HOLD Documentation, which can be

found at http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/

BOOKS/ZIDOCMST/CCONTENTS.

Information APARs for IP documents

Table 28 lists information APARs for V1R6 IP documents. For releases V1R7 and

later, updates are available as technotes, which can be found at

http://www.ibm.com/support/docview.wss?uid=swg21178966.

 Table 28. IP information APARs for z/OS Communications Server

Title Information APAR for V1R6

New Function Summary (both IP and SNA) II13824

Quick Reference (both IP and SNA) II13831

IP and SNA Codes II13842

IP Sockets API Guide II13844

IP Configuration Guide II13826

IP Configuration Reference II13827

IP Diagnosis II13836

IP Messages Volume 1 II13838

IP Messages Volume 2 II13839

IP Messages Volume 3 II13840

IP Messages Volume 4 II13841

IPv6 Network and Application Design Guide II13825

IP Programmer’s Guide and Reference II13843

IP User’s Guide and Commands II13832

IP System Admininstrator’s Commands II13833

© Copyright IBM Corp. 1994, 2007 579

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://www.ibm.com/support/docview.wss?uid=swg21178966

Information APARs for SNA documents

Table 29 lists information APARs for V1R6 SNA documents. For releases V1R7 and

later, updates are available as technotes, which can be found at

http://www.ibm.com/support/docview.wss?uid=swg21178966.

 Table 29. SNA information APARs for z/OS Communications Server

Title Information APAR for V1R6

New Function Summary (both IP and SNA) II13824

Quick Reference (both IP and SNA) II13831

IP and SNA Codes II13842

SNA Customization II13857

SNA Diagnosis, Vol. 1: Techniques and Procedures II13852

SNA Diagnosis, Vol. 2: FFST Dumps and the VIT II13853

SNA Messages II13854

SNA Network Implementation Guide II13849

SNA Operation II13851

SNA Programming II13858

SNA Resource Definition Reference II13850

SNA Data Areas Volume 1 II13855

SNA Data Areas Volume 2 II13856

Other information APARs

Table 30 lists information APARs not related to documents.

 Table 30. Non-document information APARs

Content Number

Index to APARs that list recommended VTAM maintenance II11220

Index to APARs that list trace and dump requests for VTAM problems II13202

Index of Communication Server IP information APARs II12028

Collecting TCPIP CTRACEs II12014

CSM for VTAM II13442

CSM for TCP/IP II13951

DLUR/DLUS II12986, II13456, and II13783

Documentation required for FTP server problems II12925

Documentation required for OSA/2, OSA Express and OSA QDIO II13016

DNS — common problems and solutions II13453

Enterprise Extender II12223

FTP client and FTP server TLS support II13516

FTP problems II12079

FTPing doc to z/OS Ssupport II12030

Generic resources II10986

HPR II10953

580 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

||

||

||

http://www.ibm.com/support/docview.wss?uid=swg21178966

Table 30. Non-document information APARs (continued)

Content Number

iQDIO II13142

LPR problems II12022

MNPS II10370

MPC and CTC II01501

NCPROUTE problems II12025

OMPROUTE II12026

PASCAL API II11814

Performance

 II11710

II11711

II11712

Resolver

 II13398

II13399

II13452

Socket API

 II11996

II12020

SMTP problems II12023

SNMP

 II13477

II13478

SYSLOGD howto II12021

TCPIP connection states II12449

TN3270E Telnet server

 II11574

II13135

TN3270E Telnet server SSL common problems II13369

Appendix G. Information APARs and technotes 581

|
|
|

||

582 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Appendix H. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information

about accessing TSO/E and ISPF interfaces. These guides describe how to use

TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF

keys). Each guide includes the default settings for the PF keys and explains how to

modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1994, 2007 583

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

584 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Notices

IBM may not offer all of the products, services, or features discussed in this

document. Consult your local IBM representative for information on the products

and services currently available in your area. Any reference to an IBM product,

program, or service is not intended to state or imply that only that IBM product,

program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used

instead. However, it is the user’s responsibility to evaluate and verify the operation

of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2007 585

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Site Counsel

IBM Corporation

P.O. Box 12195

3039 Cornwallis Road

Research Triangle Park, North Carolina 27709-2195

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

586 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

IBM is required to include the following statements in order to distribute portions

of this document and the software described herein to which contributions have

been made by The University of California. Portions herein © Copyright 1979,

1980, 1983, 1986, Regents of the University of California. Reproduced by

permission. Portions herein were developed at the Electrical Engineering and

Computer Sciences Department at the Berkeley campus of the University of

California under the auspices of the Regents of the University of California.

Portions of this publication relating to RPC are Copyright © Sun Microsystems,

Inc., 1988, 1989.

Some portions of this publication relating to X Window System** are Copyright ©

1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the

Massachusetts Institute Of Technology, Cambridge, Massachusetts. All Rights

Reserved.

Some portions of this publication relating to X Window System are Copyright ©

1986, 1987, 1988 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute the M.I.T., Digital Equipment

Corporation, and Hewlett-Packard Corporation portions of this software and its

documentation for any purpose without fee is hereby granted, provided that the

above copyright notice appears in all copies and that both that copyright notice

and this permission notice appear in supporting documentation, and that the

names of M.I.T., Digital, and Hewlett-Packard not be used in advertising or

publicity pertaining to distribution of the software without specific, written prior

permission. M.I.T., Digital, and Hewlett-Packard make no representation about the

suitability of this software for any purpose. It is provided ″as is″ without express

or implied warranty.

Copyright © 1983, 1995-1997 Eric P. Allman

Copyright © 1988, 1993 The Regents of the University of California. All rights

reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.

Notices 587

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must

display the following acknowledgement:

This product includes software developed by the University of

California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be

used to endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS

IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

This software program contains code, and/or derivatives or modifications of code

originating from the software program ″Popper.″ Popper is Copyright ©1989-1991

The Regents of the University of California, All Rights Reserved. Popper was

created by Austin Shelton, Information Systems and Technology, University of

California, Berkeley.

Permission from the Regents of the University of California to use, copy, modify,

and distribute the ″Popper″ software contained herein for any purpose, without

fee, and without a written agreement is hereby granted, provided that the above

copyright notice and this paragraph and the following two paragraphs appear in

all copies. HOWEVER, ADDITIONAL PERMISSIONS MAY BE NECESSARY

FROM OTHER PERSONS OR ENTITIES, TO USE DERIVATIVES OR

MODIFICATIONS OF POPPER.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY

PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THE

POPPER SOFTWARE, OR ITS DERIVATIVES OR MODIFICATIONS, AND ITS

DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE POPPER SOFTWARE PROVIDED HEREUNDER IS ON AN ″AS

IS″ BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS

TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR

MODIFICATIONS.

Copyright © 1983 The Regents of the University of California. All rights reserved.

588 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Redistribution and use in source and binary forms are permitted provided that the

above copyright notice and this paragraph are duplicated in all such forms and

that any documentation, advertising materials, and other materials related to such

distribution and use acknowledge that the software was developed by the

University of California, Berkeley. The name of the University may not be used to

endorse or promote products derived from this software without specific prior

written permission. THIS SOFTWARE IS PROVIDED ``AS IS’’ AND WITHOUT

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT

LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 1991, 1993 The Regents of the University of California. All rights

reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must

display the following acknowledgement:

This product includes software developed by the University of

California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be

used to endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS

IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

Copyright © 1990 by the Massachusetts Institute of Technology

Export of this software from the United States of America may require a specific

license from the United States Government. It is the responsibility of any person or

organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this

software and its documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that both that

copyright notice and this permission notice appear in supporting documentation,

and that the name of M.I.T. not be used in advertising or publicity pertaining to

distribution of the software without specific, written prior permission. Furthermore

Notices 589

if you modify this software you must label your software as modified software and

not distribute it in such a fashion that it might be confused with the original M.I.T.

software. M.I.T. makes no representations about the suitability of this software for

any purpose. It is provided ″as is″ without express or implied warranty.

Copyright © 1998 by the FundsXpress, INC. All rights reserved.

Export of this software from the United States of America may require a specific

license from the United States Government. It is the responsibility of any person or

organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this

software and its documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that both that

copyright notice and this permission notice appear in supporting documentation,

and that the name of FundsXpress not be used in advertising or publicity

pertaining to distribution of the software without specific, written prior

permission. FundsXpress makes no representations about the suitability of this

software for any purpose. It is provided ″as is″ without express or implied

warranty.

THIS SOFTWARE IS PROVIDED ``AS IS’’ AND WITHOUT ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with

or without fee is hereby granted, provided that the above copyright notice and this

permission notice appear in all copies.

THE SOFTWARE IS PROVIDED ″AS IS″ AND INTERNET SOFTWARE

CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM

BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL

DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).

The implementation was written so as to conform with Netscape’s SSL.

This library is free for commercial and non-commercial use as long as the

following conditions are adhered to. The following conditions apply to all code

found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the

SSL code. The SSL documentation included with this distribution is covered by the

same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young’s, and as such any Copyright notices in the code are

not to be removed. If this package is used in a product, Eric Young should be

590 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

given attribution as the author of the parts of the library used. This can be in the

form of a textual message at program startup or in documentation (online or

textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must

display the following acknowledgement: ″This product includes cryptographic

software written by Eric Young (eay@cryptsoft.com)″. The word ’cryptographic’

can be left out if the routines from the library being used are not cryptographic

related.

4. If you include any Windows specific code (or a derivative thereof) from the

apps directory (application code) you must include acknowledgement:

″This product includes software written by Tim Hudson (tjh@cryptsoft.com)″

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS’’ AND ANY EXPRESS

OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

The license and distribution terms for any publicly available version or derivative

of this code cannot be changed. i.e. this code cannot simply be copied and put

under another distribution license [including the GNU Public License.]

This product includes cryptographic software written by Eric Young.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with

or without fee is hereby granted, provided that the above copyright notice and this

permission notice appear in all copies.

THE SOFTWARE IS PROVIDED ″AS IS″ AND INTERNET SOFTWARE

CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM

BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL

DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Notices 591

Copyright © 2004 IBM Corporation and its licensors, including Sendmail, Inc., and

the Regents of the University of California. All rights reserved.

Copyright © 1999,2000,2001 Compaq Computer Corporation

Copyright © 1999,2000,2001 Hewlett-Packard Company

Copyright © 1999,2000,2001 IBM Corporation

Copyright © 1999,2000,2001 Hummingbird Communications Ltd.

Copyright © 1999,2000,2001 Silicon Graphics, Inc.

Copyright © 1999,2000,2001 Sun Microsystems, Inc.

Copyright © 1999,2000,2001 The Open Group

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the ″Software″), to deal in the

Software without restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, provided that the

above copyright notice(s) and this permission notice appear in all copies of the

Software and that both the above copyright notice(s) and this permission notice

appear in supporting documentation.

THE SOFTWARE IS PROVIDED ″AS IS″, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE

FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL

DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used

in advertising or otherwise to promote the sale, use or other dealings in this

Software without prior written authorization of the copyright holder.

X Window System is a trademark of The Open Group.

If you are viewing this information softcopy, photographs and color illustrations

may not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains

BookManager and PDF formats.

592 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 Advanced Peer-to-Peer Networking

 AFS

 AD/Cycle

 AIX

 AIX/ESA

 AnyNet

 APL2

 AS/400

 BookManager

 C/370

 CICS

 CICS/ESA

 C Set ++

 Common User Access

 CUA

 DB2

 DFSMS

 DFSMSdfp

 DFSMShsm

 DPI

 ESCON

 eServer

 ES/9000

 FFST

 FICON

 First Failure Support Technology

 GDDM

 IBM

 ibm.com

 IBMLink

 IMS

 IMS/ESA

 HiperSockets

 Language Environment

 Micro Channel

 Multiprise

 MVS

 MVS/DFP

 MVS/ESA

 MVS/SP

 NetView

 Network Station

 Nways

 OfficeVision

 OS/2

 OS/390

 Parallel Sysplex

 PROFS

 pSeries

 RACF

 Redbooks

 RETAIN

 REXX

 RISC System/6000

 RMF

 RS/6000

 S/370

 S/390

 S/390 Parallel Enterprise Server

 SAA

 SecureWay

 SET

 SiteCheck

 SP

 System/360

 System/370

 System/390

 System z

 System z9

 Tivoli

 Tivoli Enterprise Console

 VM/ESA

 VSE/ESA

 VTAM

 WebSphere

 z9

 z/Architecture

 z/OS

 z/VM

 zSeries

 400

The following terms are trademarks of other companies:

Notices 593

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in

the United States, other countries, or both.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United

States and other countries.

PostScript is a registered trademark of Adobe Systems Incorporated in the United

States, other countries, or both.

Other company, product or service names may be trademarks or service marks of

others.

594 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Bibliography

z/OS Communications Server information

This section contains descriptions of the documents in the z/OS Communications

Server library.

z/OS Communications Server documentation is available:

v Online at the z/OS Internet Library web page at http://www.ibm.com/servers/
eserver/zseries/zos/bkserv

v In softcopy on CD-ROM collections. See “Softcopy information” on page xxiv.

z/OS Communications Server library

z/OS Communications Server documents are available on the CD-ROM

accompanying z/OS (SK3T-4269 or SK3T-4307). Unlicensed documents can be

viewed at the z/OS Internet library site.

Updates to documents are available on RETAIN® and in information APARs (info

APARs). See Appendix G, “Information APARs and technotes,” on page 579 for a

list of the documents and the info APARs associated with them.

Info APARs for z/OS documents are in the document called z/OS and z/OS.e DOC

APAR and PTF ++HOLD Documentation which can be found at

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/ BOOKS/ZIDOCMST/
CCONTENTS.

Planning

 Title Number Description

z/OS Communications Server:

New Function Summary

GC31-8771 This document is intended to help you plan for new IP for SNA

function, whether you are migrating from a previous version or

installing z/OS for the first time. It summarizes what is new in

the release and identifies the suggested and required

modifications needed to use the enhanced functions.

z/OS Communications Server:

IPv6 Network and Application

Design Guide

SC31-8885 This document is a high-level introduction to IPv6. It describes

concepts of z/OS Communications Server’s support of IPv6,

coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning

 Title Number Description

z/OS Communications Server: IP

Configuration Guide

SC31-8775 This document describes the major concepts involved in

understanding and configuring an IP network. Familiarity with

the z/OS operating system, IP protocols, z/OS UNIX System

Services, and IBM Time Sharing Option (TSO) is recommended.

Use this document in conjunction with the z/OS Communications

Server: IP Configuration Reference.

© Copyright IBM Corp. 1994, 2007 595

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Title Number Description

z/OS Communications Server: IP

Configuration Reference

SC31-8776 This document presents information for people who want to

administer and maintain IP. Use this document in conjunction

with the z/OS Communications Server: IP Configuration Guide. The

information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v SMF records

v Protocol number and port assignments

z/OS Communications Server:

SNA Network Implementation

Guide

SC31-8777 This document presents the major concepts involved in

implementing an SNA network. Use this document in

conjunction with the z/OS Communications Server: SNA Resource

Definition Reference.

z/OS Communications Server:

SNA Resource Definition Reference

SC31-8778 This document describes each SNA definition statement, start

option, and macroinstruction for user tables. It also describes

NCP definition statements that affect SNA. Use this document in

conjunction with the z/OS Communications Server: SNA Network

Implementation Guide.

z/OS Communications Server:

SNA Resource Definition Samples

SC31-8836 This document contains sample definitions to help you

implement SNA functions in your networks, and includes

sample major node definitions.

z/OS Communications Server: IP

Network Print Facility

SC31-8833 This document is for system programmers and network

administrators who need to prepare their network to route SNA,

JES2, or JES3 printer output to remote printers using TCP/IP

Services.

Operation

 Title Number Description

z/OS Communications Server: IP

User’s Guide and Commands

SC31-8780 This document describes how to use TCP/IP applications. It

contains requests that allow a user to log on to a remote host

using Telnet, transfer data sets using FTP, send and receive

electronic mail, print on remote printers, and authenticate

network users.

z/OS Communications Server: IP

System Administrator’s Commands

SC31-8781 This document describes the functions and commands helpful in

configuring or monitoring your system. It contains system

administrator’s commands, such as TSO NETSTAT, PING,

TRACERTE and their UNIX counterparts. It also includes TSO

and MVS commands commonly used during the IP

configuration process.

z/OS Communications Server:

SNA Operation

SC31-8779 This document serves as a reference for programmers and

operators requiring detailed information about specific operator

commands.

z/OS Communications Server:

Quick Reference

SX75-0124 This document contains essential information about SNA and IP

commands.

596 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Customization

 Title Number Description

z/OS Communications Server:

SNA Customization

SC31-6854 This document enables you to customize SNA, and includes the

following:

v Communication network management (CNM) routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the CLU

search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs

 Title Number Description

z/OS Communications Server: IP

Sockets Application Programming

Interface Guide and Reference

SC31-8788 This document describes the syntax and semantics of program

source code necessary to write your own application

programming interface (API) into TCP/IP. You can use this

interface as the communication base for writing your own client

or server application. You can also use this document to adapt

your existing applications to communicate with each other using

sockets over TCP/IP.

z/OS Communications Server: IP

CICS Sockets Guide

SC31-8807 This document is for programmers who want to set up, write

application programs for, and diagnose problems with the socket

interface for CICS using z/OS TCP/IP.

z/OS Communications Server: IP

IMS Sockets Guide

SC31-8830 This document is for programmers who want application

programs that use the IMS TCP/IP application development

services provided by IBM’s TCP/IP Services.

z/OS Communications Server: IP

Programmer’s Guide and Reference

SC31-8787 This document describes the syntax and semantics of a set of

high-level application functions that you can use to program

your own applications in a TCP/IP environment. These

functions provide support for application facilities, such as user

authentication, distributed databases, distributed processing,

network management, and device sharing. Familiarity with the

z/OS operating system, TCP/IP protocols, and IBM Time

Sharing Option (TSO) is recommended.

z/OS Communications Server:

SNA Programming

SC31-8829 This document describes how to use SNA macroinstructions to

send data to and receive data from (1) a terminal in either the

same or a different domain, or (2) another application program

in either the same or a different domain.

z/OS Communications Server:

SNA Programmer’s LU 6.2 Guide

SC31-8811 This document describes how to use the SNA LU 6.2 application

programming interface for host application programs. This

document applies to programs that use only LU 6.2 sessions or

that use LU 6.2 sessions along with other session types. (Only

LU 6.2 sessions are covered in this document.)

z/OS Communications Server:

SNA Programmer’s LU 6.2

Reference

SC31-8810 This document provides reference material for the SNA LU 6.2

programming interface for host application programs.

z/OS Communications Server:

CSM Guide

SC31-8808 This document describes how applications use the

communications storage manager.

Bibliography 597

Title Number Description

z/OS Communications Server:

CMIP Services and Topology

Agent Guide

SC31-8828 This document describes the Common Management Information

Protocol (CMIP) programming interface for application

programmers to use in coding CMIP application programs. The

document provides guide and reference information about CMIP

services and the SNA topology agent.

Diagnosis

 Title Number Description

z/OS Communications Server: IP

Diagnosis Guide

GC31-8782 This document explains how to diagnose TCP/IP problems and

how to determine whether a specific problem is in the TCP/IP

product code. It explains how to gather information for and

describe problems to the IBM Software Support Center.

z/OS Communications Server:

SNA Diagnosis Vol 1, Techniques

and Procedures and z/OS

Communications Server: SNA

Diagnosis Vol 2, FFST Dumps and

the VIT

GC31-6850

GC31-6851

These documents help you identify an SNA problem, classify it,

and collect information about it before you call the IBM Support

Center. The information collected includes traces, dumps, and

other problem documentation.

z/OS Communications Server:

SNA Data Areas Volume 1 and

z/OS Communications Server:

SNA Data Areas Volume 2

GC31-6852

GC31-6853

These documents describe SNA data areas and can be used to

read an SNA dump. They are intended for IBM programming

service representatives and customer personnel who are

diagnosing problems with SNA.

Messages and codes

 Title Number Description

z/OS Communications Server:

SNA Messages

SC31-8790 This document describes the ELM, IKT, IST, IUT, IVT, and USS

messages. Other information in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications Server: IP

Messages Volume 1 (EZA)

SC31-8783 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server: IP

Messages Volume 2 (EZB, EZD)

SC31-8784 This volume contains TCP/IP messages beginning with EZB or

EZD.

z/OS Communications Server: IP

Messages Volume 3 (EZY)

SC31-8785 This volume contains TCP/IP messages beginning with EZY.

z/OS Communications Server: IP

Messages Volume 4 (EZZ, SNM)

SC31-8786 This volume contains TCP/IP messages beginning with EZZ and

SNM.

z/OS Communications Server: IP

and SNA Codes

SC31-8791 This document describes codes and other information that

appear in z/OS Communications Server messages.

598 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Index

Special characters
hlq.PROFILE.TCPIP data set 49

hlq.TCPIP.DATA data set 50

A
abend codes

AEY9 114

E20L 116

E20T 116

ACCEPT (call) 226

accept system call
C language 163

EZACICAL call 370

use in server 127

accessibility 583

adapter 18

adding a UNIX system services segment 51

address
family (domain) 130

MVS address spaces 131

structures
AF_INET 130

AF_INET6 130

address testing macros 220

addrinfo C structure 162

ADDRINFO structure interpreter parameters, on

EZACIC09 361

AF parameter on call interface, on SOCKET 341

AF_INET domain parameter 130, 218

AF_INET6 domain parameter 130, 218

ALTER 71

application transparent transport layer security (AT-TLS) 152

ASCII data format 152

automatic startup 103

B
BACKLOG parameter on call interface, LISTEN call 290

big endian 132

BIND (call) 229

bind system call
C language 165

EZACICAL call 371

use in server 127

bit-mask on call interface, on EZACIC06 call 354

bit-mask-length on call interface, on EZACIC06 call 355

blocking/nonblocking option 171, 204

broadcast option 195

BUF parameter on call socket interface 223

on READ 295

on RECV 299

on RECVFROM 302

on SEND 319

on SENDTO 325

on WRITE 345

C
C language

API 157, 187, 198, 217

basic calls 18

C structures
addrinfo 162

clientid 160

group_req 162

group_source_req 162

If_NameIndex 161

ifconf 160

ifreq 160

ip_mreq 161

ip_mreq_source 162

ipv6_mreq 161

linger 161

NetConfHdr 160

SetADContainer 162

SetApplData 162

sockaddr_in 161

sockaddr_in6 161

timeval 162

calls
accept() 163

bind() 165

close() 168

connect() 168

fcntl() 170

freeaddrinfo() 171

gai_strerror() 172

getaddrinfo() 172

getclientid() 177

gethostbyaddr() 178

gethostbyname() 179

gethostid() 179

gethostname() 180

getnameinfo() 182

getpeername() 184

getsockname() 185

getsockopt() 187

getsourcefilter() 197

givesocket() 198

if_freenameindex() 199

if_indextoname() 200

if_nameindex() 200

if_nametoindex() 201

inet_ntop() 201

inet_pton() 202

initapi() 202

ioctl() 203

listen() 206

read() 206

recv() 207

recvfrom() 208

select() 210

send() 212

sendto() 213

setsockopt() 187

shutdown() 217

socket() 217

takesocket() 218

© Copyright IBM Corp. 1994, 2007 599

C language (continued)
calls (continued)

write() 219

compiling and linking 158

header files needed 157

C socket calls
C language

getipv4sourcefilter() 180

setipv4sourcefilter() 215

setsourcefilter() 216

cache file, VSAM 94

Call Instructions for Assembler, PL/I, and COBOL Programs
ACCEPT 226

BIND 229

CLOSE 232

CONNECT 233

EZACIC04 350

EZACIC05 352

EZACIC06 354

EZACIC08 356

EZACIC09 359

EZACIC14 363

EZACIC15 365

FCNTL 236

FREEADDRINFO 238

GETADDRINFO 239

GETCLIENTID 247

GETHOSTBYADDR 248

GETHOSTBYNAME 250

GETHOSTID 252

GETHOSTNAME 253

GETNAMEINFO 254

GETPEERNAME 258

GETSOCKNAME 260

GETSOCKOPT 262

GIVESOCKET 274

INITAPI 276

introduction 223

IOCTL 278

LISTEN 289

NTOP 290

PTON 292

READ 294

READV 296

RECV 297

RECVFROM 299

RECVMSG 303

SELECT 307

SELECTEX 312

SENDMSG 319

SENDTO 323

SETSOCKOPT 326

SHUTDOWN 338

SOCKET 340

TAKESOCKET 342

TERMAPI 343

WRITE 344

WRITEV 345

CH-MASK parameter on call interface, on EZACIC06 354

child server 9, 126

CICS 103

starting automatically 103

starting manually 104

starting with program link 116

CICS transaction processing system
defining resources in setup 26

operation with CICS TCP/IP 18

client
definition 2

socket calls used in 125

CLIENT parameter on call socket interface 223

on GETCLIENTID 248

on GIVESOCKET 276

on TAKESOCKET 343

client/server processing 2

clientid C structure 160

close system call
C language 168

EZACICAL call 372

use in child server 126

use in client 126

use in server 128

COBOL language
basic calls 18

call format 370

choosing EZACICAL or Sockets Extended API 367

compilation JCL 367

EZACICAL API 369, 395

socket API calls (EZACICAL, SOKETS)
ACCEPT 370

BIND 371

CLOSE 372

CONNECT 373

FCNTL 374

GETCLIENTID 375

GETHOSTID 376

GETHOSTNAME 376

GETPEERNAME 377

GETSOCKNAME 378

GETSOCKOPT 379

GIVESOCKET 380

INITAPI 381

IOCTL 382

LISTEN 383

READ 384

RECVFROM 385

SELECT 386

SEND 388

SENDTO 389

SETSOCKOPT 390

SHUTDOWN 391

SOCKET 392

TAKESOCKET 393

WRITE 394

COBOL language call
EZASOKET 224

COMMAND parameter on call interface, IOCTL call 280

COMMAND parameter on call socket interface 223

on EZACIC06 355

on FCNTL 237

Communications Server for z/OS, online information xxvi

COMP (COBOL USAGE) 370

concurrent server 123

defined 8

illustrated 8, 9

writing your own 127

configuration file, JCL 70

configuration macro 51

configuration transaction 70

configuring CICS TCP/IP 23, 51

connect system call
C language 168

EZACICAL call 373

use in client 126

600 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

conversion routines 152

CONVERT 71, 75

COPY 78

CSKD transaction
See EZAP transaction

CSKE transaction
See EZAO transaction

CSKL transaction 134

CSKL transaction, defining in CICS 27

D
data conversion 152

data sets, modifying 70

data translation, socket interface 223, 347

ASCII to EBCDIC 352, 365

bit-mask to character 354

character to bit-mask 354

EBCDIC to ASCII 350, 363

DEFINE 80

DELETE 83

Destination Control Table 36

DFHSRT macroinstruction types 46

disability 583

DISPLAY 85

DNS
EZACIC25, adding to RDO 28

DNS, online information xxvii

domain
address family 130

parameter in socket call 218

Domain Name System cache 93

cache file 94

EZACICR macro 94

initialization module, creating 96

E
EBCDIC data format 152

enhanced listener
converting to 71, 75

parameters 59

temporary storage 26

environmental support 117

ERETMSK parameter on call interface, on SELECT 311

ERRNO parameter on call socket interface 223

on ACCEPT 229

on BIND 231

on CLOSE 233

on CONNECT 236

on FCNTL 238

on FREEADDRINFO 239

on GETADDRINFO 247

on GETCLIENTID 248

on GETHOSTNMAE 254

on GETNAMEINFO 258

on GETPEERNAME 260

on GETSOCKNAME 262

on GETSOCKOPT 263

on GIVESOCKET 276

on INITAPI 278

on IOCTL 288

on LISTEN 290

on NTOP 292

on PTON 294

on READ 295

ERRNO parameter on call socket interface (continued)
on READV 297

on RECV 299

on RECVFROM 302

on RECVMSG 307

on SELECT 311

on SELECTEX 317

on SEND 319

on SENDMSG 323

on SENDTO 326

on SETSOCKOPT 327

on SHUTDOWN 340

on SOCKET 341

on TAKESOCKET 343

on WRITE 345

on WRITEV 346

errno variable 163

error check option 195

ESDNMASK parameter on call interface, on SELECT 311

event monitoring
for listener 41

for TRUE 38

EWOULDBLOCK error return, call interface calls
RECV 297

RECVFROM 300

EXEC CICS LINK 116

EXEC CICS RETRIEVE 133

EXEC CICS START 133

EZAC (configuration transaction) 70

EZAC start screen 110

EZACACHE, defining to RDO 35

EZACIC04, call interface, EBCDIC to ASCII translation 350

EZACIC05, call interface, ASCII to EBCDIC translation 352

EZACIC06 16

EZACIC06, call interface, bit-mask translation 354

EZACIC08, HOSTENT structure interpreter utility 356

EZACIC09, ADDRINFO structure interpreter utility 359

EZACIC14, call interface, EBCDIC to ASCII translation 363

EZACIC15, call interface, ASCII to EBCDIC translation 365

EZACIC6C sample 493

EZACIC6S sample 505

EZACICAC sample 529

EZACICAL 367

EZACICAL API 369, 395

EZACICAL program 369

EZACICAS sample 540

EZACICD (configuration macro) 51

EZACICR macro 94, 96

EZACICSC sample 463

EZACICSE program 143

EZACICSS sample 472

EZACICxx programs
defining in CICS 28

EZACIC00 29

EZACIC01 29

EZACIC02 29

EZACIC03 33

EZACIC07 33

EZACIC12 29

EZACIC20 29

PLT entries 46

EZACIC21 30

EZACIC22 30

EZACIC23 30

EZACIC24 30

EZACIC25
defining in RDO 30

Index 601

EZACICxx programs (continued)
EZACIC25 (continued)

Domain Name System cache 94

EZACICAL 33

EZACICM 30

EZACICME 30

EZACICSC 31

EZACICSS 32

summary 28

EZACONFG, defining to RDO 34

EZAO transaction
defining in CICS 27

manual startup/shutdown 104

EZAP transaction
defining in CICS 27

EZASOKET 44, 148, 224

F
FCNTL (call) 236

fcntl system call
C language 170, 171

EZACICAL call 374

files, defining to RDO 34

EZACACHE 35

EZACONFG 34

FLAGS parameter on call socket interface 223

on RECV 298

on RECVFROM 301

on RECVMSG 306

on SEND 319

on SENDMSG 323

on SENDTO 325

FNDELAY flag on call interface, on FCNTL 237

FREEADDRINFO (call) 238

Functions
ALTER 71

CONVERT 75

COPY 78

DEFINE 80

DELETE 83

G
gai_strerror system call

C language 172

GETADDRINFO (call) 239

getaddrinfo system call
C language 172

GETCLIENTID (call) 247

getclientid system call
C language 177

EZACICAL call 375

use in server 127, 133

GETHOSTBYADDR (call) 248

GETHOSTBYNAME (call) 250

GETHOSTID (call) 252

gethostid system call
C language 179

EZACICAL call 376

GETHOSTNAME (call) 253

gethostname system call
C language 178, 179, 180

EZACICAL call 376

GETNAMEINFO (call) 254

getnameinfo system call
C language 182

GETPEERNAME (call) 258

getpeername system call
C language 184

EZACICAL call 377

GETSOCKNAME (call) 260

getsockname system call
C language 185, 197

EZACICAL call 378

GETSOCKOPT (call) 262

getsockopt system call
C language 187

EZACICAL call 379

GIVESOCKET (call) 274

givesocket system call
C language 198

EZACICAL call 380

use in server 127, 133

group_req structure 162

group_source_req structure 162

H
HOSTADDR parameter on call interface, on

GETHOSTBYADDR 249

HOSTENT parameter on socket call interface
on GETHOSTBYADDR 249

on GETHOSTBYNAME 251

HOSTENT structure interpreter parameters, on

EZACIC08 357

HOW parameter on call interface, on SHUTDOWN 340

I
IBM Software Support Center, contacting xxiii

IDENT parameter on call interface, INITAPI call 278

if_freenameindex system call
C language 199

if_indextoname system call
C language 200

If_NameIndex C structure 161

if_nameindex system call
C language 200

if_nametoindex system call
C language 201

ifconf C structure 160

ifreq C structure 160

immediate=no 114

immediate=yes 114

IN-BUFFER parameter on call interface, EZACIC05 call 352

inet_ntop system call
C language 201

inet_pton system call
C language 202

information APARs for IP-related documents 579

information APARs for non- document information 580

information APARs for SNA-related documents 580

initapi system call
C language 202

EZACICAL call 381

use in client 125

use in server 127

INITAPI(call) 276

INITAPIX 276

installing CICS TCP/IP 23

602 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Internet, finding z/OS information online xxvi

Internets, TCP/IP 2

interval control 135

IOCTL (call) 278

ioctl system call
C language 203

EZACICAL call 382

IOV parameter on call socket interface 223

on READV 297

on WRITEV 346

IOVCNT parameter on call socket interface 223

on READV 297

on RECVMSG 306

on SENDMSG 322

on WRITEV 346

IP protocol 3

ip_mreq C structure 161

ip_mreq_source structure 162

ipv6_mreq C structure 161

iterative server
defined 8

illustrated 9, 124

socket calls in 128

J
JCL jobs

for C compilation 158

for CICS startup 23

for CICS/TCP configuration 70

for COBOL compilation 367

for DNS cache file 99

K
keyboard 583

L
LCA

See Listener control area

LENGTH parameter on call socket interface 223

on EZACIC04 351

on EZACIC05 353

on EZACIC14 364

on EZACIC15 366

license, patent, and copyright information 585

linger C structure 161

linger on close option 195

link, program 116

LISTEN (call) 289

listen system call
C language 206

EZACICAL call 383

use in server 127

listener
enhanced

converting to 71, 75

parameters 59

temporary storage 26

input format 135

monitor control table 41

output format 136

security/transaction module 143

standard
converting to enhanced listener 71, 75

listener (continued)
standard (continued)

parameters 59

starting and stopping 134, 147

user-written 117

listener/server call sequence 126

listener/server, socket call (general) 127

little endian 132

LookAt message retrieval tool xxviii

M
macro, EZACICR 94

macros, address testing 220

manifest.h C header 157

manual startup 104

MAXFILEPROC 62, 91

MAXSNO parameter on call interface, INITAPI call 278

MAXSOC parameter on call socket interface 223

on INITAPI 277

on SELECT 310

on SELECTEX 316

MCT
See monitor control table

message retrieval tool, LookAt xxviii

messages, sockets 417

modifying data sets 70

Monitor Control Table
for listener 43

for TRUE 38

monitoring, event
for listener 41

for TRUE 38

MSG parameter on call socket interface 223

on RECVMSG 305

on SENDMSG 321

MVS address spaces 131

N
NAME parameter on socket call interface

on ACCEPT 228

on BIND 230

on CONNECT 235

on GETHOSTBYNAME 251

on GETHOSTNAME 254

on GETPEERNAME 259

on GETSOCKNAME 261

on RECVFROM 302

on SENDTO 325

NAMELEN parameter on socket call interface
on GETHOSTBYNAME 251

on GETHOSTNAME 254

NBYTE parameter on call socket interface 223

on READ 295

on RECV 299

on RECVFROM 302

on SEND 319

on SENDTO 325

on WRITE 345

NetConfHdr C structure 160

network byte order 132

NTOP (call) 290

Index 603

O
OPTNAME parameter on call socket interface 223

OPTVAL parameter on call socket interface 223

original COBOL application programming interface

(API) 367, 395

OSI 2

OUT-BUFFER parameter on call interface, on EZACIC04 350

OUT-BUFFER parameter on call interface, on EZACIC14 363

OUT-BUFFER parameter on call interface, on EZACIC15 365

out-of-band data
options in get/setsockopt call 196

sending with send call 212

P
passing sockets 128

pending activity 15

pending exception 16

pending read 16

PL/I programs, required statement 226

PLT 103

PLT entry 46

port numbers
definition 130

reserving port numbers 49

ports
compared with sockets 7

numbers 130

reserving port numbers 49

program link 116

Program List Table 103

program variable definitions, call interface 223

assembler definition 226

COBOL PIC 226

PL/1 declare 226

VS COBOL II PIC 226

programs, defining in CICS 28

programs, sample 463

PROTO parameter on call interface, on SOCKET 341

protocol parameter in socket call 218

PTON (call) 292

Q
quiescent shutdown

See immediate=yes

R
RDO

configure the socket interface (EZAC) 27

READ (call) 294

read system call
C language 206

EZACICAL call 384

use in child server 126

use in client 126

READV (call) 296

RECV (call) 297

recv system call, C language 207

RECVFROM (call) 299

recvfrom system call
C language 208

EZACICAL call 385

use in server 127

RECVMSG (call) 303

RENAME 89

REQARG and RETARG parameter on call socket

interface 223

on FCNTL 237

on IOCTL 287

requirements for CICS TCP/IP 18

resource definition in CICS 26

Resource Definition Online
See RDO

RETARG parameter on call interface, on IOCTL 288

RETCODE parameter on call socket interface 223

on ACCEPT 229

on BIND 232

on CLOSE 233

on CONNECT 236

on EZACIC06 355

on FCNTL 238

on FREEADDRINFO 239

on GETADDRINFO 247

on GETCLIENTID 248

on GETHOSTBYADDR 249

on GETHOSTBYNAME 251

on GETHOSTID 253

on GETHOSTNAME 254

on GETNAMEINFO 258

on GETPEERNAME 260

on GETSOCKNAME 262

on GETSOCKOPT 264

on GIVESOCKET 276

on INITAPI 278

on IOCTL 288

on LISTEN 290

on NTOP 292

on PTON 294

on READ 295

on READV 297

on RECV 299

on RECVFROM 302

on RECVMSG 307

on SELECT 311

on SELECTEX 317

on SEND 319

on SENDMSG 323

on SENDTO 326

on SETSOCKOPT 327

on SHUTDOWN 340

on SOCKET 341

on TAKESOCKET 343

on WRITE 345

on WRITEV 347

return codes
call interface 226

reuse local address option 196

RFC (request for comments)
accessing online xxvi

list of 563

RRETMSK parameter on call interface, on SELECT 311

RSNDMSK parameter on call interface, on SELECT 311

S
S, defines socket descriptor on socket call interface

on ACCEPT 228

on BIND 230

on CLOSE 233

on CONNECT 235

604 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

S, defines socket descriptor on socket call interface (continued)
on FCNTL 237

on GETPEERNAME 259

on GETSOCKNAME 261

on GETSOCKOPT 263

on GIVESOCKET 276

on IOCTL 280

on LISTEN 290

on READ 295

on READV 296

on RECV 298

on RECVFROM 301

on RECVMSG 305

on SEND 318

on SENDMSG 321

on SENDTO 325

on SETSOCKOPT 327

on SHUTDOWN 340

on WRITE 345

on WRITEV 346

sample programs 463

security/transaction module 143

SELECT (call) 307

select mask 15

select system call
C language 210

EZACICAL call 386

use in server 127, 128

SELECTEX (call) 312

SELECTEX sample 559

SEND (call) 317

send system call
C language 212

EZACICAL call 388

SENDMSG (call) 319

SENDTO (call) 323

sendto system call
C language 213

EZACICAL call 389

server
definition 2

socket calls in child server 126

socket calls in concurrent server 127

socket calls in iterative server 128

SetADContainer structure 162

SetApplData structure 162

SETSOCKOPT (call) 326

setsockopt system call
C language 187

EZACICAL call 390

shortcut keys 583

SHUTDOWN (call) 338

shutdown system call
C language 217

EZACICAL call 391

shutdown, immediate 114

shutdown, manual 104

SNA protocols and CICS 1

SOCK_STREAM type parameter 218

sockaddr_in C structure
format 161

use in accept call 164

use in bind call 166

use in connect call 169

sockaddr_in6 C structure 161

SOCKET (call) 340

socket call interface
on ACCEPT 228

on BIND 230

on CLOSE 233

on CONNECT 235

on FCNTL 237

on GETPEERNAME 259

on GETSOCKNAME 261

on GETSOCKOPT 263

on GIVESOCKET 276

on IOCTL 280

on LISTEN 290

on READ 295

on READV 296

on RECV 298

on RECVFROM 301

on RECVMSG 305

on SEND 318

on SENDMSG 321

on SENDTO 325

on SETSOCKOPT 327

on SHUTDOWN 340

on WRITE 345

on WRITEV 346

socket system call 217

EZACICAL call 392

use in client 126

use in server 127

sockets
compared with ports 7

introduction 3

passing 128

Sockets Extended API 3

sockets messages 417

SOCRECV parameter on call interface, TAKESOCKET

call 342

SOCTYPE parameter on call interface, on SOCKET 341

SRT 46

standard listener
converting to enhanced listener 71, 75

parameters 59

startup
automatic 103

manually 104

program link 116

stopping
See automatic startup

storage protection machines 27, 29

stub program 18

subtask 18

SUBTASK parameter on call interface, INITAPI call 278

support, environmental 117

system recovery table 46

system services segment, adding a UNIX system services 51

T
TAKESOCKET (call) 342

takesocket system call
C language 218

EZACICAL call 393

use in child server 126, 133

task control 135

task interface element
See TIE

task-related user exit 18

TCP protocol 3

Index 605

TCP_NODELAY 188, 195

TCP/IP
online information xxvi

protocol specifications 563

TCP/IP protocols 2

TCP/IP services, modifying data sets 49

TCP/IP, compared with SNA 1

TCPIP.DATA data set 50

tcpip.SEZACMAC data set 157

TCPIPJOBNAME user id 50

TCPM td queue 36

TERMAPI (call) 343

TIMEOUT parameter on call interface, on SELECT 310

TIMEOUT parameter on call socket interface 223

on SELECTEX 316

timeval structure 162

TOKEN parameter on call interface, on EZACIC06 354

trademark information 593

transaction identifier 135

transactions, defining in CICS 26

transient data 36

TRUE module
description 18

monitor control table 38

type (of socket) option 196

type parameter 54

TYPE=CICS 55

TYPE=INITIAL 54

TYPE=LISTENER 59

type parameter in socket call 218

U
UDP protocol 3

UNIX System Services 62, 91

UNIX Systems Services — adding a UNIX system services

segment 51

use of ADDRINFO structure interpreter, EZACIC09 359

use of HOSTENT structure interpreter, EZACIC08 356

utility programs 223, 347

EZACIC04 350

EZACIC05 352

EZACIC06 354

EZACIC08 356

EZACIC09 359

EZACIC14 363

EZACIC15 365

V
VSAM cache file 94

VTAM, online information xxvi

W
WRETMSK parameter on call interface, on SELECT 311

WRITE (call) 344

write system call
C language 219

EZACICAL call 394

use in child server 126

use in client 126

WRITEV (call) 345

WSNDMSK parameter on call interface, on SELECT 311

Z
z/OS UNIX Systems Services — adding a UNIX system

services segment 51

z/OS, documentation library listing 595

z/OS, listing of documentation available 579

606 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of

the methods listed below to send your comments to IBM. Whichever method you

choose, make sure you send your name, address, and telephone number if you

would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject

matter, or completeness of this document. However, the comments you send

should pertain to only the information in this manual and the way in which the

information is presented. To request additional publications, or to ask questions or

make comments about the functions of IBM products or systems, you should talk

to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate without incurring any

obligation to you.

Please send your comments to us in either of the following ways:

v If you prefer to send comments by FAX, use this number: 1+919-254-1258

v If you prefer to send comments electronically, use this address:

– comsvrcf@us.ibm.com
v If you prefer to send comments by post, use this address:

International Business Machines Corporation

Attn: z/OS Communications Server Information Development

P.O. Box 12195, 3039 Cornwallis Road

Department AKCA, Building 501

Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:

v Title and publication number of this document

v Page number or topic to which your comment applies.

© Copyright IBM Corp. 1994, 2007 607

mailto:comsvrcf@us.ibm.com

608 z/OS V1R9.0 Comm Svr: IP CICS Sockets Guide

����

Program Number: 5694–A01

Printed in USA

SC31-8807-04

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

z/
O

S
Co

m
m

un
ic

at
io

ns

Se

rv
er

z/

O
S

V
1R

9.0

Co

m
m

Sv

r:

IP

C

IC
S

So
ck

et
s

G
ui

de

Ve
rs

io
n

1
R

el
ea

se

9

	Contents
	Figures
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	Determining whether a publication is current
	How to contact IBM service

	Conventions and terminology used in this document
	Clarification of notes

	Prerequisite and related information
	Required information
	Related information
	Softcopy information
	Other documents
	Redbooks
	Where to find related information on the Internet
	DNS Web sites
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS

	How to send your comments

	Summary of changes
	Chapter 1. Introduction to CICS TCP/IP
	TCP/IP Internets
	Telnet
	Client/server processing
	TCP, UDP, and IP
	The socket API
	Programming with sockets
	Socket types
	Addressing TCP/IP hosts
	Address families
	Socket addresses
	Internet (IP) addresses
	Ports
	Domain names
	Network Byte Order

	A typical client-server program flow chart
	Concurrent and iterative servers

	The basic socket calls
	Server TCP/IP calls
	SOCKET
	BIND
	LISTEN
	ACCEPT
	GIVESOCKET and TAKESOCKET
	READ and WRITE

	Client TCP/IP calls
	The SOCKET call
	The CONNECT call
	READ/WRITE calls — the conversation
	The CLOSE call

	Other socket calls
	The SELECT call
	IOCTL and FCNTL calls
	GIVESOCKET and TAKESOCKET calls
	Summary

	What you must have to run CICS TCP/IP
	CICS TCP/IP components
	A summary of what CICS TCP/IP provides
	The socket calls
	The listener
	Conversion routines
	Rules for configuring the IBM-supplied listener for IPv6

	Chapter 2. Setting up and configuring CICS TCP/IP
	MVS JCL — Modifying CICS startup
	CICS — Defining CICS TCP/IP resources
	Transaction definitions
	Using storage protection

	Program definitions
	Required programs, CICS definition needed
	Using storage protection

	Optional programs, CICS transaction and program definition needed
	Required programs, CICS definition not needed
	Threadsafe enablement

	File definitions
	EZACONFG
	EZACACHE

	Transient data definition
	CICS monitoring
	Event monitoring points for the TRUE
	Event monitoring points for the listener
	Open TCB measurements

	CICS program list table (PLT)
	System recovery table
	DFHSRT macroinstruction types
	Control section
	Abend codes

	DFHSRT example

	Security considerations

	TCP/IP services — Modifying data sets
	The hlq.PROFILE.TCPIP data set
	The hlq.TCPIP.DATA data set

	z/OS UNIX Systems Services — adding a UNIX system services segment
	Configuring the CICS TCP/IP environment
	Building the configuration data set with EZACICD
	TYPE parameter
	TYPE=INITIAL
	TYPE=CICS
	TYPE=LISTENER

	JCL for the configuration macro

	Customizing the configuration data set
	Configuration transaction (EZAC)
	ALTER function
	CONVERT function
	COPY function
	DEFINE function
	DELETE function
	DISPLAY function
	RENAME function

	UNIX Systems Services environment effects on IP CICS sockets

	Chapter 3. Configuring the CICS Domain Name System cache
	Function components
	VSAM cache file
	EZACICR macro
	EZACIC25 module

	How the DNS cache handles requests
	Using the DNS cache
	Step 1: Create the initialization module
	Step 2: Define the cache file to CICS
	Step 3: Execute EZACIC25
	HOSTENT structure

	Chapter 4. Managing IP CICS sockets
	Starting and stopping CICS automatically
	IP CICS socket interface management
	INQUIRE function
	SET function
	START function
	START CICS
	START LISTENER
	START TRACE

	STOP function
	STOP CICS
	STOP LISTENER
	STOP TRACE

	Abbreviating the EZAO transaction parameters

	Starting/stopping CICS TCP/IP with program link

	Chapter 5. Writing your own listener
	Prerequisites
	Using IBM's environmental support
	WLM registration and unregistration for sysplex connection optimization

	Chapter 6. Application programming guide
	Writing CICS TCP/IP applications
	1. The client-listener-child-server application set
	Client call sequence
	Listener call sequence
	Child server call sequence

	2. Writing your own concurrent server
	Concurrent server call sequence
	Passing sockets

	3. The iterative server CICS TCP/IP application
	Iterative server use of sockets

	4. The client CICS TCP/IP application

	Socket addresses
	Address family (domain)
	IP addresses
	Ports
	Address structures
	For COBOL, PL/I, and assembler language programs
	For C programs

	MVS address spaces
	Network byte order

	GETCLIENTID, GIVESOCKET, and TAKESOCKET
	The IBM listener
	Listener input format
	Examples

	Listener output format
	Writing your own security/transaction link module for the listener

	Threadsafe considerations for IP CICS sockets applications
	How CICS selects an L8 mode TCB
	Data conversion routines
	Application Transparent Transport Layer Security
	Example of inbound AT-TLS support
	Example of outbound AT-TLS support

	Chapter 7. C language application programming
	C socket library
	C socket compilation
	Structures used in socket calls
	The ERRNO variable
	C socket calls
	accept()
	Format
	Parameters
	Return values

	bind()
	Format
	Parameters
	Return values

	close()
	Format
	Parameter
	Return values

	connect()
	Format
	Parameters
	Return values

	fcntl()
	Format
	Parameters
	Return values

	freeaddrinfo()
	Format
	Parameters
	Return values

	gai_strerror()
	Format
	Parameters
	Return values

	getaddrinfo()
	Format
	Parameters
	Return values

	getclientid()
	Format
	Parameters
	Return values

	gethostbyaddr()
	Format
	Parameters
	Return values

	gethostbyname()
	Format
	Parameters
	Return values

	gethostid()
	Format
	Parameters
	Return values

	gethostname()
	Format
	Parameters
	Return values

	getipv4sourcefilter()
	Format
	Parameters
	Return values

	getnameinfo()
	Format
	Parameters
	Return values

	getpeername()
	Format
	Parameters
	Return values

	getsockname()
	Format
	Parameters
	Return values

	getsockopt(), setsockopt()
	Format
	Parameters
	Possible entries for optname
	Return values

	getsourcefilter()
	Format
	Parameters
	Return values

	givesocket()
	Format
	Parameters
	Return Values

	if_freenameindex()
	Format
	Parameters
	Return values

	if_indextoname()
	Format
	Parameters
	Return values

	if_nameindex()
	Format
	Parameters
	Return values

	if_nametoindex()
	Format
	Parameters
	Return values

	inet_ntop()
	Format
	Parameters
	Return values

	inet_pton()
	Format
	Parameters
	Return values

	initapi()
	Format
	Parameters
	Return values

	ioctl()
	Format
	Parameters
	Return values

	listen()
	Format
	Parameters
	Return values

	read()
	Format
	Parameters
	Return values

	recv()
	Format
	Parameters
	Return values

	recvfrom()
	Format
	Parameters
	Return values

	select()
	Defining which sockets to test
	Read operations
	Write operations
	Exception operations
	NFDS parameter
	TIMEOUT parameter
	Format
	Parameters
	Return values

	send()
	Format
	Parameters
	Return values

	sendto()
	Format
	Parameters
	Return values

	setipv4sourcefilter()
	Format
	Parameters
	Return values

	setsockopt()
	setsourcefilter()
	Format
	Parameters
	Return values

	shutdown()
	Format
	Parameters
	Return values

	socket()
	Format
	Parameters
	Return values

	takesocket()
	Format
	Parameters
	Return values

	write()
	Format
	Parameters
	Return values

	Address Testing Macros

	Chapter 8. Sockets extended API
	Environmental restrictions and programming requirements
	CALL instruction API
	Understanding COBOL, assembler, and PL/I call formats
	COBOL language call format
	Assembler language call format
	PL/I language call format

	Converting parameter descriptions
	Error messages and return codes
	Code CALL instructions
	ACCEPT
	Parameter values set by the application
	Parameter values returned to the application

	BIND
	Parameter values set by the application
	Parameter values returned to the application

	CLOSE
	Parameter values returned to the application
	Parameter values set by the application

	CONNECT
	Stream sockets
	UDP sockets
	Parameter values set by the application
	Parameter values returned to the application

	FCNTL
	Parameter values set by the application
	Parameter values returned to the application

	FREEADDRINFO
	Parameter values set by the application
	Parameter values returned to the application

	GETADDRINFO
	Parameter values set by the application
	Parameter values returned to the application

	GETCLIENTID
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTBYADDR
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTBYNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETHOSTID
	GETHOSTNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETNAMEINFO
	Parameter values set by the application
	Parameter values returned to the application

	GETPEERNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETSOCKNAME
	Parameter values set by the application
	Parameter values returned to the application

	GETSOCKOPT
	Parameter values set by the application
	Parameter values returned to the application

	GIVESOCKET
	Parameter values set by the application
	Parameter values returned to the application

	INITAPI and INITAPIX
	Parameter values set by the application
	Parameter values returned to the application

	IOCTL
	Parameter values set by the application
	Parameter values returned to the application

	LISTEN
	Parameter values set by the application
	Parameter values returned to the application

	NTOP
	Parameter values set by the application
	Parameter values returned to the application

	PTON
	Parameter values set by the application
	Parameter values returned to the application

	READ
	Parameter values set by the application
	Parameter values returned to the application

	READV
	Parameter values set by the application
	Parameter values returned to the application

	RECV
	Parameter values set by the application
	Parameter values returned to the application

	RECVFROM
	Parameter values set by the application
	Parameter values returned to the application

	RECVMSG
	Parameter values set by the application
	Parameter values returned by the application

	SELECT
	Defining which sockets to test
	Read operations
	Write operations
	Exception operations
	MAXSOC parameter
	TIMEOUT parameter
	Parameter values set by the application
	Parameter values returned to the application

	SELECTEX
	Defining which sockets to test
	Read operations
	Write operations
	Exception operations
	MAXSOC parameter
	TIMEOUT parameter
	Parameter values set by the application
	Parameter values returned by the application

	SEND
	Parameter values set by the application
	Parameter values returned to the application

	SENDMSG
	Parameter values set by the application
	Parameter values returned by the application

	SENDTO
	Parameter values set by the application
	Parameter values returned to the application

	SETSOCKOPT
	Parameter values set by the application
	Parameter values returned to the application

	SHUTDOWN
	Parameter values set by the application
	Parameter values returned to the application

	SOCKET
	Parameter values set by the application
	Parameter values returned to the application

	TAKESOCKET
	Parameter values set by the application
	Parameter values returned to the application

	TERMAPI
	Parameter values set by the application

	WRITE
	Parameter values set by the application
	Parameter values returned to the application

	WRITEV
	Parameter values set by the application
	Parameters Returned by the Application

	Using data translation programs for socket call interface
	Data translation
	Bit string processing
	CALL instruction utility programs
	Understanding COBOL, assembler, and PL/I call formats
	COBOL language call format
	Assembler language call format
	PL/I language call format

	EZACIC04
	EZACIC05
	EZACIC06
	EZACIC08
	EZACIC09
	EZACIC14
	EZACIC15

	Appendix A. Original COBOL application programming interface (EZACICAL)
	Using the EZACICAL or Sockets Extended API
	COBOL compilation
	The EZACICAL API
	COBOL
	PL/I
	Assembler language

	COBOL and assembler language socket calls
	ACCEPT
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	BIND
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	CLOSE
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	CONNECT
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	FCNTL
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GETCLIENTID
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GETHOSTID
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GETHOSTNAME
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GETPEERNAME
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GETSOCKNAME
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GETSOCKOPT
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	GIVESOCKET
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	INITAPI
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	IOCTL
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	LISTEN
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	READ
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	RECVFROM
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	SELECT
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	SEND
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	SENDTO
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	SETSOCKOPT
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	SHUTDOWN
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	SOCKET
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	TAKESOCKET
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	WRITE
	Parameter lengths in assembler language and COBOL
	Parameter values to be set by the application
	Parameter values returned to the application

	Appendix B. Return codes
	Sockets return codes (ERRNOs)
	Sockets extended ERRNOs

	Appendix C. GETSOCKOPT/SETSOCKOPT command values
	Appendix D. CICS sockets messages
	EZY1218—EZY1366

	Appendix E. Sample programs
	EZACICSC
	EZACICSS
	EZACIC6C
	EZACIC6S
	EZACICAC
	EZACICAS
	SELECTEX

	Appendix F. Related protocol specifications
	Internet drafts

	Appendix G. Information APARs and technotes
	Information APARs for IP documents
	Information APARs for SNA documents
	Other information APARs

	Appendix H. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Trademarks

	Bibliography
	z/OS Communications Server information
	z/OS Communications Server library
	Planning
	Resource definition, configuration, and tuning
	Operation
	Customization
	Writing application programs
	Diagnosis
	Messages and codes

	Index
	Communicating Your Comments to IBM

